opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/flann/kmeans_index.h	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,1170 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
+#define OPENCV_FLANN_KMEANS_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <limits>
+#include <cmath>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dist.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+#include "logger.h"
+
+
+namespace cvflann
+{
+
+struct KMeansIndexParams : public IndexParams
+{
+    KMeansIndexParams(int branching = 32, int iterations = 11,
+                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
+    {
+        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
+        // branching factor
+        (*this)["branching"] = branching;
+        // max iterations to perform in one kmeans clustering (kmeans tree)
+        (*this)["iterations"] = iterations;
+        // algorithm used for picking the initial cluster centers for kmeans tree
+        (*this)["centers_init"] = centers_init;
+        // cluster boundary index. Used when searching the kmeans tree
+        (*this)["cb_index"] = cb_index;
+    }
+};
+
+
+/**
+ * Hierarchical kmeans index
+ *
+ * Contains a tree constructed through a hierarchical kmeans clustering
+ * and other information for indexing a set of points for nearest-neighbour matching.
+ */
+template <typename Distance>
+class KMeansIndex : public NNIndex<Distance>
+{
+public:
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+
+
+    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
+
+    /**
+     * The function used for choosing the cluster centers.
+     */
+    centersAlgFunction chooseCenters;
+
+
+
+    /**
+     * Chooses the initial centers in the k-means clustering in a random manner.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     *     indices_length = length of indices vector
+     *
+     */
+    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
+    {
+        UniqueRandom r(indices_length);
+
+        int index;
+        for (index=0; index<k; ++index) {
+            bool duplicate = true;
+            int rnd;
+            while (duplicate) {
+                duplicate = false;
+                rnd = r.next();
+                if (rnd<0) {
+                    centers_length = index;
+                    return;
+                }
+
+                centers[index] = indices[rnd];
+
+                for (int j=0; j<index; ++j) {
+                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
+                    if (sq<1e-16) {
+                        duplicate = true;
+                    }
+                }
+            }
+        }
+
+        centers_length = index;
+    }
+
+
+    /**
+     * Chooses the initial centers in the k-means using Gonzales' algorithm
+     * so that the centers are spaced apart from each other.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     * Returns:
+     */
+    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
+    {
+        int n = indices_length;
+
+        int rnd = rand_int(n);
+        assert(rnd >=0 && rnd < n);
+
+        centers[0] = indices[rnd];
+
+        int index;
+        for (index=1; index<k; ++index) {
+
+            int best_index = -1;
+            DistanceType best_val = 0;
+            for (int j=0; j<n; ++j) {
+                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
+                for (int i=1; i<index; ++i) {
+                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
+                    if (tmp_dist<dist) {
+                        dist = tmp_dist;
+                    }
+                }
+                if (dist>best_val) {
+                    best_val = dist;
+                    best_index = j;
+                }
+            }
+            if (best_index!=-1) {
+                centers[index] = indices[best_index];
+            }
+            else {
+                break;
+            }
+        }
+        centers_length = index;
+    }
+
+
+    /**
+     * Chooses the initial centers in the k-means using the algorithm
+     * proposed in the KMeans++ paper:
+     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
+     *
+     * Implementation of this function was converted from the one provided in Arthur's code.
+     *
+     * Params:
+     *     k = number of centers
+     *     vecs = the dataset of points
+     *     indices = indices in the dataset
+     * Returns:
+     */
+    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
+    {
+        int n = indices_length;
+
+        double currentPot = 0;
+        DistanceType* closestDistSq = new DistanceType[n];
+
+        // Choose one random center and set the closestDistSq values
+        int index = rand_int(n);
+        assert(index >=0 && index < n);
+        centers[0] = indices[index];
+
+        for (int i = 0; i < n; i++) {
+            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
+            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
+            currentPot += closestDistSq[i];
+        }
+
+
+        const int numLocalTries = 1;
+
+        // Choose each center
+        int centerCount;
+        for (centerCount = 1; centerCount < k; centerCount++) {
+
+            // Repeat several trials
+            double bestNewPot = -1;
+            int bestNewIndex = -1;
+            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
+
+                // Choose our center - have to be slightly careful to return a valid answer even accounting
+                // for possible rounding errors
+                double randVal = rand_double(currentPot);
+                for (index = 0; index < n-1; index++) {
+                    if (randVal <= closestDistSq[index]) break;
+                    else randVal -= closestDistSq[index];
+                }
+
+                // Compute the new potential
+                double newPot = 0;
+                for (int i = 0; i < n; i++) {
+                    DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
+                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+                }
+
+                // Store the best result
+                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
+                    bestNewPot = newPot;
+                    bestNewIndex = index;
+                }
+            }
+
+            // Add the appropriate center
+            centers[centerCount] = indices[bestNewIndex];
+            currentPot = bestNewPot;
+            for (int i = 0; i < n; i++) {
+                DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
+                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
+            }
+        }
+
+        centers_length = centerCount;
+
+        delete[] closestDistSq;
+    }
+
+
+
+public:
+
+    flann_algorithm_t getType() const
+    {
+        return FLANN_INDEX_KMEANS;
+    }
+
+    class KMeansDistanceComputer : public cv::ParallelLoopBody
+    {
+    public:
+        KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
+            const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen,
+            int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx)
+            : distance(_distance)
+            , dataset(_dataset)
+            , branching(_branching)
+            , indices(_indices)
+            , dcenters(_dcenters)
+            , veclen(_veclen)
+            , count(_count)
+            , belongs_to(_belongs_to)
+            , radiuses(_radiuses)
+            , converged(_converged)
+            , mtx(_mtx)
+        {
+        }
+
+        void operator()(const cv::Range& range) const
+        {
+            const int begin = range.start;
+            const int end = range.end;
+
+            for( int i = begin; i<end; ++i)
+            {
+                DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen);
+                int new_centroid = 0;
+                for (int j=1; j<branching; ++j) {
+                    DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
+                    if (sq_dist>new_sq_dist) {
+                        new_centroid = j;
+                        sq_dist = new_sq_dist;
+                    }
+                }
+                if (sq_dist > radiuses[new_centroid]) {
+                    radiuses[new_centroid] = sq_dist;
+                }
+                if (new_centroid != belongs_to[i]) {
+                    count[belongs_to[i]]--;
+                    count[new_centroid]++;
+                    belongs_to[i] = new_centroid;
+                    mtx.lock();
+                    converged = false;
+                    mtx.unlock();
+                }
+            }
+        }
+
+    private:
+        Distance distance;
+        const Matrix<ElementType>& dataset;
+        const int branching;
+        const int* indices;
+        const Matrix<double>& dcenters;
+        const size_t veclen;
+        int* count;
+        int* belongs_to;
+        std::vector<DistanceType>& radiuses;
+        bool& converged;
+        cv::Mutex& mtx;
+        KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
+    };
+
+    /**
+     * Index constructor
+     *
+     * Params:
+     *          inputData = dataset with the input features
+     *          params = parameters passed to the hierarchical k-means algorithm
+     */
+    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
+                Distance d = Distance())
+        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
+    {
+        memoryCounter_ = 0;
+
+        size_ = dataset_.rows;
+        veclen_ = dataset_.cols;
+
+        branching_ = get_param(params,"branching",32);
+        iterations_ = get_param(params,"iterations",11);
+        if (iterations_<0) {
+            iterations_ = (std::numeric_limits<int>::max)();
+        }
+        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
+
+        if (centers_init_==FLANN_CENTERS_RANDOM) {
+            chooseCenters = &KMeansIndex::chooseCentersRandom;
+        }
+        else if (centers_init_==FLANN_CENTERS_GONZALES) {
+            chooseCenters = &KMeansIndex::chooseCentersGonzales;
+        }
+        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
+            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
+        }
+        else {
+            throw FLANNException("Unknown algorithm for choosing initial centers.");
+        }
+        cb_index_ = 0.4f;
+
+    }
+
+
+    KMeansIndex(const KMeansIndex&);
+    KMeansIndex& operator=(const KMeansIndex&);
+
+
+    /**
+     * Index destructor.
+     *
+     * Release the memory used by the index.
+     */
+    virtual ~KMeansIndex()
+    {
+        if (root_ != NULL) {
+            free_centers(root_);
+        }
+        if (indices_!=NULL) {
+            delete[] indices_;
+        }
+    }
+
+    /**
+     *  Returns size of index.
+     */
+    size_t size() const
+    {
+        return size_;
+    }
+
+    /**
+     * Returns the length of an index feature.
+     */
+    size_t veclen() const
+    {
+        return veclen_;
+    }
+
+
+    void set_cb_index( float index)
+    {
+        cb_index_ = index;
+    }
+
+    /**
+     * Computes the inde memory usage
+     * Returns: memory used by the index
+     */
+    int usedMemory() const
+    {
+        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
+    }
+
+    /**
+     * Builds the index
+     */
+    void buildIndex()
+    {
+        if (branching_<2) {
+            throw FLANNException("Branching factor must be at least 2");
+        }
+
+        indices_ = new int[size_];
+        for (size_t i=0; i<size_; ++i) {
+            indices_[i] = int(i);
+        }
+
+        root_ = pool_.allocate<KMeansNode>();
+        std::memset(root_, 0, sizeof(KMeansNode));
+
+        computeNodeStatistics(root_, indices_, (int)size_);
+        computeClustering(root_, indices_, (int)size_, branching_,0);
+    }
+
+
+    void saveIndex(FILE* stream)
+    {
+        save_value(stream, branching_);
+        save_value(stream, iterations_);
+        save_value(stream, memoryCounter_);
+        save_value(stream, cb_index_);
+        save_value(stream, *indices_, (int)size_);
+
+        save_tree(stream, root_);
+    }
+
+
+    void loadIndex(FILE* stream)
+    {
+        load_value(stream, branching_);
+        load_value(stream, iterations_);
+        load_value(stream, memoryCounter_);
+        load_value(stream, cb_index_);
+        if (indices_!=NULL) {
+            delete[] indices_;
+        }
+        indices_ = new int[size_];
+        load_value(stream, *indices_, size_);
+
+        if (root_!=NULL) {
+            free_centers(root_);
+        }
+        load_tree(stream, root_);
+
+        index_params_["algorithm"] = getType();
+        index_params_["branching"] = branching_;
+        index_params_["iterations"] = iterations_;
+        index_params_["centers_init"] = centers_init_;
+        index_params_["cb_index"] = cb_index_;
+
+    }
+
+
+    /**
+     * Find set of nearest neighbors to vec. Their indices are stored inside
+     * the result object.
+     *
+     * Params:
+     *     result = the result object in which the indices of the nearest-neighbors are stored
+     *     vec = the vector for which to search the nearest neighbors
+     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
+     */
+    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    {
+
+        int maxChecks = get_param(searchParams,"checks",32);
+
+        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
+            findExactNN(root_, result, vec);
+        }
+        else {
+            // Priority queue storing intermediate branches in the best-bin-first search
+            Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+
+            int checks = 0;
+            findNN(root_, result, vec, checks, maxChecks, heap);
+
+            BranchSt branch;
+            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
+                KMeansNodePtr node = branch.node;
+                findNN(node, result, vec, checks, maxChecks, heap);
+            }
+            assert(result.full());
+
+            delete heap;
+        }
+
+    }
+
+    /**
+     * Clustering function that takes a cut in the hierarchical k-means
+     * tree and return the clusters centers of that clustering.
+     * Params:
+     *     numClusters = number of clusters to have in the clustering computed
+     * Returns: number of cluster centers
+     */
+    int getClusterCenters(Matrix<DistanceType>& centers)
+    {
+        int numClusters = centers.rows;
+        if (numClusters<1) {
+            throw FLANNException("Number of clusters must be at least 1");
+        }
+
+        DistanceType variance;
+        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
+
+        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
+
+        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
+
+        for (int i=0; i<clusterCount; ++i) {
+            DistanceType* center = clusters[i]->pivot;
+            for (size_t j=0; j<veclen_; ++j) {
+                centers[i][j] = center[j];
+            }
+        }
+        delete[] clusters;
+
+        return clusterCount;
+    }
+
+    IndexParams getParameters() const
+    {
+        return index_params_;
+    }
+
+
+private:
+    /**
+     * Struture representing a node in the hierarchical k-means tree.
+     */
+    struct KMeansNode
+    {
+        /**
+         * The cluster center.
+         */
+        DistanceType* pivot;
+        /**
+         * The cluster radius.
+         */
+        DistanceType radius;
+        /**
+         * The cluster mean radius.
+         */
+        DistanceType mean_radius;
+        /**
+         * The cluster variance.
+         */
+        DistanceType variance;
+        /**
+         * The cluster size (number of points in the cluster)
+         */
+        int size;
+        /**
+         * Child nodes (only for non-terminal nodes)
+         */
+        KMeansNode** childs;
+        /**
+         * Node points (only for terminal nodes)
+         */
+        int* indices;
+        /**
+         * Level
+         */
+        int level;
+    };
+    typedef KMeansNode* KMeansNodePtr;
+
+    /**
+     * Alias definition for a nicer syntax.
+     */
+    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
+
+
+
+
+    void save_tree(FILE* stream, KMeansNodePtr node)
+    {
+        save_value(stream, *node);
+        save_value(stream, *(node->pivot), (int)veclen_);
+        if (node->childs==NULL) {
+            int indices_offset = (int)(node->indices - indices_);
+            save_value(stream, indices_offset);
+        }
+        else {
+            for(int i=0; i<branching_; ++i) {
+                save_tree(stream, node->childs[i]);
+            }
+        }
+    }
+
+
+    void load_tree(FILE* stream, KMeansNodePtr& node)
+    {
+        node = pool_.allocate<KMeansNode>();
+        load_value(stream, *node);
+        node->pivot = new DistanceType[veclen_];
+        load_value(stream, *(node->pivot), (int)veclen_);
+        if (node->childs==NULL) {
+            int indices_offset;
+            load_value(stream, indices_offset);
+            node->indices = indices_ + indices_offset;
+        }
+        else {
+            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
+            for(int i=0; i<branching_; ++i) {
+                load_tree(stream, node->childs[i]);
+            }
+        }
+    }
+
+
+    /**
+     * Helper function
+     */
+    void free_centers(KMeansNodePtr node)
+    {
+        delete[] node->pivot;
+        if (node->childs!=NULL) {
+            for (int k=0; k<branching_; ++k) {
+                free_centers(node->childs[k]);
+            }
+        }
+    }
+
+    /**
+     * Computes the statistics of a node (mean, radius, variance).
+     *
+     * Params:
+     *     node = the node to use
+     *     indices = the indices of the points belonging to the node
+     */
+    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
+    {
+
+        DistanceType radius = 0;
+        DistanceType variance = 0;
+        DistanceType* mean = new DistanceType[veclen_];
+        memoryCounter_ += int(veclen_*sizeof(DistanceType));
+
+        memset(mean,0,veclen_*sizeof(DistanceType));
+
+        for (size_t i=0; i<size_; ++i) {
+            ElementType* vec = dataset_[indices[i]];
+            for (size_t j=0; j<veclen_; ++j) {
+                mean[j] += vec[j];
+            }
+            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
+        }
+        for (size_t j=0; j<veclen_; ++j) {
+            mean[j] /= size_;
+        }
+        variance /= size_;
+        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
+
+        DistanceType tmp = 0;
+        for (int i=0; i<indices_length; ++i) {
+            tmp = distance_(mean, dataset_[indices[i]], veclen_);
+            if (tmp>radius) {
+                radius = tmp;
+            }
+        }
+
+        node->variance = variance;
+        node->radius = radius;
+        node->pivot = mean;
+    }
+
+
+    /**
+     * The method responsible with actually doing the recursive hierarchical
+     * clustering
+     *
+     * Params:
+     *     node = the node to cluster
+     *     indices = indices of the points belonging to the current node
+     *     branching = the branching factor to use in the clustering
+     *
+     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
+     */
+    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
+    {
+        node->size = indices_length;
+        node->level = level;
+
+        if (indices_length < branching) {
+            node->indices = indices;
+            std::sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+            return;
+        }
+
+        cv::AutoBuffer<int> centers_idx_buf(branching);
+        int* centers_idx = (int*)centers_idx_buf;
+        int centers_length;
+        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
+
+        if (centers_length<branching) {
+            node->indices = indices;
+            std::sort(node->indices,node->indices+indices_length);
+            node->childs = NULL;
+            return;
+        }
+
+
+        cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
+        Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_);
+        for (int i=0; i<centers_length; ++i) {
+            ElementType* vec = dataset_[centers_idx[i]];
+            for (size_t k=0; k<veclen_; ++k) {
+                dcenters[i][k] = double(vec[k]);
+            }
+        }
+
+        std::vector<DistanceType> radiuses(branching);
+        cv::AutoBuffer<int> count_buf(branching);
+        int* count = (int*)count_buf;
+        for (int i=0; i<branching; ++i) {
+            radiuses[i] = 0;
+            count[i] = 0;
+        }
+
+        //	assign points to clusters
+        cv::AutoBuffer<int> belongs_to_buf(indices_length);
+        int* belongs_to = (int*)belongs_to_buf;
+        for (int i=0; i<indices_length; ++i) {
+
+            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
+            belongs_to[i] = 0;
+            for (int j=1; j<branching; ++j) {
+                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
+                if (sq_dist>new_sq_dist) {
+                    belongs_to[i] = j;
+                    sq_dist = new_sq_dist;
+                }
+            }
+            if (sq_dist>radiuses[belongs_to[i]]) {
+                radiuses[belongs_to[i]] = sq_dist;
+            }
+            count[belongs_to[i]]++;
+        }
+
+        bool converged = false;
+        int iteration = 0;
+        while (!converged && iteration<iterations_) {
+            converged = true;
+            iteration++;
+
+            // compute the new cluster centers
+            for (int i=0; i<branching; ++i) {
+                memset(dcenters[i],0,sizeof(double)*veclen_);
+                radiuses[i] = 0;
+            }
+            for (int i=0; i<indices_length; ++i) {
+                ElementType* vec = dataset_[indices[i]];
+                double* center = dcenters[belongs_to[i]];
+                for (size_t k=0; k<veclen_; ++k) {
+                    center[k] += vec[k];
+                }
+            }
+            for (int i=0; i<branching; ++i) {
+                int cnt = count[i];
+                for (size_t k=0; k<veclen_; ++k) {
+                    dcenters[i][k] /= cnt;
+                }
+            }
+
+            // reassign points to clusters
+            cv::Mutex mtx;
+            KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx);
+            parallel_for_(cv::Range(0, (int)indices_length), invoker);
+
+            for (int i=0; i<branching; ++i) {
+                // if one cluster converges to an empty cluster,
+                // move an element into that cluster
+                if (count[i]==0) {
+                    int j = (i+1)%branching;
+                    while (count[j]<=1) {
+                        j = (j+1)%branching;
+                    }
+
+                    for (int k=0; k<indices_length; ++k) {
+                        if (belongs_to[k]==j) {
+                            // for cluster j, we move the furthest element from the center to the empty cluster i
+                            if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
+                                belongs_to[k] = i;
+                                count[j]--;
+                                count[i]++;
+                                break;
+                            }
+                        }
+                    }
+                    converged = false;
+                }
+            }
+
+        }
+
+        DistanceType** centers = new DistanceType*[branching];
+
+        for (int i=0; i<branching; ++i) {
+            centers[i] = new DistanceType[veclen_];
+            memoryCounter_ += (int)(veclen_*sizeof(DistanceType));
+            for (size_t k=0; k<veclen_; ++k) {
+                centers[i][k] = (DistanceType)dcenters[i][k];
+            }
+        }
+
+
+        // compute kmeans clustering for each of the resulting clusters
+        node->childs = pool_.allocate<KMeansNodePtr>(branching);
+        int start = 0;
+        int end = start;
+        for (int c=0; c<branching; ++c) {
+            int s = count[c];
+
+            DistanceType variance = 0;
+            DistanceType mean_radius =0;
+            for (int i=0; i<indices_length; ++i) {
+                if (belongs_to[i]==c) {
+                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
+                    variance += d;
+                    mean_radius += sqrt(d);
+                    std::swap(indices[i],indices[end]);
+                    std::swap(belongs_to[i],belongs_to[end]);
+                    end++;
+                }
+            }
+            variance /= s;
+            mean_radius /= s;
+            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
+
+            node->childs[c] = pool_.allocate<KMeansNode>();
+            std::memset(node->childs[c], 0, sizeof(KMeansNode));
+            node->childs[c]->radius = radiuses[c];
+            node->childs[c]->pivot = centers[c];
+            node->childs[c]->variance = variance;
+            node->childs[c]->mean_radius = mean_radius;
+            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
+            start=end;
+        }
+    }
+
+
+
+    /**
+     * Performs one descent in the hierarchical k-means tree. The branches not
+     * visited are stored in a priority queue.
+     *
+     * Params:
+     *      node = node to explore
+     *      result = container for the k-nearest neighbors found
+     *      vec = query points
+     *      checks = how many points in the dataset have been checked so far
+     *      maxChecks = maximum dataset points to checks
+     */
+
+
+    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
+                Heap<BranchSt>* heap)
+    {
+        // Ignore those clusters that are too far away
+        {
+            DistanceType bsq = distance_(vec, node->pivot, veclen_);
+            DistanceType rsq = node->radius;
+            DistanceType wsq = result.worstDist();
+
+            DistanceType val = bsq-rsq-wsq;
+            DistanceType val2 = val*val-4*rsq*wsq;
+
+            //if (val>0) {
+            if ((val>0)&&(val2>0)) {
+                return;
+            }
+        }
+
+        if (node->childs==NULL) {
+            if (checks>=maxChecks) {
+                if (result.full()) return;
+            }
+            checks += node->size;
+            for (int i=0; i<node->size; ++i) {
+                int index = node->indices[i];
+                DistanceType dist = distance_(dataset_[index], vec, veclen_);
+                result.addPoint(dist, index);
+            }
+        }
+        else {
+            DistanceType* domain_distances = new DistanceType[branching_];
+            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
+            delete[] domain_distances;
+            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
+        }
+    }
+
+    /**
+     * Helper function that computes the nearest childs of a node to a given query point.
+     * Params:
+     *     node = the node
+     *     q = the query point
+     *     distances = array with the distances to each child node.
+     * Returns:
+     */
+    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
+    {
+
+        int best_index = 0;
+        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
+        for (int i=1; i<branching_; ++i) {
+            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
+            if (domain_distances[i]<domain_distances[best_index]) {
+                best_index = i;
+            }
+        }
+
+        //		float* best_center = node->childs[best_index]->pivot;
+        for (int i=0; i<branching_; ++i) {
+            if (i != best_index) {
+                domain_distances[i] -= cb_index_*node->childs[i]->variance;
+
+                //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
+                //				if (domain_distances[i]<dist_to_border) {
+                //					domain_distances[i] = dist_to_border;
+                //				}
+                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
+            }
+        }
+
+        return best_index;
+    }
+
+
+    /**
+     * Function the performs exact nearest neighbor search by traversing the entire tree.
+     */
+    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
+    {
+        // Ignore those clusters that are too far away
+        {
+            DistanceType bsq = distance_(vec, node->pivot, veclen_);
+            DistanceType rsq = node->radius;
+            DistanceType wsq = result.worstDist();
+
+            DistanceType val = bsq-rsq-wsq;
+            DistanceType val2 = val*val-4*rsq*wsq;
+
+            //                  if (val>0) {
+            if ((val>0)&&(val2>0)) {
+                return;
+            }
+        }
+
+
+        if (node->childs==NULL) {
+            for (int i=0; i<node->size; ++i) {
+                int index = node->indices[i];
+                DistanceType dist = distance_(dataset_[index], vec, veclen_);
+                result.addPoint(dist, index);
+            }
+        }
+        else {
+            int* sort_indices = new int[branching_];
+
+            getCenterOrdering(node, vec, sort_indices);
+
+            for (int i=0; i<branching_; ++i) {
+                findExactNN(node->childs[sort_indices[i]],result,vec);
+            }
+
+            delete[] sort_indices;
+        }
+    }
+
+
+    /**
+     * Helper function.
+     *
+     * I computes the order in which to traverse the child nodes of a particular node.
+     */
+    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
+    {
+        DistanceType* domain_distances = new DistanceType[branching_];
+        for (int i=0; i<branching_; ++i) {
+            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
+
+            int j=0;
+            while (domain_distances[j]<dist && j<i) j++;
+            for (int k=i; k>j; --k) {
+                domain_distances[k] = domain_distances[k-1];
+                sort_indices[k] = sort_indices[k-1];
+            }
+            domain_distances[j] = dist;
+            sort_indices[j] = i;
+        }
+        delete[] domain_distances;
+    }
+
+    /**
+     * Method that computes the squared distance from the query point q
+     * from inside region with center c to the border between this
+     * region and the region with center p
+     */
+    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
+    {
+        DistanceType sum = 0;
+        DistanceType sum2 = 0;
+
+        for (int i=0; i<veclen_; ++i) {
+            DistanceType t = c[i]-p[i];
+            sum += t*(q[i]-(c[i]+p[i])/2);
+            sum2 += t*t;
+        }
+
+        return sum*sum/sum2;
+    }
+
+
+    /**
+     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
+     * the overall variance of the clustering.
+     * Params:
+     *     root = root node
+     *     clusters = array with clusters centers (return value)
+     *     varianceValue = variance of the clustering (return value)
+     * Returns:
+     */
+    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
+    {
+        int clusterCount = 1;
+        clusters[0] = root;
+
+        DistanceType meanVariance = root->variance*root->size;
+
+        while (clusterCount<clusters_length) {
+            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
+            int splitIndex = -1;
+
+            for (int i=0; i<clusterCount; ++i) {
+                if (clusters[i]->childs != NULL) {
+
+                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
+
+                    for (int j=0; j<branching_; ++j) {
+                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
+                    }
+                    if (variance<minVariance) {
+                        minVariance = variance;
+                        splitIndex = i;
+                    }
+                }
+            }
+
+            if (splitIndex==-1) break;
+            if ( (branching_+clusterCount-1) > clusters_length) break;
+
+            meanVariance = minVariance;
+
+            // split node
+            KMeansNodePtr toSplit = clusters[splitIndex];
+            clusters[splitIndex] = toSplit->childs[0];
+            for (int i=1; i<branching_; ++i) {
+                clusters[clusterCount++] = toSplit->childs[i];
+            }
+        }
+
+        varianceValue = meanVariance/root->size;
+        return clusterCount;
+    }
+
+private:
+    /** The branching factor used in the hierarchical k-means clustering */
+    int branching_;
+
+    /** Maximum number of iterations to use when performing k-means clustering */
+    int iterations_;
+
+    /** Algorithm for choosing the cluster centers */
+    flann_centers_init_t centers_init_;
+
+    /**
+     * Cluster border index. This is used in the tree search phase when determining
+     * the closest cluster to explore next. A zero value takes into account only
+     * the cluster centres, a value greater then zero also take into account the size
+     * of the cluster.
+     */
+    float cb_index_;
+
+    /**
+     * The dataset used by this index
+     */
+    const Matrix<ElementType> dataset_;
+
+    /** Index parameters */
+    IndexParams index_params_;
+
+    /**
+     * Number of features in the dataset.
+     */
+    size_t size_;
+
+    /**
+     * Length of each feature.
+     */
+    size_t veclen_;
+
+    /**
+     * The root node in the tree.
+     */
+    KMeansNodePtr root_;
+
+    /**
+     *  Array of indices to vectors in the dataset.
+     */
+    int* indices_;
+
+    /**
+     * The distance
+     */
+    Distance distance_;
+
+    /**
+     * Pooled memory allocator.
+     */
+    PooledAllocator pool_;
+
+    /**
+     * Memory occupied by the index.
+     */
+    int memoryCounter_;
+};
+
+}
+
+#endif //OPENCV_FLANN_KMEANS_INDEX_H_
+