Joe Verbout
/
main
opencv on mbed
Diff: opencv2/flann/index_testing.h
- Revision:
- 0:ea44dc9ed014
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/opencv2/flann/index_testing.h Thu Mar 31 21:16:38 2016 +0000 @@ -0,0 +1,319 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_INDEX_TESTING_H_ +#define OPENCV_FLANN_INDEX_TESTING_H_ + +#include <cstring> +#include <cassert> +#include <cmath> + +#include "matrix.h" +#include "nn_index.h" +#include "result_set.h" +#include "logger.h" +#include "timer.h" + + +namespace cvflann +{ + +inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) +{ + int count = 0; + for (int i=0; i<n; ++i) { + for (int k=0; k<n; ++k) { + if (neighbors[i]==groundTruth[k]) { + count++; + break; + } + } + } + return count; +} + + +template <typename Distance> +typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target, + int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) +{ + typedef typename Distance::ResultType DistanceType; + + DistanceType ret = 0; + for (int i=0; i<n; ++i) { + DistanceType den = distance(inputData[groundTruth[i]], target, veclen); + DistanceType num = distance(inputData[neighbors[i]], target, veclen); + + if ((den==0)&&(num==0)) { + ret += 1; + } + else { + ret += num/den; + } + } + + return ret; +} + +template <typename Distance> +float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks, + float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) +{ + typedef typename Distance::ResultType DistanceType; + + if (matches.cols<size_t(nn)) { + Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn); + + throw FLANNException("Ground truth is not computed for as many neighbors as requested"); + } + + KNNResultSet<DistanceType> resultSet(nn+skipMatches); + SearchParams searchParams(checks); + + std::vector<int> indices(nn+skipMatches); + std::vector<DistanceType> dists(nn+skipMatches); + int* neighbors = &indices[skipMatches]; + + int correct = 0; + DistanceType distR = 0; + StartStopTimer t; + int repeats = 0; + while (t.value<0.2) { + repeats++; + t.start(); + correct = 0; + distR = 0; + for (size_t i = 0; i < testData.rows; i++) { + resultSet.init(&indices[0], &dists[0]); + index.findNeighbors(resultSet, testData[i], searchParams); + + correct += countCorrectMatches(neighbors,matches[i], nn); + distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); + } + t.stop(); + } + time = float(t.value/repeats); + + float precicion = (float)correct/(nn*testData.rows); + + dist = distR/(testData.rows*nn); + + Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", + checks, precicion, time, 1000.0 * time / testData.rows, dist); + + return precicion; +} + + +template <typename Distance> +float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + float time = 0; + DistanceType dist = 0; + precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); + + return time; +} + +template <typename Distance> +float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + const float SEARCH_EPS = 0.001f; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + int c1 = 1; + //float p1; + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + if (p2>precision) { + Logger::info("Got as close as I can\n"); + checks = c2; + return time; + } + + while (p2<precision) { + c1 = c2; + //p1 = p2; + c2 *=2; + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + } + + int cx; + float realPrecision; + if (fabs(p2-precision)>SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision<precision) { + c1 = cx; + } + else { + c2 = cx; + } + cx = (c1+c2)/2; + if (cx==c1) { + Logger::info("Got as close as I can\n"); + break; + } + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + } + + c2 = cx; + p2 = realPrecision; + + } + else { + Logger::info("No need for linear estimation\n"); + cx = c2; + realPrecision = p2; + } + + checks = cx; + return time; +} + + +template <typename Distance> +void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData, + const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, + float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) +{ + typedef typename Distance::ResultType DistanceType; + + const float SEARCH_EPS = 0.001; + + // make sure precisions array is sorted + std::sort(precisions, precisions+precisions_length); + + int pindex = 0; + float precision = precisions[pindex]; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + + int c1 = 1; + float p1; + + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + // if precision for 1 run down the tree is already + // better then some of the requested precisions, then + // skip those + while (precisions[pindex]<p2 && pindex<precisions_length) { + pindex++; + } + + if (pindex==precisions_length) { + Logger::info("Got as close as I can\n"); + return; + } + + for (int i=pindex; i<precisions_length; ++i) { + + precision = precisions[i]; + while (p2<precision) { + c1 = c2; + p1 = p2; + c2 *=2; + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return; + } + + int cx; + float realPrecision; + if (fabs(p2-precision)>SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision<precision) { + c1 = cx; + } + else { + c2 = cx; + } + cx = (c1+c2)/2; + if (cx==c1) { + Logger::info("Got as close as I can\n"); + break; + } + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + } + + c2 = cx; + p2 = realPrecision; + + } + else { + Logger::info("No need for linear estimation\n"); + cx = c2; + realPrecision = p2; + } + + } +} + +} + +#endif //OPENCV_FLANN_INDEX_TESTING_H_ +