[Ver 1.0] The code was given by Seunghoon shin, used for hydraulic quadrupedal robot. Buyoun Cho will revise the code for Post-LIGHT (the robot name is not determined yet).
main.cpp
- Committer:
- Lightvalve
- Date:
- 2019-12-05
- Revision:
- 39:e961db3b93f8
- Parent:
- 38:118df027d851
File content as of revision 39:e961db3b93f8:
#include "mbed.h" #include "FastPWM.h" #include "INIT_HW.h" #include "function_CAN.h" #include "SPI_EEP_ENC.h" #include "I2C_AS5510.h" #include "setting.h" #include "function_utilities.h" #include "stm32f4xx_flash.h" #include "FlashWriter.h" ///191008//// // dac & check /////////////////////////////////////////// DigitalOut check(PC_2); DigitalOut check_2(PC_3); AnalogOut dac_1(PA_4); AnalogOut dac_2(PA_5); AnalogIn adc1(PC_4); //pressure_1 AnalogIn adc2(PB_0); //pressure_2 AnalogIn adc3(PC_1); //current // PWM /////////////////////////////////////////// float dtc_v=0.0f; float dtc_w=0.0f; // I2C /////////////////////////////////////////// I2C i2c(PC_9,PA_8); // SDA, SCL (for K22F) const int i2c_slave_addr1 = 0x56; unsigned int value; // 10bit output of reading sensor AS5510 // SPI /////////////////////////////////////////// //SPI eeprom(PB_15, PB_14, PB_13); // EEPROM //(SPI_MOSI, SPI_MISO, SPI_SCK); //DigitalOut eeprom_cs(PB_12); //FlashWriter writer(6);//2부터 7까지 되는듯 아마 sector SPI enc(PC_12,PC_11,PC_10); DigitalOut enc_cs(PD_2); DigitalOut LED(PA_15); // UART /////////////////////////////////////////// Serial pc(PA_9,PA_10); // _ UART // CAN /////////////////////////////////////////// CAN can(PB_8, PB_9, 1000000); CANMessage msg; void onMsgReceived() { CAN_RX_HANDLER(); } // Variables /////////////////////////////////////////// State pos; State vel; State Vout; State torq; State pres_A; State pres_B; State cur; State valve_pos; State INIT_Vout; State INIT_Valve_Pos; State INIT_Pos; State INIT_torq; float V_out=0.0f; float V_rem=0.0f; // for anti-windup float V_MAX = 12000.0f; // Maximum Voltage : 12V = 12000mV float PWM_out=0.0f; int timer_while = 0; int while_index = 0; extern int CID_RX_CMD; extern int CID_RX_REF_POSITION; extern int CID_RX_REF_TORQUE; extern int CID_RX_REF_PRES_DIFF; extern int CID_RX_REF_VOUT; extern int CID_RX_REF_VALVE_POSITION; extern int CID_RX_REF_CURRENT; extern int CID_TX_INFO; extern int CID_TX_POSITION; extern int CID_TX_TORQUE; extern int CID_TX_PRES; extern int CID_TX_VOUT; extern int CID_TX_VALVE_POSITION; // ============================================================================= // ============================================================================= // ============================================================================= /******************************************************************************* * REFERENCE MODE ******************************************************************************/ enum _REFERENCE_MODE { MODE_REF_NO_ACT = 0, //0 MODE_REF_DIRECT, //1 MODE_REF_COS_INC, //2 MODE_REF_LINE_INC, //3 MODE_REF_SIN_WAVE, //4 MODE_REF_SQUARE_WAVE, //5 }; /******************************************************************************* * CONTROL MODE ******************************************************************************/ enum _CONTROL_MODE { //control mode MODE_NO_ACT = 0, //0 MODE_VALVE_OPEN_LOOP, //1 MODE_VALVE_POSITION_CONTROL, //2 MODE_JOINT_POSITION_TORQUE_CONTROL_PWM, //3 MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION, //4 MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING, //5 MODE_JOINT_POSITION_PRES_CONTROL_PWM, //6 MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION, //7 MODE_VALVE_POSITION_PRES_CONTROL_LEARNING, //8 MODE_TEST_CURRENT_CONTROL, //9 MODE_TEST_PWM_CONTROL, //10 MODE_CURRENT_CONTROL, //11 MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT, //12 MODE_JOINT_POSITION_PRES_CONTROL_CURRENT, //13 //utility MODE_TORQUE_SENSOR_NULLING = 20, //20 MODE_VALVE_NULLING_AND_DEADZONE_SETTING, //21 MODE_FIND_HOME, //22 MODE_VALVE_GAIN_SETTING, //23 MODE_PRESSURE_SENSOR_NULLING, //24 MODE_PRESSURE_SENSOR_CALIB, //25 MODE_ROTARY_FRICTION_TUNING, //26 MODE_DDV_POS_VS_PWM_ID = 30, //30 MODE_DDV_DEADZONE_AND_CENTER, //31 MODE_DDV_POS_VS_FLOWRATE, //32 }; int messi = 0; float end_pos = 0.0f; int main() { /********************************* *** Initialization *********************************/ //LED = 1; //pc.baud(9600); // i2c init //i2c.frequency(400 * 1000); // 0.4 mHz // wait_ms(2); // Power Up wait // look_for_hardware_i2c(); // Hardware present // init_as5510(i2c_slave_addr1); // make_delay(); // // spi init //eeprom.format(8,3); //eeprom.frequency(5000000); //5M enc.format(8,0); enc.frequency(5000000); //5M make_delay(); //rom ROM_CALL_DATA(); make_delay(); // // ADC init // Init_ADC(); // make_delay(); // Pwm init Init_PWM(); TIM4->CR1 ^= TIM_CR1_UDIS; make_delay(); // TMR3 init Init_TMR3(); TIM3->CR1 ^= TIM_CR1_UDIS; make_delay(); // TMR5 init Init_TMR2(); TIM2->CR1 ^= TIM_CR1_UDIS; make_delay(); // CAN can.attach(&CAN_RX_HANDLER); CAN_ID_INIT(); make_delay(); //Timer priority NVIC_SetPriority(TIM3_IRQn, 2); NVIC_SetPriority(TIM2_IRQn, 3); NVIC_SetPriority(TIM4_IRQn, 4); //can.reset(); can.filter(msg.id, 0xFFFFF000, CANStandard); // spi _ enc spi_enc_set_init(); make_delay(); //DAC init // dac_1 = PRES_A_VREF / 3.3f; // dac_2 = PRES_B_VREF / 3.3f; // make_delay(); // for (int i=0; i<50; i++) { // if(i%2==0) // ID_index_array[i] = - i * 0.5f; // else // ID_index_array[i] = (i+1) * 0.5f; // } ENC_UPDATE(); pos.ref = pos.sen; /************************************ *** Program is operating! *************************************/ while(1) { if(timer_while==100000) { messi = 1; } timer_while ++; } } float DDV_JOINT_POS_FF(float REF_JOINT_VEL) { int i = 0; float Ref_Valve_Pos_FF = DDV_CENTER; for(i=0; i<VALVE_POS_NUM; i++) { if(REF_JOINT_VEL >= min(JOINT_VEL[i],JOINT_VEL[i+1]) && REF_JOINT_VEL <= max(JOINT_VEL[i],JOINT_VEL[i+1])) { if(i==0) { if(JOINT_VEL[i+1] == JOINT_VEL[i]){ Ref_Valve_Pos_FF = DDV_CENTER; }else{ Ref_Valve_Pos_FF = ((float) 10/(JOINT_VEL[i+1] - JOINT_VEL[i]) * (REF_JOINT_VEL - JOINT_VEL[i])) + DDV_CENTER; } } else { if(JOINT_VEL[i+1] == JOINT_VEL[i-1]){ Ref_Valve_Pos_FF = DDV_CENTER; }else{ Ref_Valve_Pos_FF = ((float) 10*(ID_index_array[i+1] - ID_index_array[i-1])/(JOINT_VEL[i+1] - JOINT_VEL[i-1]) * (REF_JOINT_VEL - JOINT_VEL[i-1])) + DDV_CENTER + (float) (10*ID_index_array[i-1]); } } break; } } if(REF_JOINT_VEL > max(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) { Ref_Valve_Pos_FF = (float) VALVE_MAX_POS; } else if(REF_JOINT_VEL < min(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) { Ref_Valve_Pos_FF = (float) VALVE_MIN_POS; } //VELOCITY_COMP_GAIN = 20; //CAN_TX_PRES((int16_t)(Ref_Valve_Pos_FF), (int16_t) (7)); Ref_Valve_Pos_FF = (float) VELOCITY_COMP_GAIN * 0.01f * (float) (Ref_Valve_Pos_FF - DDV_CENTER) + DDV_CENTER; return Ref_Valve_Pos_FF; } void VALVE_POS_CONTROL(float REF_VALVE_POS) { int i = 0; if(REF_VALVE_POS > VALVE_MAX_POS) { REF_VALVE_POS = VALVE_MAX_POS; } else if(REF_VALVE_POS < VALVE_MIN_POS) { REF_VALVE_POS = VALVE_MIN_POS; } valve_pos_err = REF_VALVE_POS - value; valve_pos_err_diff = valve_pos_err - valve_pos_err_old; valve_pos_err_old = valve_pos_err; valve_pos_err_sum += valve_pos_err; if (valve_pos_err_sum > 1000) valve_pos_err_sum = 1000; if (valve_pos_err_sum<-1000) valve_pos_err_sum = -1000; VALVE_PWM_RAW_FB = P_GAIN_VALVE_POSITION * valve_pos_err + I_GAIN_VALVE_POSITION * valve_pos_err_sum + D_GAIN_VALVE_POSITION * valve_pos_err_diff; // if(REF_VALVE_POS >= VALVE_POS_VS_PWM[0]) // { // if(REF_VALVE_POS <= VALVE_POS_VS_PWM[1]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[1] - VALVE_POS_VS_PWM[0]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[0]); // }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[3]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[3] - VALVE_POS_VS_PWM[1]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[1]) + 3000.0* (float) ID_index_array[1]; // }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[5]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[5] - VALVE_POS_VS_PWM[3]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[3]) + 3000.0* (float) ID_index_array[3]; // }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[7]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[7] - VALVE_POS_VS_PWM[5]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[5]) + 3000.0* (float) ID_index_array[5]; // }else // VALVE_PWM_RAW_FF = 12000.0; // } // else // { // if(REF_VALVE_POS >= VALVE_POS_VS_PWM[2]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[0] - VALVE_POS_VS_PWM[2]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[2]) + 3000.0* (float) ID_index_array[2]; // }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[4]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[2] - VALVE_POS_VS_PWM[4]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[4]) + 3000.0* (float) ID_index_array[4]; // }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[6]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[4] - VALVE_POS_VS_PWM[6]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[6]) + 3000.0* (float) ID_index_array[6]; // }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[8]) { // VALVE_PWM_RAW_FF = (float) 3000.0 / (float) (VALVE_POS_VS_PWM[6] - VALVE_POS_VS_PWM[8]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[8]) + 3000.0* (float) ID_index_array[8]; // }else // VALVE_PWM_RAW_FF = -12000.0; // } for(i=0; i<24; i++) { if(REF_VALVE_POS >= min(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1]) && REF_VALVE_POS <= max(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1])) { if(i==0) { VALVE_PWM_RAW_FF = (float) 1000.0 / (float) (VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i]); } else { VALVE_PWM_RAW_FF = (float) 1000.0* (float) (ID_index_array[i+1] - ID_index_array[i-1])/(VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i-1]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i-1]) + 1000.0* (float) ID_index_array[i-1]; } break; } } V_out = VALVE_PWM_RAW_FF + VALVE_PWM_RAW_FB; //V_out = VALVE_PWM_RAW_FB; } #define LT_MAX_IDX 57 float LT_PWM_duty[LT_MAX_IDX] = {-100.0f, -80.0f, -60.0f, -50.0f, -40.0f, -35.0f, -30.0f, -25.0f, -20.0f, -19.0f, -18.0f, -17.0f, -16.0f, -15.0f, -14.0f, -13.0f, -12.0f, -11.0f, -10.0f, -9.0f, -8.0f, -7.0f, -6.0f, -5.0f, -4.0f, -3.0f, -2.0f, -1.0f, 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 25.0f, 30.0f, 35.0f, 40.0f, 50.0f, 60.0f, 80.0f, 100.0f }; // duty float LT_Voltage_Output[LT_MAX_IDX] = {-321.4f, -291.3f, -261.5f, -246.8f, -231.7f, -223.9f, -216.1f, -207.9f, -198.8f, -196.9f, -195.0f, -192.5f, -188.8f, -184.5f, -180.2f, -175.9f, -171.5f, -166.3f, -161.0f, -156.0f, -149.5f, -139.0f, -126.0f, -107.0f, -87.5f, -64.0f, -38.5f, -9.4f, 0.0f, 12.0f, 43.5f, 69.0f, 94.0f, 114.0f, 132.0f, 146.0f, 155.5f, 162.3f, 168.2f, 173.1f, 178.2f, 182.8f, 187.4f, 191.8f, 196.0f, 199.7f, 201.9f, 203.8f, 205.6f, 214.6f, 222.5f, 230.4f, 238.2f, 253.3f, 268.0f, 297.6f, 327.7f }; // mV float PWM_duty_byLT(float Ref_V) { float PWM_duty = 0.0f; if(Ref_V<LT_Voltage_Output[0]) { PWM_duty = (Ref_V-LT_Voltage_Output[0])/1.5f+LT_PWM_duty[0]; } else if (Ref_V>=LT_Voltage_Output[LT_MAX_IDX-1]) { PWM_duty = (Ref_V-LT_Voltage_Output[LT_MAX_IDX-1])/1.5f+LT_PWM_duty[LT_MAX_IDX-1]; } else { int idx = 0; for(idx=0; idx<LT_MAX_IDX-1; idx++) { float ini_x = LT_Voltage_Output[idx]; float fin_x = LT_Voltage_Output[idx+1]; float ini_y = LT_PWM_duty[idx]; float fin_y = LT_PWM_duty[idx+1]; if(Ref_V>=ini_x && Ref_V<fin_x) { PWM_duty = (fin_y-ini_y)/(fin_x-ini_x)*(Ref_V-ini_x) + ini_y; break; } } } return PWM_duty; } /******************************************************************************* TIMER INTERRUPT *******************************************************************************/ //unsigned long CNT_TMR4 = 0; float FREQ_TMR4 = (float)FREQ_10k; float DT_TMR4 = (float)DT_10k; extern "C" void TIM4_IRQHandler(void) { if (TIM4->SR & TIM_SR_UIF ) { /******************************************************* *** Sensor Read & Data Handling ********************************************************/ //Using LoadCell // ADC1->CR2 |= 0x40000000; // adc _ 12bit // //while((ADC1->SR & 0b10)); // float alpha_update_torque = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f)); // float torque_new = ((float)ADC1->DR - PRES_A_NULL) / TORQUE_SENSOR_PULSE_PER_TORQUE + 1.0f; // torq.sen = torq.sen*(1.0f-alpha_update_torque)+torque_new*(alpha_update_torque); //Pressure sensor A ADC1->CR2 |= 0x40000000; // adc _ 12bit //while((ADC1->SR & 0b10)); float alpha_update_pres_A = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f)); // float pres_A_new = ((float)ADC1->DR - PRES_A_NULL) / PRES_SENSOR_A_PULSE_PER_BAR; float pres_A_new = ((float)ADC1->DR); pres_A.sen = pres_A.sen*(1.0f-alpha_update_pres_A)+pres_A_new*(alpha_update_pres_A); torq.sen = - (pres_A.sen-2048.0f)*10000.0f / 2048.0f; //N //Pressure sensor 1B //float alpha_update_pres_B = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f)); //float pres_B_new = ((float)ADC2->DR); //pres_B.sen = pres_B.sen*(1.0f-alpha_update_pres_B)+pres_B_new*(alpha_update_pres_B); //torq.sen = pres_A.sen * (float) PISTON_AREA_A - pres_B.sen * (float) PISTON_AREA_B; //Current //ADC3->CR2 |= 0x40000000; // adc _ 12bit // a1=ADC2->DR; //int raw_cur = ADC3->DR; //while((ADC3->SR & 0b10)); float alpha_update_cur = 1.0f/(1.0f+(FREQ_TMR4/2.0f)/(2.0f*3.14f*1000.0f)); // f_cutoff : 500Hz float cur_new = ((float)ADC3->DR-2048.0f)*20.0f/4096.0f; // unit : mA cur.sen=cur.sen*(1.0f-alpha_update_cur)+cur_new*(alpha_update_cur); //cur.sen = raw_cur; /******************************************************* *** Timer Counting & etc. ********************************************************/ //CNT_TMR4++; } TIM4->SR = 0x0; // reset the status register } int j =0; //unsigned long CNT_TMR3 = 0; //float FREQ_TMR3 = (float)FREQ_5k; float FREQ_TMR3 = (float)FREQ_1k; //float DT_TMR3 = (float)DT_5k; float DT_TMR3 = (float)DT_1k; extern "C" void TIM3_IRQHandler(void) { if (TIM3->SR & TIM_SR_UIF ) { ENC_UPDATE(); if(messi == 1){ pos.ref = pos.ref + 0.007f;//0.009 -> 10ml/30min pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; V_out = (float) 500.0f + (float) 3000.0f * 0.01f * pos.err + (float) 0.0f * 0.01f * pos.err_sum + (float) 0.0f * pos.err_diff; if (abs(pos.ref-pos.sen) > 1000){ V_out = 0; pos.ref = pos.sen; end_pos = pos.sen; messi = 2; } } if(messi ==2){ pos.ref = pos.ref - 2.0f; pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; V_out = (float) 3000.0f * 0.01f * pos.err + (float) 0.0f * 0.01f * pos.err_sum + (float) 0.0f * pos.err_diff; // if (abs(pos.ref-pos.sen) > 2000){ // V_out = 0; // messi = 0; // } if (abs(end_pos-pos.sen) > 81920){ V_out = 0; messi = 0; } } // CONTROL LOOP ------------------------------------------------------------ switch (CONTROL_MODE) { case MODE_NO_ACT: { V_out = V_out; break; } case MODE_VALVE_OPEN_LOOP: { V_out = (float) Vout.ref; break; } case MODE_VALVE_POSITION_CONTROL: { VALVE_POS_CONTROL(valve_pos.ref); break; } case MODE_JOINT_POSITION_TORQUE_CONTROL_PWM: { float PWM_RAW_POS_FB = 0.0f; // PWM by Position Feedback float PWM_RAW_POS_FF = 0.0f; // PWM by Position Feedforward float PWM_RAW_FORCE_FB = 0.0f; // PWM by Force Feedback // feedback input for position control pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; // PWM_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * pos.err + (float) I_GAIN_JOINT_POSITION * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff; PWM_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * pos.err; PWM_RAW_POS_FB = PWM_RAW_POS_FB * 0.01f; // feedforward input for position control float Ref_Vel_Act = vel.ref/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s] float K_ff = 0.9f; if(Ref_Vel_Act > 0) K_ff = 0.90f; // open if(Ref_Vel_Act > 0) K_ff = 0.75f; // close PWM_RAW_POS_FF = K_ff*Ref_Vel_Act/0.50f; // torque feedback // torq.err = torq.ref - torq.sen; // torq.err_diff = torq.err - torq.err_old; // torq.err_old = torq.err; // torq.err_sum += torq.err; // if (torq.err_sum > 1000) torq.err_sum = 1000; // if (torq.err_sum<-1000) torq.err_sum = -1000; // VALVE_PWM_RAW_TORQ = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff; // VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01f; PWM_RAW_FORCE_FB = 0.0f; V_out = PWM_RAW_POS_FF + PWM_RAW_POS_FB + PWM_RAW_FORCE_FB; break; } case MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION: { float VALVE_POS_RAW_POS_FB = 0.0f; // Valve Position by Position Feedback //float VALVE_POS_RAW_POS_FF = 0.0f; // Valve Position by Position Feedforward float VALVE_POS_RAW_FORCE_FB = 0.0f; // Valve Position by Force Feedback //int DDV_JOINT_CAN = 0; // feedback input for position control pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err + (float) I_GAIN_JOINT_POSITION * 0.01f * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff; VALVE_POS_RAW_POS_FB = VALVE_POS_RAW_POS_FB * 0.01f; //Ref_Joint_Vel = Ref_Vel_Test; // feedforward input for position control // float Ref_Joint_Vel_Act = Ref_Joint_Vel/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s] // float K_ff = 0.9f; // if(Ref_Joint_Vel_Act > 0) K_ff = 0.90f; // open // if(Ref_Joint_Vel_Act > 0) K_ff = 0.75f; // close // VALVE_POS_RAW_POS_FF = K_ff*Ref_Joint_Vel_Act/0.50f; //torque feedback torq.err = - torq.ref + torq.sen; torq.err_diff = torq.err - torq.err_old; torq.err_old = torq.err; torq.err_sum += torq.err; if (torq.err_sum > 1000) torq.err_sum = 1000; if (torq.err_sum<-1000) torq.err_sum = -1000; VALVE_POS_RAW_FORCE_FB = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff; VALVE_POS_RAW_FORCE_FB = VALVE_POS_RAW_FORCE_FB * 0.01f; valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_JOINT_POS_FF(vel.ref) + VALVE_POS_RAW_FORCE_FB; if (valve_pos.ref > DDV_CENTER) { valve_pos.ref = valve_pos.ref + VALVE_DEADZONE_PLUS - DDV_CENTER; } else if(valve_pos.ref < DDV_CENTER) { valve_pos.ref = valve_pos.ref - DDV_CENTER + VALVE_DEADZONE_MINUS; } VALVE_POS_CONTROL(valve_pos.ref); break; } case MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING: { break; } case MODE_JOINT_POSITION_PRES_CONTROL_PWM: { pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; VALVE_PWM_RAW_POS = ((float) P_GAIN_JOINT_POSITION * pos.err + (float) I_GAIN_JOINT_POSITION * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff) * 0.01f; torq.err = torq.ref - torq.sen; torq.err_diff = torq.err - torq.err_old; torq.err_old = torq.err; torq.err_sum += torq.err; if (torq.err_sum > 1000) torq.err_sum = 1000; if (torq.err_sum<-1000) torq.err_sum = -1000; VALVE_PWM_RAW_TORQ = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff; VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01f; V_out = VALVE_PWM_RAW_POS + (float) COMPLIANCE_GAIN * 0.01f * VALVE_PWM_RAW_TORQ; CUR_FLOWRATE = (float) CUR_VELOCITY * 0.00009587f; CUR_FLOWRATE = CUR_FLOWRATE * 0.5757f; // 0.4791=2*pi/65536*5000(pulse/tic to rad/s) 0.5757=0.02525*0.02*0.0095*2*60*1000 (radius * area * 2 * 60(sec --> min) * 1000(m^3 --> L)) if (DIR_VALVE > 0) { if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0f) / (VALVE_GAIN_LPM_PER_V[0]*1.0f - 0.0f) + 0.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*1.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0f) / (VALVE_GAIN_LPM_PER_V[2]*2.0f - VALVE_GAIN_LPM_PER_V[0]*1.) + 1.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*2.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0f) / (VALVE_GAIN_LPM_PER_V[4]*3.0f - VALVE_GAIN_LPM_PER_V[2]*2.) + 2.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*3.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0f) / (VALVE_GAIN_LPM_PER_V[6]*4.0f - VALVE_GAIN_LPM_PER_V[4]*3.) + 3.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*4.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0f) / (VALVE_GAIN_LPM_PER_V[8]*5.0f - VALVE_GAIN_LPM_PER_V[6]*4.) + 4.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = 5.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) && CUR_FLOWRATE < 0.0f) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) / (0.0f - VALVE_GAIN_LPM_PER_V[1]*(-1.)) - 1.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - VALVE_GAIN_LPM_PER_V[3]*(-2.)) - 2.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - VALVE_GAIN_LPM_PER_V[5]*(-3.)) - 3.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - VALVE_GAIN_LPM_PER_V[7]*(-4.)) - 4.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - VALVE_GAIN_LPM_PER_V[9]*(-5.)) - 5.0f; else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[9]*(-5.0f))) VALVE_FF_VOLTAGE = -5; else VALVE_FF_VOLTAGE = 0; } else { if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0f) / (VALVE_GAIN_LPM_PER_V[0]*1.0f - 0.0f) + 0.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*1.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0f) / (VALVE_GAIN_LPM_PER_V[2]*2.0f - VALVE_GAIN_LPM_PER_V[0]*1.0f) + 1.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*2.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0f) / (VALVE_GAIN_LPM_PER_V[4]*3.0f - VALVE_GAIN_LPM_PER_V[2]*2.0f) + 2.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*3.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0f) / (VALVE_GAIN_LPM_PER_V[6]*4.0f - VALVE_GAIN_LPM_PER_V[4]*3.0f) + 3.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*4.0f) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.0f)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0f) / (VALVE_GAIN_LPM_PER_V[8]*5.0f - VALVE_GAIN_LPM_PER_V[6]*4.0f) + 4.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*5.0f)) VALVE_FF_VOLTAGE = 5.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*(-1.0f)) && CUR_FLOWRATE < 0.0f) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) / (0.0f - VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - 1.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*(-2.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0f)) - VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - 2.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*(-3.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0f)) - VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - 3.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*(-4.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0f)) - VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - 4.0f; else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*(-5.0f)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0f))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0f)) - VALVE_GAIN_LPM_PER_V[9]*(-5.0f)) - 5.0f; else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*(-5.0f))) VALVE_FF_VOLTAGE = -5; else VALVE_FF_VOLTAGE = 0; } // VALVE_FF_VOLTAGE = CUR_FLOWRATE * 0.5f; if (CUR_FLOWRATE >= 0) VALVE_FF_VOLTAGE = (float) VELOCITY_COMP_GAIN * 0.001f * VALVE_FF_VOLTAGE * sqrt((float) PRES_SUPPLY - CUR_PRES_A_BAR) * 0.0707f; // 0.0707 = 1/sqrt(200.)) else if (CUR_FLOWRATE < 0) VALVE_FF_VOLTAGE = (float) VELOCITY_COMP_GAIN * 0.001f * VALVE_FF_VOLTAGE * sqrt((float) PRES_SUPPLY - CUR_PRES_B_BAR) * 0.0707f; V_out = V_out + VALVE_FF_VOLTAGE; break; } case MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION: { pos.err = pos.ref - (float) pos.sen; pos.err_diff = pos.err - pos.err_old; pos.err_old = pos.err; pos.err_sum += pos.err; if (pos.err_sum > 1000) pos.err_sum = 1000; if (pos.err_sum<-1000) pos.err_sum = -1000; VALVE_PWM_RAW_POS = ((float) P_GAIN_JOINT_POSITION * pos.err + (float) I_GAIN_JOINT_POSITION * pos.err_sum + (float) D_GAIN_JOINT_POSITION * pos.err_diff) * 0.01f; torq.err = torq.ref - torq.sen; torq.err_diff = torq.err - torq.err_old; torq.err_old = torq.err; torq.err_sum += torq.err; if (torq.err_sum > 1000) torq.err_sum = 1000; if (torq.err_sum<-1000) torq.err_sum = -1000; VALVE_PWM_RAW_TORQ = (float) P_GAIN_JOINT_TORQUE * torq.err + (float) I_GAIN_JOINT_TORQUE * torq.err_sum + (float) D_GAIN_JOINT_TORQUE * torq.err_diff; valve_pos.ref = VALVE_PWM_RAW_POS + VALVE_PWM_RAW_TORQ; VALVE_POS_CONTROL(valve_pos.ref); break; } case MODE_VALVE_POSITION_PRES_CONTROL_LEARNING: { break; } case MODE_TEST_CURRENT_CONTROL: { if (TMR3_COUNT_IREF == TMR_FREQ_5k) { TMR3_COUNT_IREF = 0; } TMR3_COUNT_IREF++; // Set Current Reference float TMR3_CNT_MAX = (float)TMR_FREQ_5k/2.0f; float I_REF_MID = 0.0f; if (TMR3_COUNT_IREF < TMR3_CNT_MAX) { I_REF = I_REF_MID + 1.0f; } else { I_REF = I_REF_MID - 1.0f; } // float T = 1.0; // wave period // I_REF = (5. * sin(2. * 3.1415 * (float) TMR3_COUNT_IREF / (float)TMR_FREQ_5k/ T)); // I_REF = (2.0 * sin(2. * 2. * 3.14 * (float) TMR3_COUNT_IREF / 5000.)+(2.0 * sin(2. * 1. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 5. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 10. * 3.14 * (float)TMR3_COUNT_IREF/ 5000.))); if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) { //CAN_TX_PRES((int16_t)(I_REF*1000.0), (int16_t) (CUR_CURRENT*1000.0)); // to check the datas } break; } case MODE_TEST_PWM_CONTROL: { if (TMR3_COUNT_IREF == TMR_FREQ_5k) { TMR3_COUNT_IREF = 0; } TMR3_COUNT_IREF++; // Set PWM reference float TMR3_CNT_MAX = (float)TMR_FREQ_5k/2.0f; //float I_REF_MID = 0.0f; if (TMR3_COUNT_IREF < TMR3_CNT_MAX) { CUR_PWM = 1000; } else { CUR_PWM = -1000; } if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) { //CAN_TX_PRES((int16_t)(u_CUR[0]*1000.0f), (int16_t) (CUR_CURRENT*1000.0f)); // to check the datas } break; } case MODE_CURRENT_CONTROL: { cur.ref = cur.ref; // Unit : mA CurrentControl(); break; } case MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT: { float I_REF_POS_FB = 0.0f; // I_REF by Position Feedback float I_REF_POS_FF = 0.0f; // I_REF by Position Feedforward float I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback float I_REF_FORCE_FF = 0.0f; // I_REF by Force Feedforward // feedback input for position control pos.err = pos.ref - pos.sen; float alpha_update_vel = 1.0f/(1.0f+(float)FREQ_TMR4/(2.0f*3.1415f*50.0f)); // f_cutoff : 50Hz float err_diff = (pos.err - pos.err_old)*(float)FREQ_5k; pos.err_diff = (1.0f-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff; pos.err_old = pos.err; I_REF_POS_FB = 0.001f*((float)P_GAIN_JOINT_POSITION * pos.err + (float)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1f); // feedforward input for position control float Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s] float K_ff = 1.3f; float K_v = 0.0f; if(Vel_Act_Ref > 0) K_v = 1.0f/100.0f; // open, tuning. (deg/s >> mA) if(Vel_Act_Ref < 0) K_v = 1.0f/100.0f; // close, tuning. (deg/s >> mA) I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref; // feedback input for position control I_REF_FORCE_FB = 0.0f; // feedforward input for position control I_REF_FORCE_FF = 0.0f; cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF; CurrentControl(); break; } case MODE_JOINT_POSITION_PRES_CONTROL_CURRENT: { //float T_REF = 0.0; // Torque Reference float I_REF_FORCE_FB = 0.; // I_REF by Force Feedback float I_REF_VC = 0.; // I_REF for velocity compensation // feedback input for position control //float Joint_Pos_Err = 34.0f-(float) pos.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s] //float Joint_Vel_Err = 0.0f-(float) vel.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s] //float K_spring = 0.7f; //float D_damper = 0.02f; // T_REF = K_spring * pos.err + D_damper * Joint_Vel_Err; // unit : Nm // torque feedback torq.err = torq.ref - torq.sen; // torq.err_diff = torq.err - torq.err_old; // torq.err_old = torq.err; torq.err_sum = torq.err_sum + torq.err/(float)TMR_FREQ_5k; I_REF_FORCE_FB = 0.001f*((float)P_GAIN_JOINT_TORQUE * torq.err + (float)I_GAIN_JOINT_TORQUE * torq.err_sum); // velocity compensation for torque control float Joint_Vel_Act = vel.sen/(float)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s] float K_vc = 1.5f; // Velocity comp. gain float K_v = 0.0f; // Valve gain if(Joint_Vel_Act > 0) K_v = 1.0f/100.0f; // open, tuning if(Joint_Vel_Act < 0) K_v = 1.0f/100.0f; // close, tuning I_REF_VC = K_vc*K_v*Joint_Vel_Act; cur.ref = I_REF_VC + I_REF_FORCE_FB; // cur.ref = I_REF_FORCE_FB; float I_MAX = 10.0f; // Maximum Current : 10mV float Ka = 1.0f/I_GAIN_JOINT_TORQUE; if(cur.ref > I_MAX) { float I_rem = cur.ref-I_MAX; I_rem = Ka*I_rem; cur.ref = I_MAX; torq.err_sum = torq.err_sum - I_rem/(float)TMR_FREQ_5k; } else if(cur.ref < -I_MAX) { float I_rem = cur.ref-(-I_MAX); I_rem = Ka*I_rem; cur.ref = -I_MAX; torq.err_sum = torq.err_sum - I_rem/(float)TMR_FREQ_5k; } CurrentControl(); /* float I_REF_POS_FB = 0.0f; // I_REF by Position Feedback float I_REF_POS_FF = 0.0f; // I_REF by Position Feedforward float I_REF_FORCE_FB = 0.0f; // I_REF by Force Feedback float I_REF_FORCE_FF = 0.0f; // I_REF by Force Feedforward // feedback input for position control pos.err = pos.ref - pos.sen; float alpha_update_vel = 1.0f/(1.0f+(float)FREQ_TMR4/(2.0f*3.1415f*50.0f)); // f_cutoff : 50Hz float err_diff = (pos.err - pos.err_old)*(float)FREQ_5k; pos.err_diff = (1.0f-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff; pos.err_old = pos.err; I_REF_POS_FB = 0.001f*((float)P_GAIN_JOINT_POSITION * pos.err + (float)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1f); // feedforward input for position control float Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s] float K_ff = 1.3f; float K_v = 0.0f; if(Vel_Act_Ref > 0) K_v = 1.0f/100.0f; // open, tuning. (deg/s >> mA) if(Vel_Act_Ref < 0) K_v = 1.0f/100.0f; // close, tuning. (deg/s >> mA) I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref; // feedback input for position control I_REF_FORCE_FB = 0.0f; // feedforward input for position control I_REF_FORCE_FF = 0.0f; cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF; CurrentControl(); */ break; } case MODE_TORQUE_SENSOR_NULLING: { // DAC Voltage reference set if (TMR3_COUNT_TORQUE_NULL < TMR_FREQ_5k * 2) { CUR_TORQUE_sum += torq.sen; if (TMR3_COUNT_TORQUE_NULL % 10 == 0) { CUR_TORQUE_mean = CUR_TORQUE_sum / 10.0f; CUR_TORQUE_sum = 0; TORQUE_VREF += 0.0001f * (TORQUE_NULL - CUR_TORQUE_mean); if (TORQUE_VREF > 3.3f) TORQUE_VREF = 3.3f; if (TORQUE_VREF < 0) TORQUE_VREF = 0; ROM_RESET_DATA(); //spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0)); dac_1 = TORQUE_VREF / 3.3f; } } else { CONTROL_MODE = MODE_NO_ACT; TMR3_COUNT_TORQUE_NULL = 0; CUR_TORQUE_sum = 0; CUR_TORQUE_mean = 0; ROM_RESET_DATA(); //spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0)); //pc.printf("%f\n", TORQUE_VREF); dac_1 = TORQUE_VREF / 3.3f; } TMR3_COUNT_TORQUE_NULL++; break; } case MODE_VALVE_NULLING_AND_DEADZONE_SETTING: { if (TMR3_COUNT_DEADZONE == 0) { if (pos_plus_end == pos_minus_end) need_enc_init = true; else temp_time = 0; } if (need_enc_init) { if (TMR3_COUNT_DEADZONE < (int) (0.5f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; pos_plus_end = pos.sen; } else if (TMR3_COUNT_DEADZONE < TMR_FREQ_5k) { V_out = -VALVE_VOLTAGE_LIMIT; pos_minus_end = pos.sen; } else if (TMR3_COUNT_DEADZONE == TMR_FREQ_5k) need_enc_init = false; temp_time = TMR_FREQ_5k; } if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); VALVE_CENTER = VALVE_DEADZONE_PLUS = VALVE_DEADZONE_MINUS = 0; } else if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + (int) (1.9f * (float) TMR_FREQ_5k))) { V_out = 0; CUR_VELOCITY_sum += CUR_VELOCITY; } else if (TMR3_COUNT_DEADZONE == (temp_time + 2 * TMR_FREQ_5k)) { if (CUR_VELOCITY_sum == 0) DZ_dir = 1; else if (CUR_VELOCITY_sum > 0) DZ_dir = 1; else if (CUR_VELOCITY_sum < 0) DZ_dir = -1; else DZ_temp_cnt2 = DZ_end; CUR_VELOCITY_sum = 0; } else if (TMR3_COUNT_DEADZONE > (temp_time + 2 * TMR_FREQ_5k)) { if (TMR3_COUNT_DEADZONE > (temp_time + 10 * TMR_FREQ_5k)) DZ_temp_cnt2 = DZ_end; // Position of Dead Zone // (CUR_VELOCITY < 0) (CUR_VELOCITY == 0) (CUR_VELOCITY > 0) // | / | / |/ // | ______/ ___|___/ ______/| // |/ / | / | // /| / | / | // 0V 0V 0V if (DZ_temp_cnt2 < DZ_end) { if (TMR3_COUNT_DEADZONE % 20 != 0) { CUR_VELOCITY_sum += CUR_VELOCITY; } else { V_out -= DZ_dir; if (CUR_VELOCITY_sum * DZ_dir < 0) DZ_temp_cnt++; CUR_VELOCITY_sum = 0; } if (DZ_temp_cnt == 5) { if (DZ_dir >= 0) VALVE_DEADZONE_MINUS = (int16_t) V_out; else VALVE_DEADZONE_PLUS = (int16_t) V_out; DZ_dir = -DZ_dir; DZ_temp_cnt = 0; DZ_temp_cnt2++; } } else { TMR3_COUNT_DEADZONE = -1; VALVE_CENTER = VALVE_DEADZONE_PLUS / 2 + VALVE_DEADZONE_MINUS / 2; if (VALVE_DEADZONE_PLUS < VALVE_DEADZONE_MINUS) { VALVE_DEADZONE_PLUS = VALVE_CENTER; VALVE_DEADZONE_MINUS = VALVE_CENTER; } V_out = 0; ROM_RESET_DATA(); //spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, VALVE_DEADZONE_PLUS); //spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, VALVE_DEADZONE_MINUS); CONTROL_MODE = MODE_NO_ACT; DZ_temp_cnt2 = 0; } } TMR3_COUNT_DEADZONE++; break; } case MODE_FIND_HOME: { if (FINDHOME_STAGE == FINDHOME_INIT) { cnt_findhome = 0; cnt_vel_findhome = 0; //REFERENCE_MODE = MODE_REF_NO_ACT; // Stop taking reference data from PODO pos.ref_home_pos = pos.sen; vel.ref_home_pos = 0.0f; FINDHOME_STAGE = FINDHOME_GOTOLIMIT; } else if (FINDHOME_STAGE == FINDHOME_GOTOLIMIT) { int cnt_check_enc = (TMR_FREQ_5k/500); if(cnt_findhome%cnt_check_enc == 0) { FINDHOME_POSITION = pos.sen; FINDHOME_VELOCITY = FINDHOME_POSITION - FINDHOME_POSITION_OLD; FINDHOME_POSITION_OLD = FINDHOME_POSITION; } cnt_findhome++; //if(cnt_findhome == TMR_FREQ_5k) cnt_findhome = 0; if (abs(FINDHOME_VELOCITY) <= 1) { cnt_vel_findhome = cnt_vel_findhome + 1; } else { cnt_vel_findhome = 0; } if ((cnt_vel_findhome < 3*TMR_FREQ_5k) && cnt_findhome <= 10*TMR_FREQ_5k) { // wait for 3sec //REFERENCE_MODE = MODE_REF_NO_ACT; if (HOMEPOS_OFFSET > 0) pos.ref_home_pos = pos.ref_home_pos + 2.0f; else pos.ref_home_pos = pos.ref_home_pos - 2.0f; pos.err = pos.ref_home_pos - pos.sen; float VALVE_POS_RAW_POS_FB = 0.0f; VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err; VALVE_POS_RAW_POS_FB = VALVE_POS_RAW_POS_FB * 0.01f; valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_CENTER; VALVE_POS_CONTROL(valve_pos.ref); //float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control //I_REF = 0.04f*wn_Pos*((float)joint_pos_err/ENC_PULSE_PER_POSITION); //// L velocity >> mA convert //if(I_REF>5.0f) I_REF = 5.0f; //if(I_REF<-5.0f) I_REF = -5.0f; //FLAG_CURRNET_CONTROL = true; } else { ENC_SET(HOMEPOS_OFFSET); INIT_REF_POS = HOMEPOS_OFFSET; REF_POSITION = 0; REF_VELOCITY = 0; FINDHOME_POSITION = 0; FINDHOME_POSITION_OLD = 0; FINDHOME_VELOCITY = 0; cnt_findhome = 0; cnt_vel_findhome = 0; FINDHOME_STAGE = FINDHOME_ZEROPOSE; } } else if (FINDHOME_STAGE == FINDHOME_ZEROPOSE) { int T_move = 2*TMR_FREQ_5k; pos.ref_home_pos = (0.0f - (float)INIT_REF_POS)*0.5f*(1.0f - cos(3.14159f * (float)cnt_findhome / (float)T_move)) + (float)INIT_REF_POS; vel.ref_home_pos = 0.0f; // input for position control pos.err = (pos.ref_home_pos - (float)pos.sen) / ENC_PULSE_PER_POSITION; float VALVE_POS_RAW_POS_FB = 0.0f; VALVE_POS_RAW_POS_FB = (float) P_GAIN_JOINT_POSITION * 0.01f * pos.err; VALVE_POS_RAW_POS_FB = VALVE_POS_RAW_POS_FB * 0.01f; valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_CENTER; VALVE_POS_CONTROL(valve_pos.ref); // if((OPERATING_MODE && 0x01) == 0) { // Rotary Mode // float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control // float temp_vel = ( 0.01f * (float)P_GAIN_JOINT_POSITION * wn_Pos * pos.err)*PI/180.0f; // rad/s // // L when P-gain = 100, f_cut = 10Hz // if (temp_vel > 0.0f ) I_REF = temp_vel*((float)PISTON_AREA_A*0.00006f/(K_v*sqrt(2.0f*alpha3/(alpha3+1.0f)))); // else I_REF = temp_vel*((float)PISTON_AREA_B*0.00006f/(K_v*sqrt(2.0f/(alpha3+1.0f)))); // // ------------------------------------------------------------------------ // // L thetadot(rad/s) >> I_ref(mA) // } else if ((OPERATING_MODE && 0x01) == 1) { // Linear Mode // float wn_Pos = 2.0f*PI*5.0f; // f_cut : 10Hz Position Control // float temp_vel = ( 0.01f * (float)P_GAIN_JOINT_POSITION * wn_Pos * pos.err); // mm/s // // L when P-gain = 100, f_cut = 10Hz // if (temp_vel > 0.0f ) I_REF = temp_vel*((float)PISTON_AREA_A*0.00006f/(K_v*sqrt(2.0f*alpha3/(alpha3+1.0f)))); // else I_REF = temp_vel*((float)PISTON_AREA_B*0.00006f/(K_v*sqrt(2.0f/(alpha3+1.0f)))); // // ------------------------------------------------------------------------ // // L xdot(mm/s) >> I_ref(mA) // } cnt_findhome++; if (cnt_findhome >= T_move) { //REFERENCE_MODE = MODE_REF_DIRECT; cnt_findhome = 0; pos.ref = 0.0f; vel.ref = 0.0f; pos.ref_home_pos = 0.0f; vel.ref_home_pos = 0.0f; FINDHOME_STAGE = FINDHOME_INIT; CONTROL_MODE = MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION; } } break; } case MODE_VALVE_GAIN_SETTING: { if (TMR3_COUNT_FLOWRATE == 0) { if (pos_plus_end == pos_minus_end) need_enc_init = true; else { V_out = -VALVE_VOLTAGE_LIMIT; temp_time = (int) (0.5f * (float) TMR_FREQ_5k); } } if (need_enc_init) { if (TMR3_COUNT_FLOWRATE < (int) (0.5f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; pos_plus_end = pos.sen; } else if (TMR3_COUNT_FLOWRATE < TMR_FREQ_5k) { V_out = -VALVE_VOLTAGE_LIMIT; pos_minus_end = pos.sen; } else if (TMR3_COUNT_FLOWRATE == TMR_FREQ_5k) { need_enc_init = false; check_vel_pos_init = (int) (0.9f * (float) (pos_plus_end - pos_minus_end)); check_vel_pos_fin = (int) (0.95f * (float) (pos_plus_end - pos_minus_end)); check_vel_pos_interv = check_vel_pos_fin - check_vel_pos_init; } temp_time = TMR_FREQ_5k; } TMR3_COUNT_FLOWRATE++; if (TMR3_COUNT_FLOWRATE > temp_time) { if (flag_flowrate % 2 == 0) { // (+) VALVE_VOLTAGE = 1000.0f * (float) (flag_flowrate / 2 + 1); V_out = VALVE_VOLTAGE; if (pos.sen > (pos_minus_end + check_vel_pos_init) && pos.sen < (pos_minus_end + check_vel_pos_fin)) { fl_temp_cnt++; } else if (pos.sen >= (pos_minus_end + check_vel_pos_fin) && CUR_VELOCITY == 0) { VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0 * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // 0.9587=6*pi/65536*10000 0.5757=0.02525*0.02*0.0095*2*60*1000 // VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / VALVE_VOLTAGE; // PULSE/sec fl_temp_cnt2++; } } else if (flag_flowrate % 2 == 1) { // (-) VALVE_VOLTAGE = -1. * (float) (flag_flowrate / 2 + 1); V_out = VALVE_VOLTAGE; if (pos.sen < (pos_plus_end - check_vel_pos_init) && pos.sen > (pos_plus_end - check_vel_pos_fin)) { fl_temp_cnt++; } else if (pos.sen <= (pos_plus_end - check_vel_pos_fin) && CUR_VELOCITY == 0) { VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873f * 0.5757f * (float) TMR_FREQ_5k / 10000.0f * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE); // VALVE_GAIN_LPM_PER_V[flag_flowrate] = (float) TMR_FREQ_10k * (float) check_vel_pos_interv / (float) fl_temp_cnt / (-VALVE_VOLTAGE); // PULSE/sec fl_temp_cnt2++; } } if (fl_temp_cnt2 == 100) { ROM_RESET_DATA(); //spi_eeprom_write(RID_VALVE_GAIN_PLUS_1 + flag_flowrate, (int16_t) (VALVE_GAIN_LPM_PER_V[flag_flowrate] * 100.0f)); cur_vel_sum = 0; fl_temp_cnt = 0; fl_temp_cnt2 = 0; flag_flowrate++; } if (flag_flowrate == 10) { V_out = 0; flag_flowrate = 0; TMR3_COUNT_FLOWRATE = 0; valve_gain_repeat_cnt++; if (valve_gain_repeat_cnt >= 1) { CONTROL_MODE = MODE_NO_ACT; valve_gain_repeat_cnt = 0; } } break; } } case MODE_PRESSURE_SENSOR_NULLING: { // DAC Voltage reference set if (TMR3_COUNT_PRES_NULL < TMR_FREQ_5k * 2) { CUR_PRES_A_sum += pres_A.sen; CUR_PRES_B_sum += pres_B.sen; if (TMR3_COUNT_PRES_NULL % 10 == 0) { CUR_PRES_A_mean = CUR_PRES_A_sum / 10.0f; CUR_PRES_B_mean = CUR_PRES_B_sum / 10.0f; CUR_PRES_A_sum = 0; CUR_PRES_B_sum = 0; float VREF_NullingGain = 0.0003f; PRES_A_VREF = PRES_A_VREF - VREF_NullingGain * (PRES_A_NULL - CUR_PRES_A_mean); PRES_B_VREF = PRES_B_VREF - VREF_NullingGain * (PRES_B_NULL - CUR_PRES_B_mean); if (PRES_A_VREF > 3.3f) PRES_A_VREF = 3.3f; if (PRES_A_VREF < 0.0f) PRES_A_VREF = 0.0f; if (PRES_B_VREF > 3.3f) PRES_B_VREF = 3.3f; if (PRES_B_VREF < 0.0f) PRES_B_VREF = 0.0f; dac_1 = PRES_A_VREF / 3.3f; dac_2 = PRES_B_VREF / 3.3f; } } else { CONTROL_MODE = MODE_NO_ACT; TMR3_COUNT_PRES_NULL = 0; CUR_PRES_A_sum = 0; CUR_PRES_B_sum = 0; CUR_PRES_A_mean = 0; CUR_PRES_B_mean = 0; ROM_RESET_DATA(); dac_1 = PRES_A_VREF / 3.3f; dac_2 = PRES_B_VREF / 3.3f; //pc.printf("nulling end"); } TMR3_COUNT_PRES_NULL++; break; } case MODE_PRESSURE_SENSOR_CALIB: { if (TMR3_COUNT_PRES_CALIB < 2 * TMR_FREQ_5k) { V_out = -VALVE_VOLTAGE_LIMIT; if (TMR3_COUNT_PRES_CALIB >= TMR_FREQ_5k) { CUR_PRES_A_sum += CUR_PRES_A; } } else if (TMR3_COUNT_PRES_CALIB < 4 * TMR_FREQ_5k) { V_out = VALVE_VOLTAGE_LIMIT; if (TMR3_COUNT_PRES_CALIB >= 3 * TMR_FREQ_5k) { CUR_PRES_B_sum += CUR_PRES_B; } } else { CONTROL_MODE = MODE_NO_ACT; TMR3_COUNT_PRES_CALIB = 0; V_out = 0; PRES_SENSOR_A_PULSE_PER_BAR = CUR_PRES_A_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_A_NULL; PRES_SENSOR_A_PULSE_PER_BAR = PRES_SENSOR_A_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f); PRES_SENSOR_B_PULSE_PER_BAR = CUR_PRES_B_sum / ((float) TMR_FREQ_5k - 1.0f) - PRES_B_NULL; PRES_SENSOR_B_PULSE_PER_BAR = PRES_SENSOR_B_PULSE_PER_BAR / ((float) PRES_SUPPLY - 1.0f); CUR_PRES_A_sum = 0; CUR_PRES_B_sum = 0; CUR_PRES_A_mean = 0; CUR_PRES_B_mean = 0; ROM_RESET_DATA(); //spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f)); //spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f)); } TMR3_COUNT_PRES_CALIB++; break; } case MODE_ROTARY_FRICTION_TUNING: { if (TMR3_COUNT_ROTARY_FRIC_TUNE % (5 * TMR_FREQ_5k) == 0) freq_fric_tune = 4.0f + 3.0f * sin(2 * 3.14159f * 0.5f * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f * 0.05f); V_out = PWM_out * sin(2 * 3.14159f * freq_fric_tune * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001f); if (V_out > 0) V_out = VALVE_VOLTAGE_LIMIT; else V_out = -VALVE_VOLTAGE_LIMIT; TMR3_COUNT_ROTARY_FRIC_TUNE++; if (TMR3_COUNT_ROTARY_FRIC_TUNE > TUNING_TIME * TMR_FREQ_5k) { TMR3_COUNT_ROTARY_FRIC_TUNE = 0; V_out = 0.0f; CONTROL_MODE = MODE_NO_ACT; } break; } case MODE_DDV_POS_VS_PWM_ID: { VALVE_ID_timer = VALVE_ID_timer + 1; if(VALVE_ID_timer < TMR_FREQ_5k*1) { V_out = 3000.0f * sin(2*3.14f*VALVE_ID_timer/TMR_FREQ_5k * 100.0f); } else if(VALVE_ID_timer < TMR_FREQ_5k*2) { V_out = 1000.0f*(ID_index_array[ID_index]); } else if(VALVE_ID_timer == TMR_FREQ_5k*2) { VALVE_POS_TMP = 0; data_num = 0; } else if(VALVE_ID_timer < TMR_FREQ_5k*3) { data_num = data_num + 1; VALVE_POS_TMP = VALVE_POS_TMP + value; } else if(VALVE_ID_timer == TMR_FREQ_5k*3) { VALVE_POS_AVG[ID_index] = VALVE_POS_TMP / data_num; VALVE_ID_timer = 0; ID_index= ID_index +1; } if(ID_index>=25) { int i; VALVE_POS_AVG_OLD = VALVE_POS_AVG[0]; for(i=0; i<25; i++) { VALVE_POS_VS_PWM[i] = (int16_t) (VALVE_POS_AVG[i]); if(VALVE_POS_AVG[i] > VALVE_POS_AVG_OLD) { VALVE_MAX_POS = VALVE_POS_AVG[i]; VALVE_POS_AVG_OLD = VALVE_MAX_POS; } else if(VALVE_POS_AVG[i] < VALVE_POS_AVG_OLD) { VALVE_MIN_POS = VALVE_POS_AVG[i]; VALVE_POS_AVG_OLD = VALVE_MIN_POS; } } //ROM_RESET_DATA(); ID_index = 0; CONTROL_MODE = MODE_NO_ACT; } break; } case MODE_DDV_DEADZONE_AND_CENTER: { VALVE_DZ_timer = VALVE_DZ_timer + 1; if(first_check == 0) { if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; pos_plus_end = pos.sen; } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { V_out = -VALVE_VOLTAGE_LIMIT; } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { V_out = -VALVE_VOLTAGE_LIMIT; pos_minus_end = pos.sen; } else if(VALVE_DZ_timer < (int) (3.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_DZ_timer < (int) (4.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); data_num = data_num + 1; VALVE_POS_TMP = VALVE_POS_TMP + value; } else if(VALVE_DZ_timer == (int) (4.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); DDV_POS_AVG = VALVE_POS_TMP / data_num; START_POS = pos.sen; //CAN_TX_PRES((int16_t) (DDV_POS_AVG), (int16_t) (data_num)); VALVE_POS_TMP = 0; data_num = 0; } else if(VALVE_DZ_timer < (int) (5.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = DDV_POS_AVG; VALVE_POS_CONTROL(valve_pos.ref); //CAN_TX_PRES((int16_t) (VALVE_MAX_POS), (int16_t) (VALVE_MIN_POS)); } else if(VALVE_DZ_timer < (int) (6.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = DDV_POS_AVG; VALVE_POS_CONTROL(valve_pos.ref); if(CUR_VELOCITY >= 0) VEL_POINT = VEL_POINT + 1; else VEL_POINT = VEL_POINT - 1; } else if(VALVE_DZ_timer == (int) (6.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = DDV_POS_AVG; VALVE_POS_CONTROL(valve_pos.ref); FINAL_POS = pos.sen; // if(VEL_POINT >= 0) // { // DZ_case = 1; // } // else // { // DZ_case = -1; // } // if(abs(FINAL_POS - START_POS) < 100) // { // DZ_case = 0; // } if((FINAL_POS - START_POS)>100) { DZ_case = 1; } else if((FINAL_POS - START_POS)<-100) { DZ_case = -1; } else { DZ_case = 0; } VEL_POINT = 0; first_check = 1; DZ_DIRECTION = 1; VALVE_DZ_timer = 0; Ref_Valve_Pos_Old = DDV_POS_AVG; DZ_NUM = 1; DZ_index = 1; //CAN_TX_PRES((int16_t) (DZ_case), (int16_t) (DZ_NUM)); } } else { if((DZ_case == -1 && DZ_NUM == 1) | (DZ_case == 1 && DZ_NUM == 1)) { if(VALVE_DZ_timer < (int) (1.0 * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { START_POS = pos.sen; } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = Ref_Valve_Pos_Old - DZ_case * DZ_DIRECTION * 64 / DZ_index; if(valve_pos.ref <= VALVE_MIN_POS) { valve_pos.ref = VALVE_MIN_POS; } else if(valve_pos.ref >= VALVE_MAX_POS) { valve_pos.ref = VALVE_MAX_POS; } VALVE_POS_CONTROL(valve_pos.ref); if(CUR_VELOCITY >= 0) VEL_POINT = VEL_POINT + 1; else VEL_POINT = VEL_POINT - 1; } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { Ref_Valve_Pos_Old = valve_pos.ref; FINAL_POS = pos.sen; // if(VEL_POINT >= 0) // DZ_DIRECTION = 1 * DZ_case; // else // DZ_DIRECTION = -1 * DZ_case; // if(abs(FINAL_POS - START_POS) < 100) // DZ_DIRECTION = 1 * DZ_case; if((FINAL_POS - START_POS)>100) { DZ_DIRECTION = 1 * DZ_case; } else if((FINAL_POS - START_POS)<-100) { DZ_DIRECTION = -1 * DZ_case; } else { DZ_DIRECTION = 1 * DZ_case; } VEL_POINT = 0; VALVE_DZ_timer = 0; DZ_index= DZ_index *2; if(DZ_index >= 128) { FIRST_DZ = valve_pos.ref; DZ_NUM = 2; Ref_Valve_Pos_Old = FIRST_DZ; DZ_index = 1; DZ_DIRECTION = 1; } //CAN_TX_PRES((int16_t) (1), (int16_t) (DZ_index)); } } else if((DZ_case == -1 && DZ_NUM == 2) | (DZ_case == 1 && DZ_NUM == 2)) { if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f * (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { START_POS = pos.sen; } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = Ref_Valve_Pos_Old + DZ_DIRECTION * 64 / DZ_index; if(valve_pos.ref <= VALVE_MIN_POS) { valve_pos.ref = VALVE_MIN_POS; } else if(valve_pos.ref >= VALVE_MAX_POS) { valve_pos.ref = VALVE_MAX_POS; } VALVE_POS_CONTROL(valve_pos.ref); if(CUR_VELOCITY >= 0) VEL_POINT = VEL_POINT + 1; else VEL_POINT = VEL_POINT - 1; } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { Ref_Valve_Pos_Old = valve_pos.ref; FINAL_POS = pos.sen; // if(VEL_POINT >= 0) // DZ_DIRECTION = 1 * DZ_case; // else // DZ_DIRECTION = -1 * DZ_case; // if(abs(FINAL_POS - START_POS) < 100) // DZ_DIRECTION = -1 * DZ_case; if((FINAL_POS - START_POS)>100) { DZ_DIRECTION = -1; } else if((FINAL_POS - START_POS)<-100) { DZ_DIRECTION = 1; } else { DZ_DIRECTION = 1; } VEL_POINT = 0; VALVE_DZ_timer = 0; DZ_index= DZ_index *2; if(DZ_index >= 128) { SECOND_DZ = valve_pos.ref; DDV_CENTER = 0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ); first_check = 0; VALVE_DEADZONE_MINUS = (float) FIRST_DZ; VALVE_DEADZONE_PLUS = (float) SECOND_DZ; ROM_RESET_DATA(); CONTROL_MODE = MODE_NO_ACT; DZ_index = 1; } //CAN_TX_PRES((int16_t) (2), (int16_t) (DZ_index)); } } else if(DZ_case == 0 && DZ_NUM ==1) { if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f* (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { START_POS = pos.sen; } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = Ref_Valve_Pos_Old - DZ_DIRECTION * 64 / DZ_index; if(valve_pos.ref <= VALVE_MIN_POS) { valve_pos.ref = VALVE_MIN_POS; } else if(valve_pos.ref >= VALVE_MAX_POS) { valve_pos.ref = VALVE_MAX_POS; } VALVE_POS_CONTROL(valve_pos.ref); if(CUR_VELOCITY >= 0) VEL_POINT = VEL_POINT + 1; else VEL_POINT = VEL_POINT - 1; } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { Ref_Valve_Pos_Old = valve_pos.ref; FINAL_POS = pos.sen; // if(VEL_POINT >= 0) // DZ_DIRECTION = 1; // else // DZ_DIRECTION = -1; // if(abs(FINAL_POS - START_POS) < 100) // DZ_DIRECTION = 1; if((FINAL_POS - START_POS)>100) { DZ_DIRECTION = 1; } else if((FINAL_POS - START_POS)<-100) { DZ_DIRECTION = -1; } else { DZ_DIRECTION = 1; } VEL_POINT = 0; //CAN_TX_PRES((int16_t) (7), (int16_t) (DZ_DIRECTION)); VALVE_DZ_timer = 0; DZ_index= DZ_index *2; if(DZ_index >= 128) { FIRST_DZ = valve_pos.ref; DZ_NUM = 2; Ref_Valve_Pos_Old = FIRST_DZ; DZ_index = 1; DZ_DIRECTION = 1; } } } else { if(VALVE_DZ_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f* (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_DZ_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { START_POS = pos.sen; } else if(VALVE_DZ_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = Ref_Valve_Pos_Old + DZ_DIRECTION * 64 / DZ_index; if(valve_pos.ref <= VALVE_MIN_POS) { valve_pos.ref = VALVE_MIN_POS; } else if(valve_pos.ref > VALVE_MAX_POS) { valve_pos.ref = VALVE_MAX_POS - 1; } VALVE_POS_CONTROL(valve_pos.ref); if(CUR_VELOCITY >= 0) VEL_POINT = VEL_POINT + 1; else VEL_POINT = VEL_POINT - 1; } else if(VALVE_DZ_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { Ref_Valve_Pos_Old = valve_pos.ref; FINAL_POS = pos.sen; if(VEL_POINT >= 0) DZ_DIRECTION = -1; else DZ_DIRECTION = 1; if(abs(FINAL_POS - START_POS) < 100) DZ_DIRECTION = 1; VEL_POINT = 0; VALVE_DZ_timer = 0; //CAN_TX_PRES((int16_t) (3), (int16_t) (DZ_index)); DZ_index= DZ_index *2; if(DZ_index >= 128) { SECOND_DZ = valve_pos.ref; DDV_CENTER = 0.5f * (float) (FIRST_DZ) + 0.5f * (float) (SECOND_DZ); first_check = 0; VALVE_DEADZONE_MINUS = (float) FIRST_DZ; VALVE_DEADZONE_PLUS = (float) SECOND_DZ; CONTROL_MODE = MODE_NO_ACT; DZ_index = 1; } //CAN_TX_PRES((int16_t) (4), (int16_t) (DZ_index)); } } } break; } case MODE_DDV_POS_VS_FLOWRATE: { VALVE_FR_timer = VALVE_FR_timer + 1; if(first_check == 0) { if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; //CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6)); } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = VALVE_VOLTAGE_LIMIT; pos_plus_end = pos.sen; // CAN_TX_PRES((int16_t) (V_out), (int16_t) (7)); } else if(VALVE_FR_timer < (int) (2.0f * (float) TMR_FREQ_5k)) { V_out = -VALVE_VOLTAGE_LIMIT; } else if(VALVE_FR_timer == (int) (2.0f * (float) TMR_FREQ_5k)) { // CAN_TX_PRES((int16_t) (V_out), (int16_t) (8)); V_out = -VALVE_VOLTAGE_LIMIT; pos_minus_end = pos.sen; first_check = 1; VALVE_FR_timer = 0; valve_pos.ref = DDV_CENTER; ID_index = 0; max_check = 0; min_check = 0; } } else { if(VALVE_FR_timer < (int) (1.0f * (float) TMR_FREQ_5k)) { V_out = (float) P_GAIN_JOINT_POSITION * 0.01f* (0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen); } else if(VALVE_FR_timer == (int) (1.0f * (float) TMR_FREQ_5k)) { data_num = 0; valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + DDV_CENTER; VALVE_POS_CONTROL(valve_pos.ref); START_POS = pos.sen; } else if(VALVE_FR_timer < (int) (5.0f * (float) TMR_FREQ_5k)) { valve_pos.ref = 10.0f*((float) ID_index_array[ID_index]) + DDV_CENTER; VALVE_POS_CONTROL(valve_pos.ref); data_num = data_num + 1; if(abs(0.5f * (float) pos_plus_end + 0.5f * (float) pos_minus_end - (float) pos.sen) > 20000.0f) { FINAL_POS = pos.sen; one_period_end = 1; } } else if(VALVE_FR_timer == (int) (5.0f * (float) TMR_FREQ_5k)) { FINAL_POS = pos.sen; one_period_end = 1; } if(one_period_end == 1) { if(valve_pos.ref > VALVE_MAX_POS) { max_check = 1; } else if(valve_pos.ref < VALVE_MIN_POS) { min_check = 1; } JOINT_VEL[ID_index] = (FINAL_POS - START_POS) / data_num * TMR_FREQ_5k; // pulse/sec //ROM_RESET_DATA(); //spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0 + ID_index, (int16_t) (JOINT_VEL[ID_index] & 0xFFFF)); //spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0_1 + ID_index, (int16_t) ((JOINT_VEL[ID_index] >> 16) & 0xFFFF)); VALVE_FR_timer = 0; one_period_end = 0; ID_index= ID_index +1; // CAN_TX_PRES((int16_t) (valve_pos.ref), (int16_t) (ID_index)); V_out = 0.0f; } if(max_check == 1 && min_check == 1) { //spi_eeprom_write(RID_VALVE_POS_NUM, (int16_t) (ID_index)); VALVE_POS_NUM = ID_index; //ROM_RESET_DATA(); ID_index = 0; first_check = 0; VALVE_FR_timer = 0; // CAN_TX_PRES((int16_t) (123), (int16_t) (123)); CONTROL_MODE = MODE_NO_ACT; } } break; } default: break; } if (FLAG_VALVE_OUTPUT_CALIB) { // Valve Dead Zone (Mechanical dead-zone canceling) // if (CONTROL_MODE != MODE_VALVE_NULLING_AND_DEADZONE_SETTING) { // if (V_out > 0.) { // VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_PLUS; // } else if (V_out < 0.) { // VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_MINUS; // } else VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_CENTER; // } else VALVE_PWM_VALVE_DZ = (int) V_out; if(V_out>0) V_out = V_out + VALVE_DEADZONE_PLUS; else if(V_out<0) V_out = V_out + VALVE_DEADZONE_MINUS; VALVE_PWM_VALVE_DZ = V_out + VALVE_CENTER; // Output Voltage Linearization and Dead Zone Cancellation (Electrical dead-zone) float CUR_PWM_nonlin = VALVE_PWM_VALVE_DZ/5.0f*1000.0f; // convert PWM duty to mV float CUR_PWM_DZ = PWM_duty_byLT(CUR_PWM_nonlin); if (CUR_PWM_DZ > 0) V_out = (int)CUR_PWM_DZ + 143; else if (CUR_PWM_DZ < 0) V_out = (int)CUR_PWM_DZ - 138; else V_out = CUR_PWM_DZ; } else { V_out = V_out; } /******************************************************* *** PWM ********************************************************/ if (V_out >= 12000.0f) { V_out = 12000.0f; } else if(V_out<=-12000.0f) { V_out = -12000.0f; } PWM_out= V_out/SUPPLY_VOLTAGE; // Full duty : 12000.0mV // Saturation of output voltage to 5.0V // if(PWM_out > 0.41667) PWM_out=0.41667; //5.0/12.0 = 0.41667 // else if (PWM_out < -0.41667) PWM_out=-0.41667; // Saturation of output voltage to 12.0V if(PWM_out > 1.0f) PWM_out=1.0f; else if (PWM_out < -1.0f) PWM_out=-1.0f; if (PWM_out>0.0f) { dtc_v=0.0f; dtc_w=PWM_out; } else { dtc_v=-PWM_out; dtc_w=0.0f; } //pwm TIM4->CCR2 = (PWM_ARR)*(1.0f-dtc_v); TIM4->CCR1 = (PWM_ARR)*(1.0f-dtc_w); } TIM3->SR = 0x0; // reset the status register } //unsigned long CNT_TMR5 = 0; //float FREQ_TMR5 = (float)FREQ_500; //float DT_TMR5 = (float)DT_500; extern "C" void TIM2_IRQHandler(void) { if (TIM2->SR & TIM_SR_UIF ) { //CAN ---------------------------------------------------------------------- if (flag_data_request[0] == HIGH) { //position+velocity CAN_TX_POSITION((int32_t) pos.sen, (int32_t) vel.sen); //CAN_TX_POSITION((int32_t) valve_pos.ref, (int32_t) 0); //CAN_TX_POSITION((int32_t) VALVE_PWM_RAW_FF, (int32_t) VALVE_POS_VS_PWM[10]); //pc.printf("can good"); // CAN_TX_POSITION((long) CUR_PRES_A_BAR, (long) CUR_PRES_B_BAR); } if (flag_data_request[1] == HIGH) { //torque //CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM * 100.)); //CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM)); CAN_TX_TORQUE((int16_t) (cur.sen)); // CAN_TX_TORQUE((int16_t) DZ_temp_cnt); } if (flag_data_request[2] == HIGH) { //pressure A and B CAN_TX_PRES((int16_t) (pres_A.sen), (int16_t) (PRES_A_VREF * 1000.0)); // CUR_PRES_X : 0(0bar)~4096(210bar) //CAN_TX_PRES((int16_t) (pres_A.sen), (int16_t) (pres_B.sen)); // CUR_PRES_X : 0(0bar)~4096(210bar) // CAN_TX_PRES((int16_t) (CUR_PRES_A_BAR * 100.), (int16_t) (CUR_PRES_B_BAR * 100.)); // CAN_TX_PRES((int16_t) ((DEADZONE_MINUS + 1.)*1000.), (int16_t) ((DEADZONE_PLUS + 1.))*1000.); // CAN_TX_PRES((int16_t) DZ_dir, (int16_t) ((VALVE_DEADZONE_PLUS + 1.))*1000.); } if (flag_data_request[3] == HIGH) { //PWM CAN_TX_PWM((int16_t) CUR_PWM); // CAN_TX_PWM((int16_t) cnt_vel_findhome); // CAN_TX_PWM((int16_t) (VALVE_VOLTAGE * 1000.)); // CAN_TX_PWM((int16_t) (VALVE_VOLTAGE_VALVE_DZ * 1000.)); } if (flag_data_request[4] == HIGH) { //valve position CAN_TX_VALVE_POSITION((int16_t) (value), (int16_t) valve_pos.ref, (int16_t) V_out); //CAN_TX_VALVE_POSITION((int16_t) (DDV_CENTER * 10.0f), (int16_t) valve_pos.ref, (int16_t) V_out); //CAN_TX_VALVE_POSITION((int16_t) (VALVE_POS_NUM)); // CAN_TX_VALVE_POSITIOfxN((int16_t) (VALVE_FF_VOLTAGE / SUPPLY_VOLTAGE)); // CAN_TX_VALVE_POSITION((int16_t) P_GAIN_JOINT_POSITION); // CAN_TX_VALVE_POSITION((int16_t) Ref_Joint_Pos); // CAN_TX_VALVE_POSITION((int16_t) flag_flowrate); } } TIM2->SR = 0x0; // reset the status register } void CurrentControl() { cur.err = cur.ref - cur.sen; cur.err_int = cur.err_int + cur.err*DT_TMR4; cur.err_diff = (cur.err - cur.err_old)*FREQ_TMR4; cur.err_old = cur.err; float R_model = 150.0f; // ohm float L_model = 0.3f; float w0 = 2.0f*3.14f*90.0f; float KP_I = L_model*w0; float KI_I = R_model*w0; float KD_I = 0.0f; float FF_gain = 0.0f; V_out = (int) (KP_I * cur.err + KI_I * cur.err_int + KD_I * cur.err_diff); // V_out = V_out + FF_gain * (R_model*I_REF); // Unit : mV V_out = V_out + FF_gain * (R_model*cur.ref + L_model*cur.ref_diff); // Unit : mV float Ka = 5.0f/KP_I; if(V_out > V_MAX) { V_rem = V_out-V_MAX; V_rem = Ka*V_rem; V_out = V_MAX; cur.err_int = cur.err_int - V_rem*DT_5k; } else if(V_out < -V_MAX) { V_rem = V_out-(-V_MAX); V_rem = Ka*V_rem; V_out = -V_MAX; cur.err_int = cur.err_int - V_rem*DT_5k; } }