opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/flann/index_testing.h	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,319 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_INDEX_TESTING_H_
+#define OPENCV_FLANN_INDEX_TESTING_H_
+
+#include <cstring>
+#include <cassert>
+#include <cmath>
+
+#include "matrix.h"
+#include "nn_index.h"
+#include "result_set.h"
+#include "logger.h"
+#include "timer.h"
+
+
+namespace cvflann
+{
+
+inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
+{
+    int count = 0;
+    for (int i=0; i<n; ++i) {
+        for (int k=0; k<n; ++k) {
+            if (neighbors[i]==groundTruth[k]) {
+                count++;
+                break;
+            }
+        }
+    }
+    return count;
+}
+
+
+template <typename Distance>
+typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
+                                                    int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
+{
+    typedef typename Distance::ResultType DistanceType;
+
+    DistanceType ret = 0;
+    for (int i=0; i<n; ++i) {
+        DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
+        DistanceType num = distance(inputData[neighbors[i]], target, veclen);
+
+        if ((den==0)&&(num==0)) {
+            ret += 1;
+        }
+        else {
+            ret += num/den;
+        }
+    }
+
+    return ret;
+}
+
+template <typename Distance>
+float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+                               const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
+                               float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
+{
+    typedef typename Distance::ResultType DistanceType;
+
+    if (matches.cols<size_t(nn)) {
+        Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
+
+        throw FLANNException("Ground truth is not computed for as many neighbors as requested");
+    }
+
+    KNNResultSet<DistanceType> resultSet(nn+skipMatches);
+    SearchParams searchParams(checks);
+
+    std::vector<int> indices(nn+skipMatches);
+    std::vector<DistanceType> dists(nn+skipMatches);
+    int* neighbors = &indices[skipMatches];
+
+    int correct = 0;
+    DistanceType distR = 0;
+    StartStopTimer t;
+    int repeats = 0;
+    while (t.value<0.2) {
+        repeats++;
+        t.start();
+        correct = 0;
+        distR = 0;
+        for (size_t i = 0; i < testData.rows; i++) {
+            resultSet.init(&indices[0], &dists[0]);
+            index.findNeighbors(resultSet, testData[i], searchParams);
+
+            correct += countCorrectMatches(neighbors,matches[i], nn);
+            distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
+        }
+        t.stop();
+    }
+    time = float(t.value/repeats);
+
+    float precicion = (float)correct/(nn*testData.rows);
+
+    dist = distR/(testData.rows*nn);
+
+    Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
+                 checks, precicion, time, 1000.0 * time / testData.rows, dist);
+
+    return precicion;
+}
+
+
+template <typename Distance>
+float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+                        const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+                        int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+    typedef typename Distance::ResultType DistanceType;
+
+    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
+    Logger::info("---------------------------------------------------------\n");
+
+    float time = 0;
+    DistanceType dist = 0;
+    precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
+
+    return time;
+}
+
+template <typename Distance>
+float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+                           float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
+{
+    typedef typename Distance::ResultType DistanceType;
+    const float SEARCH_EPS = 0.001f;
+
+    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
+    Logger::info("---------------------------------------------------------\n");
+
+    int c2 = 1;
+    float p2;
+    int c1 = 1;
+    //float p1;
+    float time;
+    DistanceType dist;
+
+    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+    if (p2>precision) {
+        Logger::info("Got as close as I can\n");
+        checks = c2;
+        return time;
+    }
+
+    while (p2<precision) {
+        c1 = c2;
+        //p1 = p2;
+        c2 *=2;
+        p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+    }
+
+    int cx;
+    float realPrecision;
+    if (fabs(p2-precision)>SEARCH_EPS) {
+        Logger::info("Start linear estimation\n");
+        // after we got to values in the vecinity of the desired precision
+        // use linear approximation get a better estimation
+
+        cx = (c1+c2)/2;
+        realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+        while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+            if (realPrecision<precision) {
+                c1 = cx;
+            }
+            else {
+                c2 = cx;
+            }
+            cx = (c1+c2)/2;
+            if (cx==c1) {
+                Logger::info("Got as close as I can\n");
+                break;
+            }
+            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+        }
+
+        c2 = cx;
+        p2 = realPrecision;
+
+    }
+    else {
+        Logger::info("No need for linear estimation\n");
+        cx = c2;
+        realPrecision = p2;
+    }
+
+    checks = cx;
+    return time;
+}
+
+
+template <typename Distance>
+void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
+                           const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
+                           float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
+{
+    typedef typename Distance::ResultType DistanceType;
+
+    const float SEARCH_EPS = 0.001;
+
+    // make sure precisions array is sorted
+    std::sort(precisions, precisions+precisions_length);
+
+    int pindex = 0;
+    float precision = precisions[pindex];
+
+    Logger::info("  Nodes  Precision(%)   Time(s)   Time/vec(ms)  Mean dist\n");
+    Logger::info("---------------------------------------------------------\n");
+
+    int c2 = 1;
+    float p2;
+
+    int c1 = 1;
+    float p1;
+
+    float time;
+    DistanceType dist;
+
+    p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+
+    // if precision for 1 run down the tree is already
+    // better then some of the requested precisions, then
+    // skip those
+    while (precisions[pindex]<p2 && pindex<precisions_length) {
+        pindex++;
+    }
+
+    if (pindex==precisions_length) {
+        Logger::info("Got as close as I can\n");
+        return;
+    }
+
+    for (int i=pindex; i<precisions_length; ++i) {
+
+        precision = precisions[i];
+        while (p2<precision) {
+            c1 = c2;
+            p1 = p2;
+            c2 *=2;
+            p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
+            if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
+        }
+
+        int cx;
+        float realPrecision;
+        if (fabs(p2-precision)>SEARCH_EPS) {
+            Logger::info("Start linear estimation\n");
+            // after we got to values in the vecinity of the desired precision
+            // use linear approximation get a better estimation
+
+            cx = (c1+c2)/2;
+            realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+            while (fabs(realPrecision-precision)>SEARCH_EPS) {
+
+                if (realPrecision<precision) {
+                    c1 = cx;
+                }
+                else {
+                    c2 = cx;
+                }
+                cx = (c1+c2)/2;
+                if (cx==c1) {
+                    Logger::info("Got as close as I can\n");
+                    break;
+                }
+                realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
+            }
+
+            c2 = cx;
+            p2 = realPrecision;
+
+        }
+        else {
+            Logger::info("No need for linear estimation\n");
+            cx = c2;
+            realPrecision = p2;
+        }
+
+    }
+}
+
+}
+
+#endif //OPENCV_FLANN_INDEX_TESTING_H_
+