opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/ml.hpp	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,1506 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
+// Copyright (C) 2014, Itseez Inc, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_ML_HPP__
+#define __OPENCV_ML_HPP__
+
+#ifdef __cplusplus
+#  include "opencv2/core.hpp"
+#endif
+
+#ifdef __cplusplus
+
+#include <float.h>
+#include <map>
+#include <iostream>
+
+/**
+  @defgroup ml Machine Learning
+
+  The Machine Learning Library (MLL) is a set of classes and functions for statistical
+  classification, regression, and clustering of data.
+
+  Most of the classification and regression algorithms are implemented as C++ classes. As the
+  algorithms have different sets of features (like an ability to handle missing measurements or
+  categorical input variables), there is a little common ground between the classes. This common
+  ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
+
+  See detailed overview here: @ref ml_intro.
+ */
+
+namespace cv
+{
+
+namespace ml
+{
+
+//! @addtogroup ml
+//! @{
+
+/** @brief Variable types */
+enum VariableTypes
+{
+    VAR_NUMERICAL    =0, //!< same as VAR_ORDERED
+    VAR_ORDERED      =0, //!< ordered variables
+    VAR_CATEGORICAL  =1  //!< categorical variables
+};
+
+/** @brief %Error types */
+enum ErrorTypes
+{
+    TEST_ERROR = 0,
+    TRAIN_ERROR = 1
+};
+
+/** @brief Sample types */
+enum SampleTypes
+{
+    ROW_SAMPLE = 0, //!< each training sample is a row of samples
+    COL_SAMPLE = 1  //!< each training sample occupies a column of samples
+};
+
+/** @brief The structure represents the logarithmic grid range of statmodel parameters.
+
+It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
+being computed by cross-validation.
+ */
+class CV_EXPORTS ParamGrid
+{
+public:
+    /** @brief Default constructor */
+    ParamGrid();
+    /** @brief Constructor with parameters */
+    ParamGrid(double _minVal, double _maxVal, double _logStep);
+
+    double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
+    double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
+    /** @brief Logarithmic step for iterating the statmodel parameter.
+
+    The grid determines the following iteration sequence of the statmodel parameter values:
+    \f[(minVal, minVal*step, minVal*{step}^2, \dots,  minVal*{logStep}^n),\f]
+    where \f$n\f$ is the maximal index satisfying
+    \f[\texttt{minVal} * \texttt{logStep} ^n <  \texttt{maxVal}\f]
+    The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
+    */
+    double logStep;
+};
+
+/** @brief Class encapsulating training data.
+
+Please note that the class only specifies the interface of training data, but not implementation.
+All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other
+words, you can create your own class derived from TrainData and pass smart pointer to the instance
+of this class into StatModel::train.
+
+@sa @ref ml_intro_data
+ */
+class CV_EXPORTS_W TrainData
+{
+public:
+    static inline float missingValue() { return FLT_MAX; }
+    virtual ~TrainData();
+
+    CV_WRAP virtual int getLayout() const = 0;
+    CV_WRAP virtual int getNTrainSamples() const = 0;
+    CV_WRAP virtual int getNTestSamples() const = 0;
+    CV_WRAP virtual int getNSamples() const = 0;
+    CV_WRAP virtual int getNVars() const = 0;
+    CV_WRAP virtual int getNAllVars() const = 0;
+
+    CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
+    CV_WRAP virtual Mat getSamples() const = 0;
+    CV_WRAP virtual Mat getMissing() const = 0;
+
+    /** @brief Returns matrix of train samples
+
+    @param layout The requested layout. If it's different from the initial one, the matrix is
+        transposed. See ml::SampleTypes.
+    @param compressSamples if true, the function returns only the training samples (specified by
+        sampleIdx)
+    @param compressVars if true, the function returns the shorter training samples, containing only
+        the active variables.
+
+    In current implementation the function tries to avoid physical data copying and returns the
+    matrix stored inside TrainData (unless the transposition or compression is needed).
+     */
+    CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
+                                bool compressSamples=true,
+                                bool compressVars=true) const = 0;
+
+    /** @brief Returns the vector of responses
+
+    The function returns ordered or the original categorical responses. Usually it's used in
+    regression algorithms.
+     */
+    CV_WRAP virtual Mat getTrainResponses() const = 0;
+
+    /** @brief Returns the vector of normalized categorical responses
+
+    The function returns vector of responses. Each response is integer from `0` to `<number of
+    classes>-1`. The actual label value can be retrieved then from the class label vector, see
+    TrainData::getClassLabels.
+     */
+    CV_WRAP virtual Mat getTrainNormCatResponses() const = 0;
+    CV_WRAP virtual Mat getTestResponses() const = 0;
+    CV_WRAP virtual Mat getTestNormCatResponses() const = 0;
+    CV_WRAP virtual Mat getResponses() const = 0;
+    CV_WRAP virtual Mat getNormCatResponses() const = 0;
+    CV_WRAP virtual Mat getSampleWeights() const = 0;
+    CV_WRAP virtual Mat getTrainSampleWeights() const = 0;
+    CV_WRAP virtual Mat getTestSampleWeights() const = 0;
+    CV_WRAP virtual Mat getVarIdx() const = 0;
+    CV_WRAP virtual Mat getVarType() const = 0;
+    CV_WRAP virtual int getResponseType() const = 0;
+    CV_WRAP virtual Mat getTrainSampleIdx() const = 0;
+    CV_WRAP virtual Mat getTestSampleIdx() const = 0;
+    CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
+    virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
+    CV_WRAP virtual Mat getDefaultSubstValues() const = 0;
+
+    CV_WRAP virtual int getCatCount(int vi) const = 0;
+
+    /** @brief Returns the vector of class labels
+
+    The function returns vector of unique labels occurred in the responses.
+     */
+    CV_WRAP virtual Mat getClassLabels() const = 0;
+
+    CV_WRAP virtual Mat getCatOfs() const = 0;
+    CV_WRAP virtual Mat getCatMap() const = 0;
+
+    /** @brief Splits the training data into the training and test parts
+    @sa TrainData::setTrainTestSplitRatio
+     */
+    CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
+
+    /** @brief Splits the training data into the training and test parts
+
+    The function selects a subset of specified relative size and then returns it as the training
+    set. If the function is not called, all the data is used for training. Please, note that for
+    each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test
+    subset can be retrieved and processed as well.
+    @sa TrainData::setTrainTestSplit
+     */
+    CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
+    CV_WRAP virtual void shuffleTrainTest() = 0;
+
+    CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx);
+
+    /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
+
+    @param filename The input file name
+    @param headerLineCount The number of lines in the beginning to skip; besides the header, the
+        function also skips empty lines and lines staring with `#`
+    @param responseStartIdx Index of the first output variable. If -1, the function considers the
+        last variable as the response
+    @param responseEndIdx Index of the last output variable + 1. If -1, then there is single
+        response variable at responseStartIdx.
+    @param varTypeSpec The optional text string that specifies the variables' types. It has the
+        format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2`
+        (inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are
+        considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]`
+        should cover all the variables. If varTypeSpec is not specified, then algorithm uses the
+        following rules:
+        - all input variables are considered ordered by default. If some column contains has non-
+          numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding
+          variable is considered categorical.
+        - if there are several output variables, they are all considered as ordered. Error is
+          reported when non-numerical values are used.
+        - if there is a single output variable, then if its values are non-numerical or are all
+          integers, then it's considered categorical. Otherwise, it's considered ordered.
+    @param delimiter The character used to separate values in each line.
+    @param missch The character used to specify missing measurements. It should not be a digit.
+        Although it's a non-numerical value, it surely does not affect the decision of whether the
+        variable ordered or categorical.
+    @note If the dataset only contains input variables and no responses, use responseStartIdx = -2
+        and responseEndIdx = 0. The output variables vector will just contain zeros.
+     */
+    static Ptr<TrainData> loadFromCSV(const String& filename,
+                                      int headerLineCount,
+                                      int responseStartIdx=-1,
+                                      int responseEndIdx=-1,
+                                      const String& varTypeSpec=String(),
+                                      char delimiter=',',
+                                      char missch='?');
+
+    /** @brief Creates training data from in-memory arrays.
+
+    @param samples matrix of samples. It should have CV_32F type.
+    @param layout see ml::SampleTypes.
+    @param responses matrix of responses. If the responses are scalar, they should be stored as a
+        single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
+        former case the responses are considered as ordered by default; in the latter case - as
+        categorical)
+    @param varIdx vector specifying which variables to use for training. It can be an integer vector
+        (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
+        active variables.
+    @param sampleIdx vector specifying which samples to use for training. It can be an integer
+        vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
+        of training samples.
+    @param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
+    @param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> +
+        <number_of_variables_in_responses>`, containing types of each input and output variable. See
+        ml::VariableTypes.
+     */
+    CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
+                                 InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
+                                 InputArray sampleWeights=noArray(), InputArray varType=noArray());
+};
+
+/** @brief Base class for statistical models in OpenCV ML.
+ */
+class CV_EXPORTS_W StatModel : public Algorithm
+{
+public:
+    /** Predict options */
+    enum Flags {
+        UPDATE_MODEL = 1,
+        RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label
+        COMPRESSED_INPUT=2,
+        PREPROCESSED_INPUT=4
+    };
+
+    /** @brief Returns the number of variables in training samples */
+    CV_WRAP virtual int getVarCount() const = 0;
+
+    CV_WRAP virtual bool empty() const;
+
+    /** @brief Returns true if the model is trained */
+    CV_WRAP virtual bool isTrained() const = 0;
+    /** @brief Returns true if the model is classifier */
+    CV_WRAP virtual bool isClassifier() const = 0;
+
+    /** @brief Trains the statistical model
+
+    @param trainData training data that can be loaded from file using TrainData::loadFromCSV or
+        created with TrainData::create.
+    @param flags optional flags, depending on the model. Some of the models can be updated with the
+        new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
+     */
+    CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
+
+    /** @brief Trains the statistical model
+
+    @param samples training samples
+    @param layout See ml::SampleTypes.
+    @param responses vector of responses associated with the training samples.
+    */
+    CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses );
+
+    /** @brief Computes error on the training or test dataset
+
+    @param data the training data
+    @param test if true, the error is computed over the test subset of the data, otherwise it's
+        computed over the training subset of the data. Please note that if you loaded a completely
+        different dataset to evaluate already trained classifier, you will probably want not to set
+        the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
+        that the error is computed for the whole new set. Yes, this sounds a bit confusing.
+    @param resp the optional output responses.
+
+    The method uses StatModel::predict to compute the error. For regression models the error is
+    computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
+     */
+    CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
+
+    /** @brief Predicts response(s) for the provided sample(s)
+
+    @param samples The input samples, floating-point matrix
+    @param results The optional output matrix of results.
+    @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags.
+     */
+    CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
+
+    /** @brief Create and train model with default parameters
+
+    The class must implement static `create()` method with no parameters or with all default parameter values
+    */
+    template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0)
+    {
+        Ptr<_Tp> model = _Tp::create();
+        return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
+    }
+};
+
+/****************************************************************************************\
+*                                 Normal Bayes Classifier                                *
+\****************************************************************************************/
+
+/** @brief Bayes classifier for normally distributed data.
+
+@sa @ref ml_intro_bayes
+ */
+class CV_EXPORTS_W NormalBayesClassifier : public StatModel
+{
+public:
+    /** @brief Predicts the response for sample(s).
+
+    The method estimates the most probable classes for input vectors. Input vectors (one or more)
+    are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
+    output vector outputs. The predicted class for a single input vector is returned by the method.
+    The vector outputProbs contains the output probabilities corresponding to each element of
+    result.
+     */
+    CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs,
+                               OutputArray outputProbs, int flags=0 ) const = 0;
+
+    /** Creates empty model
+    Use StatModel::train to train the model after creation. */
+    CV_WRAP static Ptr<NormalBayesClassifier> create();
+};
+
+/****************************************************************************************\
+*                          K-Nearest Neighbour Classifier                                *
+\****************************************************************************************/
+
+/** @brief The class implements K-Nearest Neighbors model
+
+@sa @ref ml_intro_knn
+ */
+class CV_EXPORTS_W KNearest : public StatModel
+{
+public:
+
+    /** Default number of neighbors to use in predict method. */
+    /** @see setDefaultK */
+    CV_WRAP virtual int getDefaultK() const = 0;
+    /** @copybrief getDefaultK @see getDefaultK */
+    CV_WRAP virtual void setDefaultK(int val) = 0;
+
+    /** Whether classification or regression model should be trained. */
+    /** @see setIsClassifier */
+    CV_WRAP virtual bool getIsClassifier() const = 0;
+    /** @copybrief getIsClassifier @see getIsClassifier */
+    CV_WRAP virtual void setIsClassifier(bool val) = 0;
+
+    /** Parameter for KDTree implementation. */
+    /** @see setEmax */
+    CV_WRAP virtual int getEmax() const = 0;
+    /** @copybrief getEmax @see getEmax */
+    CV_WRAP virtual void setEmax(int val) = 0;
+
+    /** %Algorithm type, one of KNearest::Types. */
+    /** @see setAlgorithmType */
+    CV_WRAP virtual int getAlgorithmType() const = 0;
+    /** @copybrief getAlgorithmType @see getAlgorithmType */
+    CV_WRAP virtual void setAlgorithmType(int val) = 0;
+
+    /** @brief Finds the neighbors and predicts responses for input vectors.
+
+    @param samples Input samples stored by rows. It is a single-precision floating-point matrix of
+        `<number_of_samples> * k` size.
+    @param k Number of used nearest neighbors. Should be greater than 1.
+    @param results Vector with results of prediction (regression or classification) for each input
+        sample. It is a single-precision floating-point vector with `<number_of_samples>` elements.
+    @param neighborResponses Optional output values for corresponding neighbors. It is a single-
+        precision floating-point matrix of `<number_of_samples> * k` size.
+    @param dist Optional output distances from the input vectors to the corresponding neighbors. It
+        is a single-precision floating-point matrix of `<number_of_samples> * k` size.
+
+    For each input vector (a row of the matrix samples), the method finds the k nearest neighbors.
+    In case of regression, the predicted result is a mean value of the particular vector's neighbor
+    responses. In case of classification, the class is determined by voting.
+
+    For each input vector, the neighbors are sorted by their distances to the vector.
+
+    In case of C++ interface you can use output pointers to empty matrices and the function will
+    allocate memory itself.
+
+    If only a single input vector is passed, all output matrices are optional and the predicted
+    value is returned by the method.
+
+    The function is parallelized with the TBB library.
+     */
+    CV_WRAP virtual float findNearest( InputArray samples, int k,
+                               OutputArray results,
+                               OutputArray neighborResponses=noArray(),
+                               OutputArray dist=noArray() ) const = 0;
+
+    /** @brief Implementations of KNearest algorithm
+       */
+    enum Types
+    {
+        BRUTE_FORCE=1,
+        KDTREE=2
+    };
+
+    /** @brief Creates the empty model
+
+    The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method.
+     */
+    CV_WRAP static Ptr<KNearest> create();
+};
+
+/****************************************************************************************\
+*                                   Support Vector Machines                              *
+\****************************************************************************************/
+
+/** @brief Support Vector Machines.
+
+@sa @ref ml_intro_svm
+ */
+class CV_EXPORTS_W SVM : public StatModel
+{
+public:
+
+    class CV_EXPORTS Kernel : public Algorithm
+    {
+    public:
+        virtual int getType() const = 0;
+        virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
+    };
+
+    /** Type of a %SVM formulation.
+    See SVM::Types. Default value is SVM::C_SVC. */
+    /** @see setType */
+    CV_WRAP virtual int getType() const = 0;
+    /** @copybrief getType @see getType */
+    CV_WRAP virtual void setType(int val) = 0;
+
+    /** Parameter \f$\gamma\f$ of a kernel function.
+    For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */
+    /** @see setGamma */
+    CV_WRAP virtual double getGamma() const = 0;
+    /** @copybrief getGamma @see getGamma */
+    CV_WRAP virtual void setGamma(double val) = 0;
+
+    /** Parameter _coef0_ of a kernel function.
+    For SVM::POLY or SVM::SIGMOID. Default value is 0.*/
+    /** @see setCoef0 */
+    CV_WRAP virtual double getCoef0() const = 0;
+    /** @copybrief getCoef0 @see getCoef0 */
+    CV_WRAP virtual void setCoef0(double val) = 0;
+
+    /** Parameter _degree_ of a kernel function.
+    For SVM::POLY. Default value is 0. */
+    /** @see setDegree */
+    CV_WRAP virtual double getDegree() const = 0;
+    /** @copybrief getDegree @see getDegree */
+    CV_WRAP virtual void setDegree(double val) = 0;
+
+    /** Parameter _C_ of a %SVM optimization problem.
+    For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */
+    /** @see setC */
+    CV_WRAP virtual double getC() const = 0;
+    /** @copybrief getC @see getC */
+    CV_WRAP virtual void setC(double val) = 0;
+
+    /** Parameter \f$\nu\f$ of a %SVM optimization problem.
+    For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */
+    /** @see setNu */
+    CV_WRAP virtual double getNu() const = 0;
+    /** @copybrief getNu @see getNu */
+    CV_WRAP virtual void setNu(double val) = 0;
+
+    /** Parameter \f$\epsilon\f$ of a %SVM optimization problem.
+    For SVM::EPS_SVR. Default value is 0. */
+    /** @see setP */
+    CV_WRAP virtual double getP() const = 0;
+    /** @copybrief getP @see getP */
+    CV_WRAP virtual void setP(double val) = 0;
+
+    /** Optional weights in the SVM::C_SVC problem, assigned to particular classes.
+    They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus
+    these weights affect the misclassification penalty for different classes. The larger weight,
+    the larger penalty on misclassification of data from the corresponding class. Default value is
+    empty Mat. */
+    /** @see setClassWeights */
+    CV_WRAP virtual cv::Mat getClassWeights() const = 0;
+    /** @copybrief getClassWeights @see getClassWeights */
+    CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0;
+
+    /** Termination criteria of the iterative %SVM training procedure which solves a partial
+    case of constrained quadratic optimization problem.
+    You can specify tolerance and/or the maximum number of iterations. Default value is
+    `TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */
+    /** @see setTermCriteria */
+    CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
+    /** @copybrief getTermCriteria @see getTermCriteria */
+    CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
+
+    /** Type of a %SVM kernel.
+    See SVM::KernelTypes. Default value is SVM::RBF. */
+    CV_WRAP virtual int getKernelType() const = 0;
+
+    /** Initialize with one of predefined kernels.
+    See SVM::KernelTypes. */
+    CV_WRAP virtual void setKernel(int kernelType) = 0;
+
+    /** Initialize with custom kernel.
+    See SVM::Kernel class for implementation details */
+    virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0;
+
+    //! %SVM type
+    enum Types {
+        /** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
+        imperfect separation of classes with penalty multiplier C for outliers. */
+        C_SVC=100,
+        /** \f$\nu\f$-Support Vector Classification. n-class classification with possible
+        imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother
+        the decision boundary) is used instead of C. */
+        NU_SVC=101,
+        /** Distribution Estimation (One-class %SVM). All the training data are from
+        the same class, %SVM builds a boundary that separates the class from the rest of the feature
+        space. */
+        ONE_CLASS=102,
+        /** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
+        from the training set and the fitting hyper-plane must be less than p. For outliers the
+        penalty multiplier C is used. */
+        EPS_SVR=103,
+        /** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
+        See @cite LibSVM for details. */
+        NU_SVR=104
+    };
+
+    /** @brief %SVM kernel type
+
+    A comparison of different kernels on the following 2D test case with four classes. Four
+    SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three
+    different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score.
+    Bright means max-score \> 0, dark means max-score \< 0.
+    ![image](pics/SVM_Comparison.png)
+    */
+    enum KernelTypes {
+        /** Returned by SVM::getKernelType in case when custom kernel has been set */
+        CUSTOM=-1,
+        /** Linear kernel. No mapping is done, linear discrimination (or regression) is
+        done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */
+        LINEAR=0,
+        /** Polynomial kernel:
+        \f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */
+        POLY=1,
+        /** Radial basis function (RBF), a good choice in most cases.
+        \f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */
+        RBF=2,
+        /** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */
+        SIGMOID=3,
+        /** Exponential Chi2 kernel, similar to the RBF kernel:
+        \f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */
+        CHI2=4,
+        /** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */
+        INTER=5
+    };
+
+    //! %SVM params type
+    enum ParamTypes {
+        C=0,
+        GAMMA=1,
+        P=2,
+        NU=3,
+        COEF=4,
+        DEGREE=5
+    };
+
+    /** @brief Trains an %SVM with optimal parameters.
+
+    @param data the training data that can be constructed using TrainData::create or
+        TrainData::loadFromCSV.
+    @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
+        subset is used to test the model, the others form the train set. So, the %SVM algorithm is
+        executed kFold times.
+    @param Cgrid grid for C
+    @param gammaGrid grid for gamma
+    @param pGrid grid for p
+    @param nuGrid grid for nu
+    @param coeffGrid grid for coeff
+    @param degreeGrid grid for degree
+    @param balanced If true and the problem is 2-class classification then the method creates more
+        balanced cross-validation subsets that is proportions between classes in subsets are close
+        to such proportion in the whole train dataset.
+
+    The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
+    nu, coef0, degree. Parameters are considered optimal when the cross-validation
+    estimate of the test set error is minimal.
+
+    If there is no need to optimize a parameter, the corresponding grid step should be set to any
+    value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step
+    = 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value
+    `Gamma` is taken for gamma.
+
+    And, finally, if the optimization in a parameter is required but the corresponding grid is
+    unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for
+    gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`.
+
+    This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
+    regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
+    the usual %SVM with parameters specified in params is executed.
+     */
+    virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
+                    ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
+                    ParamGrid gammaGrid  = SVM::getDefaultGrid(SVM::GAMMA),
+                    ParamGrid pGrid      = SVM::getDefaultGrid(SVM::P),
+                    ParamGrid nuGrid     = SVM::getDefaultGrid(SVM::NU),
+                    ParamGrid coeffGrid  = SVM::getDefaultGrid(SVM::COEF),
+                    ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
+                    bool balanced=false) = 0;
+
+    /** @brief Retrieves all the support vectors
+
+    The method returns all the support vectors as a floating-point matrix, where support vectors are
+    stored as matrix rows.
+     */
+    CV_WRAP virtual Mat getSupportVectors() const = 0;
+
+    /** @brief Retrieves all the uncompressed support vectors of a linear %SVM
+
+    The method returns all the uncompressed support vectors of a linear %SVM that the compressed
+    support vector, used for prediction, was derived from. They are returned in a floating-point
+    matrix, where the support vectors are stored as matrix rows.
+     */
+    CV_WRAP Mat getUncompressedSupportVectors() const;
+
+    /** @brief Retrieves the decision function
+
+    @param i the index of the decision function. If the problem solved is regression, 1-class or
+        2-class classification, then there will be just one decision function and the index should
+        always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$
+        decision functions.
+    @param alpha the optional output vector for weights, corresponding to different support vectors.
+        In the case of linear %SVM all the alpha's will be 1's.
+    @param svidx the optional output vector of indices of support vectors within the matrix of
+        support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
+        %SVM each decision function consists of a single "compressed" support vector.
+
+    The method returns rho parameter of the decision function, a scalar subtracted from the weighted
+    sum of kernel responses.
+     */
+    CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
+
+    /** @brief Generates a grid for %SVM parameters.
+
+    @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
+    generated for the parameter with this ID.
+
+    The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be
+    passed to the function SVM::trainAuto.
+     */
+    static ParamGrid getDefaultGrid( int param_id );
+
+    /** Creates empty model.
+    Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
+    find the best parameters for your problem, it can be done with SVM::trainAuto. */
+    CV_WRAP static Ptr<SVM> create();
+};
+
+/****************************************************************************************\
+*                              Expectation - Maximization                                *
+\****************************************************************************************/
+
+/** @brief The class implements the Expectation Maximization algorithm.
+
+@sa @ref ml_intro_em
+ */
+class CV_EXPORTS_W EM : public StatModel
+{
+public:
+    //! Type of covariation matrices
+    enum Types {
+        /** A scaled identity matrix \f$\mu_k * I\f$. There is the only
+        parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases,
+        when the constraint is relevant, or as a first step in the optimization (for example in case
+        when the data is preprocessed with PCA). The results of such preliminary estimation may be
+        passed again to the optimization procedure, this time with
+        covMatType=EM::COV_MAT_DIAGONAL. */
+        COV_MAT_SPHERICAL=0,
+        /** A diagonal matrix with positive diagonal elements. The number of
+        free parameters is d for each matrix. This is most commonly used option yielding good
+        estimation results. */
+        COV_MAT_DIAGONAL=1,
+        /** A symmetric positively defined matrix. The number of free
+        parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless
+        there is pretty accurate initial estimation of the parameters and/or a huge number of
+        training samples. */
+        COV_MAT_GENERIC=2,
+        COV_MAT_DEFAULT=COV_MAT_DIAGONAL
+    };
+
+    //! Default parameters
+    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
+
+    //! The initial step
+    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
+
+    /** The number of mixture components in the Gaussian mixture model.
+    Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
+    determine the optimal number of mixtures within a specified value range, but that is not the
+    case in ML yet. */
+    /** @see setClustersNumber */
+    CV_WRAP virtual int getClustersNumber() const = 0;
+    /** @copybrief getClustersNumber @see getClustersNumber */
+    CV_WRAP virtual void setClustersNumber(int val) = 0;
+
+    /** Constraint on covariance matrices which defines type of matrices.
+    See EM::Types. */
+    /** @see setCovarianceMatrixType */
+    CV_WRAP virtual int getCovarianceMatrixType() const = 0;
+    /** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */
+    CV_WRAP virtual void setCovarianceMatrixType(int val) = 0;
+
+    /** The termination criteria of the %EM algorithm.
+    The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
+    M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
+    maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */
+    /** @see setTermCriteria */
+    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
+    /** @copybrief getTermCriteria @see getTermCriteria */
+    CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
+
+    /** @brief Returns weights of the mixtures
+
+    Returns vector with the number of elements equal to the number of mixtures.
+     */
+    CV_WRAP virtual Mat getWeights() const = 0;
+    /** @brief Returns the cluster centers (means of the Gaussian mixture)
+
+    Returns matrix with the number of rows equal to the number of mixtures and number of columns
+    equal to the space dimensionality.
+     */
+    CV_WRAP virtual Mat getMeans() const = 0;
+    /** @brief Returns covariation matrices
+
+    Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
+    each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
+     */
+    CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0;
+
+    /** @brief Returns a likelihood logarithm value and an index of the most probable mixture component
+    for the given sample.
+
+    @param sample A sample for classification. It should be a one-channel matrix of
+        \f$1 \times dims\f$ or \f$dims \times 1\f$ size.
+    @param probs Optional output matrix that contains posterior probabilities of each component
+        given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.
+
+    The method returns a two-element double vector. Zero element is a likelihood logarithm value for
+    the sample. First element is an index of the most probable mixture component for the given
+    sample.
+     */
+    CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
+
+    /** @brief Estimate the Gaussian mixture parameters from a samples set.
+
+    This variation starts with Expectation step. Initial values of the model parameters will be
+    estimated by the k-means algorithm.
+
+    Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
+    responses (class labels or function values) as input. Instead, it computes the *Maximum
+    Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
+    parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in
+    covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each
+    sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most
+    probable mixture component for each sample).
+
+    The trained model can be used further for prediction, just like any other classifier. The
+    trained model is similar to the NormalBayesClassifier.
+
+    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
+        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
+        it will be converted to the inner matrix of such type for the further computing.
+    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
+        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
+    @param labels The optional output "class label" for each sample:
+        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
+        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
+    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
+        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
+        CV_64FC1 type.
+     */
+    CV_WRAP virtual bool trainEM(InputArray samples,
+                         OutputArray logLikelihoods=noArray(),
+                         OutputArray labels=noArray(),
+                         OutputArray probs=noArray()) = 0;
+
+    /** @brief Estimate the Gaussian mixture parameters from a samples set.
+
+    This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of
+    mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
+    \f$S_k\f$ of mixture components.
+
+    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
+        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
+        it will be converted to the inner matrix of such type for the further computing.
+    @param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
+        \f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be
+        converted to the inner matrix of such type for the further computing.
+    @param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
+        covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices
+        do not have CV_64F type they will be converted to the inner matrices of such type for the
+        further computing.
+    @param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
+        floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.
+    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
+        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
+    @param labels The optional output "class label" for each sample:
+        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
+        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
+    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
+        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
+        CV_64FC1 type.
+    */
+    CV_WRAP virtual bool trainE(InputArray samples, InputArray means0,
+                        InputArray covs0=noArray(),
+                        InputArray weights0=noArray(),
+                        OutputArray logLikelihoods=noArray(),
+                        OutputArray labels=noArray(),
+                        OutputArray probs=noArray()) = 0;
+
+    /** @brief Estimate the Gaussian mixture parameters from a samples set.
+
+    This variation starts with Maximization step. You need to provide initial probabilities
+    \f$p_{i,k}\f$ to use this option.
+
+    @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
+        one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
+        it will be converted to the inner matrix of such type for the further computing.
+    @param probs0
+    @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
+        each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
+    @param labels The optional output "class label" for each sample:
+        \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
+        mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
+    @param probs The optional output matrix that contains posterior probabilities of each Gaussian
+        mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
+        CV_64FC1 type.
+    */
+    CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0,
+                        OutputArray logLikelihoods=noArray(),
+                        OutputArray labels=noArray(),
+                        OutputArray probs=noArray()) = 0;
+
+    /** Creates empty %EM model.
+    The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
+    can use one of the EM::train\* methods or load it from file using Algorithm::load\<EM\>(filename).
+     */
+    CV_WRAP static Ptr<EM> create();
+};
+
+/****************************************************************************************\
+*                                      Decision Tree                                     *
+\****************************************************************************************/
+
+/** @brief The class represents a single decision tree or a collection of decision trees.
+
+The current public interface of the class allows user to train only a single decision tree, however
+the class is capable of storing multiple decision trees and using them for prediction (by summing
+responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
+use this capability to implement decision tree ensembles.
+
+@sa @ref ml_intro_trees
+*/
+class CV_EXPORTS_W DTrees : public StatModel
+{
+public:
+    /** Predict options */
+    enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
+
+    /** Cluster possible values of a categorical variable into K\<=maxCategories clusters to
+    find a suboptimal split.
+    If a discrete variable, on which the training procedure tries to make a split, takes more than
+    maxCategories values, the precise best subset estimation may take a very long time because the
+    algorithm is exponential. Instead, many decision trees engines (including our implementation)
+    try to find sub-optimal split in this case by clustering all the samples into maxCategories
+    clusters that is some categories are merged together. The clustering is applied only in n \>
+    2-class classification problems for categorical variables with N \> max_categories possible
+    values. In case of regression and 2-class classification the optimal split can be found
+    efficiently without employing clustering, thus the parameter is not used in these cases.
+    Default value is 10.*/
+    /** @see setMaxCategories */
+    CV_WRAP virtual int getMaxCategories() const = 0;
+    /** @copybrief getMaxCategories @see getMaxCategories */
+    CV_WRAP virtual void setMaxCategories(int val) = 0;
+
+    /** The maximum possible depth of the tree.
+    That is the training algorithms attempts to split a node while its depth is less than maxDepth.
+    The root node has zero depth. The actual depth may be smaller if the other termination criteria
+    are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the
+    tree is pruned. Default value is INT_MAX.*/
+    /** @see setMaxDepth */
+    CV_WRAP virtual int getMaxDepth() const = 0;
+    /** @copybrief getMaxDepth @see getMaxDepth */
+    CV_WRAP virtual void setMaxDepth(int val) = 0;
+
+    /** If the number of samples in a node is less than this parameter then the node will not be split.
+
+    Default value is 10.*/
+    /** @see setMinSampleCount */
+    CV_WRAP virtual int getMinSampleCount() const = 0;
+    /** @copybrief getMinSampleCount @see getMinSampleCount */
+    CV_WRAP virtual void setMinSampleCount(int val) = 0;
+
+    /** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold
+    cross-validation procedure where K is equal to CVFolds.
+    Default value is 10.*/
+    /** @see setCVFolds */
+    CV_WRAP virtual int getCVFolds() const = 0;
+    /** @copybrief getCVFolds @see getCVFolds */
+    CV_WRAP virtual void setCVFolds(int val) = 0;
+
+    /** If true then surrogate splits will be built.
+    These splits allow to work with missing data and compute variable importance correctly.
+    Default value is false.
+    @note currently it's not implemented.*/
+    /** @see setUseSurrogates */
+    CV_WRAP virtual bool getUseSurrogates() const = 0;
+    /** @copybrief getUseSurrogates @see getUseSurrogates */
+    CV_WRAP virtual void setUseSurrogates(bool val) = 0;
+
+    /** If true then a pruning will be harsher.
+    This will make a tree more compact and more resistant to the training data noise but a bit less
+    accurate. Default value is true.*/
+    /** @see setUse1SERule */
+    CV_WRAP virtual bool getUse1SERule() const = 0;
+    /** @copybrief getUse1SERule @see getUse1SERule */
+    CV_WRAP virtual void setUse1SERule(bool val) = 0;
+
+    /** If true then pruned branches are physically removed from the tree.
+    Otherwise they are retained and it is possible to get results from the original unpruned (or
+    pruned less aggressively) tree. Default value is true.*/
+    /** @see setTruncatePrunedTree */
+    CV_WRAP virtual bool getTruncatePrunedTree() const = 0;
+    /** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */
+    CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0;
+
+    /** Termination criteria for regression trees.
+    If all absolute differences between an estimated value in a node and values of train samples
+    in this node are less than this parameter then the node will not be split further. Default
+    value is 0.01f*/
+    /** @see setRegressionAccuracy */
+    CV_WRAP virtual float getRegressionAccuracy() const = 0;
+    /** @copybrief getRegressionAccuracy @see getRegressionAccuracy */
+    CV_WRAP virtual void setRegressionAccuracy(float val) = 0;
+
+    /** @brief The array of a priori class probabilities, sorted by the class label value.
+
+    The parameter can be used to tune the decision tree preferences toward a certain class. For
+    example, if you want to detect some rare anomaly occurrence, the training base will likely
+    contain much more normal cases than anomalies, so a very good classification performance
+    will be achieved just by considering every case as normal. To avoid this, the priors can be
+    specified, where the anomaly probability is artificially increased (up to 0.5 or even
+    greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is
+    adjusted properly.
+
+    You can also think about this parameter as weights of prediction categories which determine
+    relative weights that you give to misclassification. That is, if the weight of the first
+    category is 1 and the weight of the second category is 10, then each mistake in predicting
+    the second category is equivalent to making 10 mistakes in predicting the first category.
+    Default value is empty Mat.*/
+    /** @see setPriors */
+    CV_WRAP virtual cv::Mat getPriors() const = 0;
+    /** @copybrief getPriors @see getPriors */
+    CV_WRAP virtual void setPriors(const cv::Mat &val) = 0;
+
+    /** @brief The class represents a decision tree node.
+     */
+    class CV_EXPORTS Node
+    {
+    public:
+        Node();
+        double value; //!< Value at the node: a class label in case of classification or estimated
+                      //!< function value in case of regression.
+        int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the
+                      //!< node. It is used internally in classification trees and tree ensembles.
+        int parent; //!< Index of the parent node
+        int left; //!< Index of the left child node
+        int right; //!< Index of right child node
+        int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the
+                        //!< case of missing values.
+        int split; //!< Index of the first split
+    };
+
+    /** @brief The class represents split in a decision tree.
+     */
+    class CV_EXPORTS Split
+    {
+    public:
+        Split();
+        int varIdx; //!< Index of variable on which the split is created.
+        bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right
+                       //!< branches are exchanged in the rule expressions below).
+        float quality; //!< The split quality, a positive number. It is used to choose the best split.
+        int next; //!< Index of the next split in the list of splits for the node
+        float c; /**< The threshold value in case of split on an ordered variable.
+                      The rule is:
+                      @code{.none}
+                      if var_value < c
+                        then next_node <- left
+                        else next_node <- right
+                      @endcode */
+        int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable.
+                            The rule is:
+                            @code{.none}
+                            if bitset[var_value] == 1
+                                then next_node <- left
+                                else next_node <- right
+                            @endcode */
+    };
+
+    /** @brief Returns indices of root nodes
+    */
+    virtual const std::vector<int>& getRoots() const = 0;
+    /** @brief Returns all the nodes
+
+    all the node indices are indices in the returned vector
+     */
+    virtual const std::vector<Node>& getNodes() const = 0;
+    /** @brief Returns all the splits
+
+    all the split indices are indices in the returned vector
+     */
+    virtual const std::vector<Split>& getSplits() const = 0;
+    /** @brief Returns all the bitsets for categorical splits
+
+    Split::subsetOfs is an offset in the returned vector
+     */
+    virtual const std::vector<int>& getSubsets() const = 0;
+
+    /** @brief Creates the empty model
+
+    The static method creates empty decision tree with the specified parameters. It should be then
+    trained using train method (see StatModel::train). Alternatively, you can load the model from
+    file using Algorithm::load\<DTrees\>(filename).
+     */
+    CV_WRAP static Ptr<DTrees> create();
+};
+
+/****************************************************************************************\
+*                                   Random Trees Classifier                              *
+\****************************************************************************************/
+
+/** @brief The class implements the random forest predictor.
+
+@sa @ref ml_intro_rtrees
+ */
+class CV_EXPORTS_W RTrees : public DTrees
+{
+public:
+
+    /** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance.
+    Default value is false.*/
+    /** @see setCalculateVarImportance */
+    CV_WRAP virtual bool getCalculateVarImportance() const = 0;
+    /** @copybrief getCalculateVarImportance @see getCalculateVarImportance */
+    CV_WRAP virtual void setCalculateVarImportance(bool val) = 0;
+
+    /** The size of the randomly selected subset of features at each tree node and that are used
+    to find the best split(s).
+    If you set it to 0 then the size will be set to the square root of the total number of
+    features. Default value is 0.*/
+    /** @see setActiveVarCount */
+    CV_WRAP virtual int getActiveVarCount() const = 0;
+    /** @copybrief getActiveVarCount @see getActiveVarCount */
+    CV_WRAP virtual void setActiveVarCount(int val) = 0;
+
+    /** The termination criteria that specifies when the training algorithm stops.
+    Either when the specified number of trees is trained and added to the ensemble or when
+    sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the
+    better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes
+    pass a certain number of trees. Also to keep in mind, the number of tree increases the
+    prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS +
+    TermCriteria::EPS, 50, 0.1)*/
+    /** @see setTermCriteria */
+    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
+    /** @copybrief getTermCriteria @see getTermCriteria */
+    CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
+
+    /** Returns the variable importance array.
+    The method returns the variable importance vector, computed at the training stage when
+    CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
+    returned.
+     */
+    CV_WRAP virtual Mat getVarImportance() const = 0;
+
+    /** Creates the empty model.
+    Use StatModel::train to train the model, StatModel::train to create and train the model,
+    Algorithm::load to load the pre-trained model.
+     */
+    CV_WRAP static Ptr<RTrees> create();
+};
+
+/****************************************************************************************\
+*                                   Boosted tree classifier                              *
+\****************************************************************************************/
+
+/** @brief Boosted tree classifier derived from DTrees
+
+@sa @ref ml_intro_boost
+ */
+class CV_EXPORTS_W Boost : public DTrees
+{
+public:
+    /** Type of the boosting algorithm.
+    See Boost::Types. Default value is Boost::REAL. */
+    /** @see setBoostType */
+    CV_WRAP virtual int getBoostType() const = 0;
+    /** @copybrief getBoostType @see getBoostType */
+    CV_WRAP virtual void setBoostType(int val) = 0;
+
+    /** The number of weak classifiers.
+    Default value is 100. */
+    /** @see setWeakCount */
+    CV_WRAP virtual int getWeakCount() const = 0;
+    /** @copybrief getWeakCount @see getWeakCount */
+    CV_WRAP virtual void setWeakCount(int val) = 0;
+
+    /** A threshold between 0 and 1 used to save computational time.
+    Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next*
+    iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/
+    /** @see setWeightTrimRate */
+    CV_WRAP virtual double getWeightTrimRate() const = 0;
+    /** @copybrief getWeightTrimRate @see getWeightTrimRate */
+    CV_WRAP virtual void setWeightTrimRate(double val) = 0;
+
+    /** Boosting type.
+    Gentle AdaBoost and Real AdaBoost are often the preferable choices. */
+    enum Types {
+        DISCRETE=0, //!< Discrete AdaBoost.
+        REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions
+                //!< and works well with categorical data.
+        LOGIT=2, //!< LogitBoost. It can produce good regression fits.
+        GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that
+                 //!<reason is often good with regression data.
+    };
+
+    /** Creates the empty model.
+    Use StatModel::train to train the model, Algorithm::load\<Boost\>(filename) to load the pre-trained model. */
+    CV_WRAP static Ptr<Boost> create();
+};
+
+/****************************************************************************************\
+*                                   Gradient Boosted Trees                               *
+\****************************************************************************************/
+
+/*class CV_EXPORTS_W GBTrees : public DTrees
+{
+public:
+    struct CV_EXPORTS_W_MAP Params : public DTrees::Params
+    {
+        CV_PROP_RW int weakCount;
+        CV_PROP_RW int lossFunctionType;
+        CV_PROP_RW float subsamplePortion;
+        CV_PROP_RW float shrinkage;
+
+        Params();
+        Params( int lossFunctionType, int weakCount, float shrinkage,
+                float subsamplePortion, int maxDepth, bool useSurrogates );
+    };
+
+    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
+
+    virtual void setK(int k) = 0;
+
+    virtual float predictSerial( InputArray samples,
+                                 OutputArray weakResponses, int flags) const = 0;
+
+    static Ptr<GBTrees> create(const Params& p);
+};*/
+
+/****************************************************************************************\
+*                              Artificial Neural Networks (ANN)                          *
+\****************************************************************************************/
+
+/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
+
+/** @brief Artificial Neural Networks - Multi-Layer Perceptrons.
+
+Unlike many other models in ML that are constructed and trained at once, in the MLP model these
+steps are separated. First, a network with the specified topology is created using the non-default
+constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
+trained using a set of input and output vectors. The training procedure can be repeated more than
+once, that is, the weights can be adjusted based on the new training data.
+
+Additional flags for StatModel::train are available: ANN_MLP::TrainFlags.
+
+@sa @ref ml_intro_ann
+ */
+class CV_EXPORTS_W ANN_MLP : public StatModel
+{
+public:
+    /** Available training methods */
+    enum TrainingMethods {
+        BACKPROP=0, //!< The back-propagation algorithm.
+        RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details.
+    };
+
+    /** Sets training method and common parameters.
+    @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
+    @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP
+    @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP.
+    */
+    CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
+
+    /** Returns current training method */
+    CV_WRAP virtual int getTrainMethod() const = 0;
+
+    /** Initialize the activation function for each neuron.
+    Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
+    @param type The type of activation function. See ANN_MLP::ActivationFunctions.
+    @param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0.
+    @param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0.
+    */
+    CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0;
+
+    /**  Integer vector specifying the number of neurons in each layer including the input and output layers.
+    The very first element specifies the number of elements in the input layer.
+    The last element - number of elements in the output layer. Default value is empty Mat.
+    @sa getLayerSizes */
+    CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0;
+
+    /**  Integer vector specifying the number of neurons in each layer including the input and output layers.
+    The very first element specifies the number of elements in the input layer.
+    The last element - number of elements in the output layer.
+    @sa setLayerSizes */
+    CV_WRAP virtual cv::Mat getLayerSizes() const = 0;
+
+    /** Termination criteria of the training algorithm.
+    You can specify the maximum number of iterations (maxCount) and/or how much the error could
+    change between the iterations to make the algorithm continue (epsilon). Default value is
+    TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/
+    /** @see setTermCriteria */
+    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
+    /** @copybrief getTermCriteria @see getTermCriteria */
+    CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
+
+    /** BPROP: Strength of the weight gradient term.
+    The recommended value is about 0.1. Default value is 0.1.*/
+    /** @see setBackpropWeightScale */
+    CV_WRAP virtual double getBackpropWeightScale() const = 0;
+    /** @copybrief getBackpropWeightScale @see getBackpropWeightScale */
+    CV_WRAP virtual void setBackpropWeightScale(double val) = 0;
+
+    /** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations).
+    This parameter provides some inertia to smooth the random fluctuations of the weights. It can
+    vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.
+    Default value is 0.1.*/
+    /** @see setBackpropMomentumScale */
+    CV_WRAP virtual double getBackpropMomentumScale() const = 0;
+    /** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */
+    CV_WRAP virtual void setBackpropMomentumScale(double val) = 0;
+
+    /** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$.
+    Default value is 0.1.*/
+    /** @see setRpropDW0 */
+    CV_WRAP virtual double getRpropDW0() const = 0;
+    /** @copybrief getRpropDW0 @see getRpropDW0 */
+    CV_WRAP virtual void setRpropDW0(double val) = 0;
+
+    /** RPROP: Increase factor \f$\eta^+\f$.
+    It must be \>1. Default value is 1.2.*/
+    /** @see setRpropDWPlus */
+    CV_WRAP virtual double getRpropDWPlus() const = 0;
+    /** @copybrief getRpropDWPlus @see getRpropDWPlus */
+    CV_WRAP virtual void setRpropDWPlus(double val) = 0;
+
+    /** RPROP: Decrease factor \f$\eta^-\f$.
+    It must be \<1. Default value is 0.5.*/
+    /** @see setRpropDWMinus */
+    CV_WRAP virtual double getRpropDWMinus() const = 0;
+    /** @copybrief getRpropDWMinus @see getRpropDWMinus */
+    CV_WRAP virtual void setRpropDWMinus(double val) = 0;
+
+    /** RPROP: Update-values lower limit \f$\Delta_{min}\f$.
+    It must be positive. Default value is FLT_EPSILON.*/
+    /** @see setRpropDWMin */
+    CV_WRAP virtual double getRpropDWMin() const = 0;
+    /** @copybrief getRpropDWMin @see getRpropDWMin */
+    CV_WRAP virtual void setRpropDWMin(double val) = 0;
+
+    /** RPROP: Update-values upper limit \f$\Delta_{max}\f$.
+    It must be \>1. Default value is 50.*/
+    /** @see setRpropDWMax */
+    CV_WRAP virtual double getRpropDWMax() const = 0;
+    /** @copybrief getRpropDWMax @see getRpropDWMax */
+    CV_WRAP virtual void setRpropDWMax(double val) = 0;
+
+    /** possible activation functions */
+    enum ActivationFunctions {
+        /** Identity function: \f$f(x)=x\f$ */
+        IDENTITY = 0,
+        /** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$
+        @note
+        If you are using the default sigmoid activation function with the default parameter values
+        fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output
+        will range from [-1.7159, 1.7159], instead of [0,1].*/
+        SIGMOID_SYM = 1,
+        /** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */
+        GAUSSIAN = 2
+    };
+
+    /** Train options */
+    enum TrainFlags {
+        /** Update the network weights, rather than compute them from scratch. In the latter case
+        the weights are initialized using the Nguyen-Widrow algorithm. */
+        UPDATE_WEIGHTS = 1,
+        /** Do not normalize the input vectors. If this flag is not set, the training algorithm
+        normalizes each input feature independently, shifting its mean value to 0 and making the
+        standard deviation equal to 1. If the network is assumed to be updated frequently, the new
+        training data could be much different from original one. In this case, you should take care
+        of proper normalization. */
+        NO_INPUT_SCALE = 2,
+        /** Do not normalize the output vectors. If the flag is not set, the training algorithm
+        normalizes each output feature independently, by transforming it to the certain range
+        depending on the used activation function. */
+        NO_OUTPUT_SCALE = 4
+    };
+
+    CV_WRAP virtual Mat getWeights(int layerIdx) const = 0;
+
+    /** @brief Creates empty model
+
+    Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model.
+    Note that the train method has optional flags: ANN_MLP::TrainFlags.
+     */
+    CV_WRAP static Ptr<ANN_MLP> create();
+};
+
+/****************************************************************************************\
+*                           Logistic Regression                                          *
+\****************************************************************************************/
+
+/** @brief Implements Logistic Regression classifier.
+
+@sa @ref ml_intro_lr
+ */
+class CV_EXPORTS_W LogisticRegression : public StatModel
+{
+public:
+
+    /** Learning rate. */
+    /** @see setLearningRate */
+    CV_WRAP virtual double getLearningRate() const = 0;
+    /** @copybrief getLearningRate @see getLearningRate */
+    CV_WRAP virtual void setLearningRate(double val) = 0;
+
+    /** Number of iterations. */
+    /** @see setIterations */
+    CV_WRAP virtual int getIterations() const = 0;
+    /** @copybrief getIterations @see getIterations */
+    CV_WRAP virtual void setIterations(int val) = 0;
+
+    /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */
+    /** @see setRegularization */
+    CV_WRAP virtual int getRegularization() const = 0;
+    /** @copybrief getRegularization @see getRegularization */
+    CV_WRAP virtual void setRegularization(int val) = 0;
+
+    /** Kind of training method used. See LogisticRegression::Methods. */
+    /** @see setTrainMethod */
+    CV_WRAP virtual int getTrainMethod() const = 0;
+    /** @copybrief getTrainMethod @see getTrainMethod */
+    CV_WRAP virtual void setTrainMethod(int val) = 0;
+
+    /** Specifies the number of training samples taken in each step of Mini-Batch Gradient
+    Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It
+    has to take values less than the total number of training samples. */
+    /** @see setMiniBatchSize */
+    CV_WRAP virtual int getMiniBatchSize() const = 0;
+    /** @copybrief getMiniBatchSize @see getMiniBatchSize */
+    CV_WRAP virtual void setMiniBatchSize(int val) = 0;
+
+    /** Termination criteria of the algorithm. */
+    /** @see setTermCriteria */
+    CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
+    /** @copybrief getTermCriteria @see getTermCriteria */
+    CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
+
+    //! Regularization kinds
+    enum RegKinds {
+        REG_DISABLE = -1, //!< Regularization disabled
+        REG_L1 = 0, //!< %L1 norm
+        REG_L2 = 1 //!< %L2 norm
+    };
+
+    //! Training methods
+    enum Methods {
+        BATCH = 0,
+        MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method.
+    };
+
+    /** @brief Predicts responses for input samples and returns a float type.
+
+    @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
+        contains variables (features) of one object being classified. Should have data type CV_32F.
+    @param results Predicted labels as a column matrix of type CV_32S.
+    @param flags Not used.
+     */
+    CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
+
+    /** @brief This function returns the trained paramters arranged across rows.
+
+    For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of
+    the Logistic Regression as a matrix of type CV_32F.
+     */
+    CV_WRAP virtual Mat get_learnt_thetas() const = 0;
+
+    /** @brief Creates empty model.
+
+    Creates Logistic Regression model with parameters given.
+     */
+    CV_WRAP static Ptr<LogisticRegression> create();
+};
+
+/****************************************************************************************\
+*                           Auxilary functions declarations                              *
+\****************************************************************************************/
+
+/** @brief Generates _sample_ from multivariate normal distribution
+
+@param mean an average row vector
+@param cov symmetric covariation matrix
+@param nsamples returned samples count
+@param samples returned samples array
+*/
+CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
+
+/** @brief Creates test set */
+CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
+                                                OutputArray samples, OutputArray responses);
+
+//! @} ml
+
+}
+}
+
+#endif // __cplusplus
+#endif // __OPENCV_ML_HPP__
+
+/* End of file. */
+