opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/flann/autotuned_index.h	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,589 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
+#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
+
+#include "general.h"
+#include "nn_index.h"
+#include "ground_truth.h"
+#include "index_testing.h"
+#include "sampling.h"
+#include "kdtree_index.h"
+#include "kdtree_single_index.h"
+#include "kmeans_index.h"
+#include "composite_index.h"
+#include "linear_index.h"
+#include "logger.h"
+
+namespace cvflann
+{
+
+template<typename Distance>
+NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
+
+
+struct AutotunedIndexParams : public IndexParams
+{
+    AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
+    {
+        (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
+        // precision desired (used for autotuning, -1 otherwise)
+        (*this)["target_precision"] = target_precision;
+        // build tree time weighting factor
+        (*this)["build_weight"] = build_weight;
+        // index memory weighting factor
+        (*this)["memory_weight"] = memory_weight;
+        // what fraction of the dataset to use for autotuning
+        (*this)["sample_fraction"] = sample_fraction;
+    }
+};
+
+
+template <typename Distance>
+class AutotunedIndex : public NNIndex<Distance>
+{
+public:
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+    AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
+        dataset_(inputData), distance_(d)
+    {
+        target_precision_ = get_param(params, "target_precision",0.8f);
+        build_weight_ =  get_param(params,"build_weight", 0.01f);
+        memory_weight_ = get_param(params, "memory_weight", 0.0f);
+        sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
+        bestIndex_ = NULL;
+    }
+
+    AutotunedIndex(const AutotunedIndex&);
+    AutotunedIndex& operator=(const AutotunedIndex&);
+
+    virtual ~AutotunedIndex()
+    {
+        if (bestIndex_ != NULL) {
+            delete bestIndex_;
+            bestIndex_ = NULL;
+        }
+    }
+
+    /**
+     *          Method responsible with building the index.
+     */
+    virtual void buildIndex()
+    {
+        std::ostringstream stream;
+        bestParams_ = estimateBuildParams();
+        print_params(bestParams_, stream);
+        Logger::info("----------------------------------------------------\n");
+        Logger::info("Autotuned parameters:\n");
+        Logger::info("%s", stream.str().c_str());
+        Logger::info("----------------------------------------------------\n");
+
+        bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
+        bestIndex_->buildIndex();
+        speedup_ = estimateSearchParams(bestSearchParams_);
+        stream.str(std::string());
+        print_params(bestSearchParams_, stream);
+        Logger::info("----------------------------------------------------\n");
+        Logger::info("Search parameters:\n");
+        Logger::info("%s", stream.str().c_str());
+        Logger::info("----------------------------------------------------\n");
+    }
+
+    /**
+     *  Saves the index to a stream
+     */
+    virtual void saveIndex(FILE* stream)
+    {
+        save_value(stream, (int)bestIndex_->getType());
+        bestIndex_->saveIndex(stream);
+        save_value(stream, get_param<int>(bestSearchParams_, "checks"));
+    }
+
+    /**
+     *  Loads the index from a stream
+     */
+    virtual void loadIndex(FILE* stream)
+    {
+        int index_type;
+
+        load_value(stream, index_type);
+        IndexParams params;
+        params["algorithm"] = (flann_algorithm_t)index_type;
+        bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
+        bestIndex_->loadIndex(stream);
+        int checks;
+        load_value(stream, checks);
+        bestSearchParams_["checks"] = checks;
+    }
+
+    /**
+     *      Method that searches for nearest-neighbors
+     */
+    virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    {
+        int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
+        if (checks == FLANN_CHECKS_AUTOTUNED) {
+            bestIndex_->findNeighbors(result, vec, bestSearchParams_);
+        }
+        else {
+            bestIndex_->findNeighbors(result, vec, searchParams);
+        }
+    }
+
+
+    IndexParams getParameters() const
+    {
+        return bestIndex_->getParameters();
+    }
+
+    SearchParams getSearchParameters() const
+    {
+        return bestSearchParams_;
+    }
+
+    float getSpeedup() const
+    {
+        return speedup_;
+    }
+
+
+    /**
+     *      Number of features in this index.
+     */
+    virtual size_t size() const
+    {
+        return bestIndex_->size();
+    }
+
+    /**
+     *  The length of each vector in this index.
+     */
+    virtual size_t veclen() const
+    {
+        return bestIndex_->veclen();
+    }
+
+    /**
+     * The amount of memory (in bytes) this index uses.
+     */
+    virtual int usedMemory() const
+    {
+        return bestIndex_->usedMemory();
+    }
+
+    /**
+     * Algorithm name
+     */
+    virtual flann_algorithm_t getType() const
+    {
+        return FLANN_INDEX_AUTOTUNED;
+    }
+
+private:
+
+    struct CostData
+    {
+        float searchTimeCost;
+        float buildTimeCost;
+        float memoryCost;
+        float totalCost;
+        IndexParams params;
+    };
+
+    void evaluate_kmeans(CostData& cost)
+    {
+        StartStopTimer t;
+        int checks;
+        const int nn = 1;
+
+        Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
+                     get_param<int>(cost.params,"iterations"),
+                     get_param<int>(cost.params,"branching"));
+        KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
+        // measure index build time
+        t.start();
+        kmeans.buildIndex();
+        t.stop();
+        float buildTime = (float)t.value;
+
+        // measure search time
+        float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+
+        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
+        cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
+        cost.searchTimeCost = searchTime;
+        cost.buildTimeCost = buildTime;
+        Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
+    }
+
+
+    void evaluate_kdtree(CostData& cost)
+    {
+        StartStopTimer t;
+        int checks;
+        const int nn = 1;
+
+        Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
+        KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
+
+        t.start();
+        kdtree.buildIndex();
+        t.stop();
+        float buildTime = (float)t.value;
+
+        //measure search time
+        float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
+
+        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
+        cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
+        cost.searchTimeCost = searchTime;
+        cost.buildTimeCost = buildTime;
+        Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
+    }
+
+
+    //    struct KMeansSimpleDownhillFunctor {
+    //
+    //        Autotune& autotuner;
+    //        KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
+    //
+    //        float operator()(int* params) {
+    //
+    //            float maxFloat = numeric_limits<float>::max();
+    //
+    //            if (params[0]<2) return maxFloat;
+    //            if (params[1]<0) return maxFloat;
+    //
+    //            CostData c;
+    //            c.params["algorithm"] = KMEANS;
+    //            c.params["centers-init"] = CENTERS_RANDOM;
+    //            c.params["branching"] = params[0];
+    //            c.params["max-iterations"] = params[1];
+    //
+    //            autotuner.evaluate_kmeans(c);
+    //
+    //            return c.timeCost;
+    //
+    //        }
+    //    };
+    //
+    //    struct KDTreeSimpleDownhillFunctor {
+    //
+    //        Autotune& autotuner;
+    //        KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
+    //
+    //        float operator()(int* params) {
+    //            float maxFloat = numeric_limits<float>::max();
+    //
+    //            if (params[0]<1) return maxFloat;
+    //
+    //            CostData c;
+    //            c.params["algorithm"] = KDTREE;
+    //            c.params["trees"] = params[0];
+    //
+    //            autotuner.evaluate_kdtree(c);
+    //
+    //            return c.timeCost;
+    //
+    //        }
+    //    };
+
+
+
+    void optimizeKMeans(std::vector<CostData>& costs)
+    {
+        Logger::info("KMEANS, Step 1: Exploring parameter space\n");
+
+        // explore kmeans parameters space using combinations of the parameters below
+        int maxIterations[] = { 1, 5, 10, 15 };
+        int branchingFactors[] = { 16, 32, 64, 128, 256 };
+
+        int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
+        costs.reserve(costs.size() + kmeansParamSpaceSize);
+
+        // evaluate kmeans for all parameter combinations
+        for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
+            for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
+                CostData cost;
+                cost.params["algorithm"] = FLANN_INDEX_KMEANS;
+                cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
+                cost.params["iterations"] = maxIterations[i];
+                cost.params["branching"] = branchingFactors[j];
+
+                evaluate_kmeans(cost);
+                costs.push_back(cost);
+            }
+        }
+
+        //         Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
+        //
+        //         const int n = 2;
+        //         // choose initial simplex points as the best parameters so far
+        //         int kmeansNMPoints[n*(n+1)];
+        //         float kmeansVals[n+1];
+        //         for (int i=0;i<n+1;++i) {
+        //             kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
+        //             kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
+        //             kmeansVals[i] = kmeansCosts[i].timeCost;
+        //         }
+        //         KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
+        //         // run optimization
+        //         optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
+        //         // store results
+        //         for (int i=0;i<n+1;++i) {
+        //             kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
+        //             kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
+        //             kmeansCosts[i].timeCost = kmeansVals[i];
+        //         }
+    }
+
+
+    void optimizeKDTree(std::vector<CostData>& costs)
+    {
+        Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
+
+        // explore kd-tree parameters space using the parameters below
+        int testTrees[] = { 1, 4, 8, 16, 32 };
+
+        // evaluate kdtree for all parameter combinations
+        for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
+            CostData cost;
+            cost.params["algorithm"] = FLANN_INDEX_KDTREE;
+            cost.params["trees"] = testTrees[i];
+
+            evaluate_kdtree(cost);
+            costs.push_back(cost);
+        }
+
+        //         Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
+        //
+        //         const int n = 1;
+        //         // choose initial simplex points as the best parameters so far
+        //         int kdtreeNMPoints[n*(n+1)];
+        //         float kdtreeVals[n+1];
+        //         for (int i=0;i<n+1;++i) {
+        //             kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
+        //             kdtreeVals[i] = kdtreeCosts[i].timeCost;
+        //         }
+        //         KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
+        //         // run optimization
+        //         optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
+        //         // store results
+        //         for (int i=0;i<n+1;++i) {
+        //             kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
+        //             kdtreeCosts[i].timeCost = kdtreeVals[i];
+        //         }
+    }
+
+    /**
+     *  Chooses the best nearest-neighbor algorithm and estimates the optimal
+     *  parameters to use when building the index (for a given precision).
+     *  Returns a dictionary with the optimal parameters.
+     */
+    IndexParams estimateBuildParams()
+    {
+        std::vector<CostData> costs;
+
+        int sampleSize = int(sample_fraction_ * dataset_.rows);
+        int testSampleSize = std::min(sampleSize / 10, 1000);
+
+        Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
+
+        // For a very small dataset, it makes no sense to build any fancy index, just
+        // use linear search
+        if (testSampleSize < 10) {
+            Logger::info("Choosing linear, dataset too small\n");
+            return LinearIndexParams();
+        }
+
+        // We use a fraction of the original dataset to speedup the autotune algorithm
+        sampledDataset_ = random_sample(dataset_, sampleSize);
+        // We use a cross-validation approach, first we sample a testset from the dataset
+        testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
+
+        // We compute the ground truth using linear search
+        Logger::info("Computing ground truth... \n");
+        gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
+        StartStopTimer t;
+        t.start();
+        compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
+        t.stop();
+
+        CostData linear_cost;
+        linear_cost.searchTimeCost = (float)t.value;
+        linear_cost.buildTimeCost = 0;
+        linear_cost.memoryCost = 0;
+        linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
+
+        costs.push_back(linear_cost);
+
+        // Start parameter autotune process
+        Logger::info("Autotuning parameters...\n");
+
+        optimizeKMeans(costs);
+        optimizeKDTree(costs);
+
+        float bestTimeCost = costs[0].searchTimeCost;
+        for (size_t i = 0; i < costs.size(); ++i) {
+            float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
+            if (timeCost < bestTimeCost) {
+                bestTimeCost = timeCost;
+            }
+        }
+
+        float bestCost = costs[0].searchTimeCost / bestTimeCost;
+        IndexParams bestParams = costs[0].params;
+        if (bestTimeCost > 0) {
+            for (size_t i = 0; i < costs.size(); ++i) {
+                float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
+                                memory_weight_ * costs[i].memoryCost;
+                if (crtCost < bestCost) {
+                    bestCost = crtCost;
+                    bestParams = costs[i].params;
+                }
+            }
+        }
+
+        delete[] gt_matches_.data;
+        delete[] testDataset_.data;
+        delete[] sampledDataset_.data;
+
+        return bestParams;
+    }
+
+
+
+    /**
+     *  Estimates the search time parameters needed to get the desired precision.
+     *  Precondition: the index is built
+     *  Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
+     */
+    float estimateSearchParams(SearchParams& searchParams)
+    {
+        const int nn = 1;
+        const size_t SAMPLE_COUNT = 1000;
+
+        assert(bestIndex_ != NULL); // must have a valid index
+
+        float speedup = 0;
+
+        int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
+        if (samples > 0) {
+            Matrix<ElementType> testDataset = random_sample(dataset_, samples);
+
+            Logger::info("Computing ground truth\n");
+
+            // we need to compute the ground truth first
+            Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
+            StartStopTimer t;
+            t.start();
+            compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
+            t.stop();
+            float linear = (float)t.value;
+
+            int checks;
+            Logger::info("Estimating number of checks\n");
+
+            float searchTime;
+            float cb_index;
+            if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
+                Logger::info("KMeans algorithm, estimating cluster border factor\n");
+                KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
+                float bestSearchTime = -1;
+                float best_cb_index = -1;
+                int best_checks = -1;
+                for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
+                    kmeans->set_cb_index(cb_index);
+                    searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
+                    if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
+                        bestSearchTime = searchTime;
+                        best_cb_index = cb_index;
+                        best_checks = checks;
+                    }
+                }
+                searchTime = bestSearchTime;
+                cb_index = best_cb_index;
+                checks = best_checks;
+
+                kmeans->set_cb_index(best_cb_index);
+                Logger::info("Optimum cb_index: %g\n", cb_index);
+                bestParams_["cb_index"] = cb_index;
+            }
+            else {
+                searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
+            }
+
+            Logger::info("Required number of checks: %d \n", checks);
+            searchParams["checks"] = checks;
+
+            speedup = linear / searchTime;
+
+            delete[] gt_matches.data;
+            delete[] testDataset.data;
+        }
+
+        return speedup;
+    }
+
+private:
+    NNIndex<Distance>* bestIndex_;
+
+    IndexParams bestParams_;
+    SearchParams bestSearchParams_;
+
+    Matrix<ElementType> sampledDataset_;
+    Matrix<ElementType> testDataset_;
+    Matrix<int> gt_matches_;
+
+    float speedup_;
+
+    /**
+     * The dataset used by this index
+     */
+    const Matrix<ElementType> dataset_;
+
+    /**
+     * Index parameters
+     */
+    float target_precision_;
+    float build_weight_;
+    float memory_weight_;
+    float sample_fraction_;
+
+    Distance distance_;
+
+
+};
+}
+
+#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */
+