opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/flann/kdtree_index.h	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,622 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
+#define OPENCV_FLANN_KDTREE_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <cstring>
+
+#include "general.h"
+#include "nn_index.h"
+#include "dynamic_bitset.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+
+namespace cvflann
+{
+
+struct KDTreeIndexParams : public IndexParams
+{
+    KDTreeIndexParams(int trees = 4)
+    {
+        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
+        (*this)["trees"] = trees;
+    }
+};
+
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template <typename Distance>
+class KDTreeIndex : public NNIndex<Distance>
+{
+public:
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+
+    /**
+     * KDTree constructor
+     *
+     * Params:
+     *          inputData = dataset with the input features
+     *          params = parameters passed to the kdtree algorithm
+     */
+    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
+                Distance d = Distance() ) :
+        dataset_(inputData), index_params_(params), distance_(d)
+    {
+        size_ = dataset_.rows;
+        veclen_ = dataset_.cols;
+
+        trees_ = get_param(index_params_,"trees",4);
+        tree_roots_ = new NodePtr[trees_];
+
+        // Create a permutable array of indices to the input vectors.
+        vind_.resize(size_);
+        for (size_t i = 0; i < size_; ++i) {
+            vind_[i] = int(i);
+        }
+
+        mean_ = new DistanceType[veclen_];
+        var_ = new DistanceType[veclen_];
+    }
+
+
+    KDTreeIndex(const KDTreeIndex&);
+    KDTreeIndex& operator=(const KDTreeIndex&);
+
+    /**
+     * Standard destructor
+     */
+    ~KDTreeIndex()
+    {
+        if (tree_roots_!=NULL) {
+            delete[] tree_roots_;
+        }
+        delete[] mean_;
+        delete[] var_;
+    }
+
+    /**
+     * Builds the index
+     */
+    void buildIndex()
+    {
+        /* Construct the randomized trees. */
+        for (int i = 0; i < trees_; i++) {
+            /* Randomize the order of vectors to allow for unbiased sampling. */
+            std::random_shuffle(vind_.begin(), vind_.end());
+            tree_roots_[i] = divideTree(&vind_[0], int(size_) );
+        }
+    }
+
+
+    flann_algorithm_t getType() const
+    {
+        return FLANN_INDEX_KDTREE;
+    }
+
+
+    void saveIndex(FILE* stream)
+    {
+        save_value(stream, trees_);
+        for (int i=0; i<trees_; ++i) {
+            save_tree(stream, tree_roots_[i]);
+        }
+    }
+
+
+
+    void loadIndex(FILE* stream)
+    {
+        load_value(stream, trees_);
+        if (tree_roots_!=NULL) {
+            delete[] tree_roots_;
+        }
+        tree_roots_ = new NodePtr[trees_];
+        for (int i=0; i<trees_; ++i) {
+            load_tree(stream,tree_roots_[i]);
+        }
+
+        index_params_["algorithm"] = getType();
+        index_params_["trees"] = tree_roots_;
+    }
+
+    /**
+     *  Returns size of index.
+     */
+    size_t size() const
+    {
+        return size_;
+    }
+
+    /**
+     * Returns the length of an index feature.
+     */
+    size_t veclen() const
+    {
+        return veclen_;
+    }
+
+    /**
+     * Computes the inde memory usage
+     * Returns: memory used by the index
+     */
+    int usedMemory() const
+    {
+        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
+    }
+
+    /**
+     * Find set of nearest neighbors to vec. Their indices are stored inside
+     * the result object.
+     *
+     * Params:
+     *     result = the result object in which the indices of the nearest-neighbors are stored
+     *     vec = the vector for which to search the nearest neighbors
+     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
+     */
+    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    {
+        int maxChecks = get_param(searchParams,"checks", 32);
+        float epsError = 1+get_param(searchParams,"eps",0.0f);
+
+        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
+            getExactNeighbors(result, vec, epsError);
+        }
+        else {
+            getNeighbors(result, vec, maxChecks, epsError);
+        }
+    }
+
+    IndexParams getParameters() const
+    {
+        return index_params_;
+    }
+
+private:
+
+
+    /*--------------------- Internal Data Structures --------------------------*/
+    struct Node
+    {
+        /**
+         * Dimension used for subdivision.
+         */
+        int divfeat;
+        /**
+         * The values used for subdivision.
+         */
+        DistanceType divval;
+        /**
+         * The child nodes.
+         */
+        Node* child1, * child2;
+    };
+    typedef Node* NodePtr;
+    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+    typedef BranchSt* Branch;
+
+
+
+    void save_tree(FILE* stream, NodePtr tree)
+    {
+        save_value(stream, *tree);
+        if (tree->child1!=NULL) {
+            save_tree(stream, tree->child1);
+        }
+        if (tree->child2!=NULL) {
+            save_tree(stream, tree->child2);
+        }
+    }
+
+
+    void load_tree(FILE* stream, NodePtr& tree)
+    {
+        tree = pool_.allocate<Node>();
+        load_value(stream, *tree);
+        if (tree->child1!=NULL) {
+            load_tree(stream, tree->child1);
+        }
+        if (tree->child2!=NULL) {
+            load_tree(stream, tree->child2);
+        }
+    }
+
+
+    /**
+     * Create a tree node that subdivides the list of vecs from vind[first]
+     * to vind[last].  The routine is called recursively on each sublist.
+     * Place a pointer to this new tree node in the location pTree.
+     *
+     * Params: pTree = the new node to create
+     *                  first = index of the first vector
+     *                  last = index of the last vector
+     */
+    NodePtr divideTree(int* ind, int count)
+    {
+        NodePtr node = pool_.allocate<Node>(); // allocate memory
+
+        /* If too few exemplars remain, then make this a leaf node. */
+        if ( count == 1) {
+            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
+            node->divfeat = *ind;    /* Store index of this vec. */
+        }
+        else {
+            int idx;
+            int cutfeat;
+            DistanceType cutval;
+            meanSplit(ind, count, idx, cutfeat, cutval);
+
+            node->divfeat = cutfeat;
+            node->divval = cutval;
+            node->child1 = divideTree(ind, idx);
+            node->child2 = divideTree(ind+idx, count-idx);
+        }
+
+        return node;
+    }
+
+
+    /**
+     * Choose which feature to use in order to subdivide this set of vectors.
+     * Make a random choice among those with the highest variance, and use
+     * its variance as the threshold value.
+     */
+    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
+    {
+        memset(mean_,0,veclen_*sizeof(DistanceType));
+        memset(var_,0,veclen_*sizeof(DistanceType));
+
+        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
+            sampled to get a good estimate.
+         */
+        int cnt = std::min((int)SAMPLE_MEAN+1, count);
+        for (int j = 0; j < cnt; ++j) {
+            ElementType* v = dataset_[ind[j]];
+            for (size_t k=0; k<veclen_; ++k) {
+                mean_[k] += v[k];
+            }
+        }
+        for (size_t k=0; k<veclen_; ++k) {
+            mean_[k] /= cnt;
+        }
+
+        /* Compute variances (no need to divide by count). */
+        for (int j = 0; j < cnt; ++j) {
+            ElementType* v = dataset_[ind[j]];
+            for (size_t k=0; k<veclen_; ++k) {
+                DistanceType dist = v[k] - mean_[k];
+                var_[k] += dist * dist;
+            }
+        }
+        /* Select one of the highest variance indices at random. */
+        cutfeat = selectDivision(var_);
+        cutval = mean_[cutfeat];
+
+        int lim1, lim2;
+        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+        if (lim1>count/2) index = lim1;
+        else if (lim2<count/2) index = lim2;
+        else index = count/2;
+
+        /* If either list is empty, it means that all remaining features
+         * are identical. Split in the middle to maintain a balanced tree.
+         */
+        if ((lim1==count)||(lim2==0)) index = count/2;
+    }
+
+
+    /**
+     * Select the top RAND_DIM largest values from v and return the index of
+     * one of these selected at random.
+     */
+    int selectDivision(DistanceType* v)
+    {
+        int num = 0;
+        size_t topind[RAND_DIM];
+
+        /* Create a list of the indices of the top RAND_DIM values. */
+        for (size_t i = 0; i < veclen_; ++i) {
+            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
+                /* Put this element at end of topind. */
+                if (num < RAND_DIM) {
+                    topind[num++] = i;            /* Add to list. */
+                }
+                else {
+                    topind[num-1] = i;         /* Replace last element. */
+                }
+                /* Bubble end value down to right location by repeated swapping. */
+                int j = num - 1;
+                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
+                    std::swap(topind[j], topind[j-1]);
+                    --j;
+                }
+            }
+        }
+        /* Select a random integer in range [0,num-1], and return that index. */
+        int rnd = rand_int(num);
+        return (int)topind[rnd];
+    }
+
+
+    /**
+     *  Subdivide the list of points by a plane perpendicular on axe corresponding
+     *  to the 'cutfeat' dimension at 'cutval' position.
+     *
+     *  On return:
+     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
+     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
+     *  dataset[ind[lim2..count]][cutfeat]>cutval
+     */
+    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
+    {
+        /* Move vector indices for left subtree to front of list. */
+        int left = 0;
+        int right = count-1;
+        for (;; ) {
+            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
+            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
+            if (left>right) break;
+            std::swap(ind[left], ind[right]); ++left; --right;
+        }
+        lim1 = left;
+        right = count-1;
+        for (;; ) {
+            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
+            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
+            if (left>right) break;
+            std::swap(ind[left], ind[right]); ++left; --right;
+        }
+        lim2 = left;
+    }
+
+    /**
+     * Performs an exact nearest neighbor search. The exact search performs a full
+     * traversal of the tree.
+     */
+    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
+    {
+        //		checkID -= 1;  /* Set a different unique ID for each search. */
+
+        if (trees_ > 1) {
+            fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
+        }
+        if (trees_>0) {
+            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
+        }
+        assert(result.full());
+    }
+
+    /**
+     * Performs the approximate nearest-neighbor search. The search is approximate
+     * because the tree traversal is abandoned after a given number of descends in
+     * the tree.
+     */
+    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
+    {
+        int i;
+        BranchSt branch;
+
+        int checkCount = 0;
+        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
+        DynamicBitset checked(size_);
+
+        /* Search once through each tree down to root. */
+        for (i = 0; i < trees_; ++i) {
+            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
+        }
+
+        /* Keep searching other branches from heap until finished. */
+        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
+            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
+        }
+
+        delete heap;
+
+        assert(result.full());
+    }
+
+
+    /**
+     *  Search starting from a given node of the tree.  Based on any mismatches at
+     *  higher levels, all exemplars below this level must have a distance of
+     *  at least "mindistsq".
+     */
+    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
+                     float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
+    {
+        if (result_set.worstDist()<mindist) {
+            //			printf("Ignoring branch, too far\n");
+            return;
+        }
+
+        /* If this is a leaf node, then do check and return. */
+        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+            /*  Do not check same node more than once when searching multiple trees.
+                Once a vector is checked, we set its location in vind to the
+                current checkID.
+             */
+            int index = node->divfeat;
+            if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
+            checked.set(index);
+            checkCount++;
+
+            DistanceType dist = distance_(dataset_[index], vec, veclen_);
+            result_set.addPoint(dist,index);
+
+            return;
+        }
+
+        /* Which child branch should be taken first? */
+        ElementType val = vec[node->divfeat];
+        DistanceType diff = val - node->divval;
+        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+        /* Create a branch record for the branch not taken.  Add distance
+            of this feature boundary (we don't attempt to correct for any
+            use of this feature in a parent node, which is unlikely to
+            happen and would have only a small effect).  Don't bother
+            adding more branches to heap after halfway point, as cost of
+            adding exceeds their value.
+         */
+
+        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+        //		if (2 * checkCount < maxCheck  ||  !result.full()) {
+        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
+            heap->insert( BranchSt(otherChild, new_distsq) );
+        }
+
+        /* Call recursively to search next level down. */
+        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
+    }
+
+    /**
+     * Performs an exact search in the tree starting from a node.
+     */
+    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
+    {
+        /* If this is a leaf node, then do check and return. */
+        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+            int index = node->divfeat;
+            DistanceType dist = distance_(dataset_[index], vec, veclen_);
+            result_set.addPoint(dist,index);
+            return;
+        }
+
+        /* Which child branch should be taken first? */
+        ElementType val = vec[node->divfeat];
+        DistanceType diff = val - node->divval;
+        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
+        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
+
+        /* Create a branch record for the branch not taken.  Add distance
+            of this feature boundary (we don't attempt to correct for any
+            use of this feature in a parent node, which is unlikely to
+            happen and would have only a small effect).  Don't bother
+            adding more branches to heap after halfway point, as cost of
+            adding exceeds their value.
+         */
+
+        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
+
+        /* Call recursively to search next level down. */
+        searchLevelExact(result_set, vec, bestChild, mindist, epsError);
+
+        if (new_distsq*epsError<=result_set.worstDist()) {
+            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
+        }
+    }
+
+
+private:
+
+    enum
+    {
+        /**
+         * To improve efficiency, only SAMPLE_MEAN random values are used to
+         * compute the mean and variance at each level when building a tree.
+         * A value of 100 seems to perform as well as using all values.
+         */
+        SAMPLE_MEAN = 100,
+        /**
+         * Top random dimensions to consider
+         *
+         * When creating random trees, the dimension on which to subdivide is
+         * selected at random from among the top RAND_DIM dimensions with the
+         * highest variance.  A value of 5 works well.
+         */
+        RAND_DIM=5
+    };
+
+
+    /**
+     * Number of randomized trees that are used
+     */
+    int trees_;
+
+    /**
+     *  Array of indices to vectors in the dataset.
+     */
+    std::vector<int> vind_;
+
+    /**
+     * The dataset used by this index
+     */
+    const Matrix<ElementType> dataset_;
+
+    IndexParams index_params_;
+
+    size_t size_;
+    size_t veclen_;
+
+
+    DistanceType* mean_;
+    DistanceType* var_;
+
+
+    /**
+     * Array of k-d trees used to find neighbours.
+     */
+    NodePtr* tree_roots_;
+
+    /**
+     * Pooled memory allocator.
+     *
+     * Using a pooled memory allocator is more efficient
+     * than allocating memory directly when there is a large
+     * number small of memory allocations.
+     */
+    PooledAllocator pool_;
+
+    Distance distance_;
+
+
+};   // class KDTreeForest
+
+}
+
+#endif //OPENCV_FLANN_KDTREE_INDEX_H_
+