
Bluetooth Enabled Keyboard/Synthesizer
Dependencies: 4DGL-uLCD-SE SDFileSystem mbed-rtos mbed
Fork of 4180_Final_Design_Project by
Diff: main.cpp
- Revision:
- 12:d60a9d0052a7
- Parent:
- 11:c87f55a3b9e0
- Child:
- 13:25d53936d385
--- a/main.cpp Fri Apr 29 16:23:20 2016 +0000 +++ b/main.cpp Fri Apr 29 22:28:48 2016 +0000 @@ -27,25 +27,18 @@ volatile int currentDecayVal = 3; // values will range from 1-5, default to 3 volatile int currentSustainVal = 3; // values will range from 1-5, default to 3 volatile int currentReleaseVal = 3; // values will range from 1-5, default to 3 -int *currentLookupTable; // pointer to the correct lookup table of values double *currentAttackTable; // pointer to the correct attack coefficient table double *currentDecayTable; // pointer to the correct decay coefficient table double *currentSustainTable; // pointer to the correct sustain coefficient table double *currentReleaseTable; // pointer to the correct release coefficient table vector<double> sampleBuffer; // vector to hold samples of generated waveform -volatile int lookupTableIndex; // index used to find values in the lookup table for the waveforms -volatile int phaseAccumulator; // stores phase accumulator which is used to index into the lookup table int num_samples = 256; // number of samples -int shift_factor = 0x01000000; // shifting factor -int sampling_frequency = 40000; // sampling frequency is 40kHz -volatile int frequencyTuner; // the frequency tuner used to increment the accumulator which indexes values in the lookup table volatile int noteFreq; // the current frequency of the note being played -volatile int sustainAmplitude; // the desired amplitude of the sustain level double timeIncrement = (2/256); // 2 seconds with 256 samples /* Coefficient Matrices Corresponding to Different Attack Values each matrix is comprised of 32 elements (256/8). The first matrix corresponds -to an attack value of 1. +to an attack value of 5. */ double attackVals5[32] = { //Approaches the maximum amplitude the quickest - corresponds to an attackValue of 5 @@ -99,6 +92,11 @@ 0.903225806 , 0.935483871 , 0.967741935 , 1 }; +/* Coefficient Matrices Corresponding to Different Decay Values +each matrix is comprised of 32 elements (256/8). The first matrix corresponds +to a decay value of 5. +*/ + double decayVals5[32] = { //Approaches the sustain amplitude the quickest - corresponds to a decay value of 5 1 , 0.8 , 0.75 , 0.71 , 0.68 , 0.66 , 0.65 , 0.64 , @@ -109,7 +107,7 @@ 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 }; -double decayVals4[32] = { +double decayVals4[32] = { // Decay value of 4 1 , 0.93 , 0.86 , 0.8 , 0.75 , 0.71 , 0.69 , 0.68 , 0.67 , 0.66 , 0.655 , 0.65 , @@ -119,7 +117,7 @@ 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 }; -double decayVals3[32] = { +double decayVals3[32] = { // Decay value of 3 1 , 0.96 , 0.92 , 0.88 , 0.85 , 0.82 , 0.79 , 0.76 , 0.74 , 0.72 , 0.705 , 0.69 , @@ -129,7 +127,7 @@ 0.615 , 0.61 , 0.605 , 0.6 , 0.6 , 0.6 , 0.6 , 0.6 }; -double decayVals2[32] = { +double decayVals2[32] = { // Decay value of 2 1 , 0.98 , 0.96 , 0.94 , 0.92 , 0.9 , 0.88 , 0.86 , 0.84 , 0.82 , 0.8 , 0.79 , @@ -139,7 +137,7 @@ 0.66 , 0.65 , 0.64 , 0.63 , 0.62 , 0.61 , 0.6 , 0.6 }; -double decayVals1[32] = { +double decayVals1[32] = { // Decays the slowest, in a linear fashion - corresponds to a decay value of 1 1 , 0.987096774 , 0.974193548 , 0.961290323 , 0.948387097 , 0.935483871 , 0.922580645 , 0.909677419 , 0.896774194 , 0.883870968 , 0.870967742 , 0.858064516 , @@ -150,12 +148,23 @@ 0.638709677 , 0.625806452 , 0.612903226 , 0.6 }; +/* Coefficient Matrices Corresponding to Different sustain values +each matrix is comprised of 160 elements 5 * (256/8). The first matrix corresponds +to a sustain value of 5. The matrices get initialized later in a for loop due to their size. +*/ + double sustainVals5[160]; double sustainVals4[160]; double sustainVals3[160]; double sustainVals2[160]; double sustainVals1[160]; -double releaseVals5[32] = { + +/* Coefficient Matrices Corresponding to Different release values +each matrix is comprised of 32 elements (256/8). The first matrix corresponds +to a release value of 5. +*/ + +double releaseVals5[32] = { // Releases (goes to 0 amplitude) the quickest - corresponds to a release value of 5 0.6 , 0.3 , 0.15 , 0.1 , 0.09 , 0.08 , 0.07 , 0.06 , 0.05 , 0.045 , 0.04 , 0.035 , @@ -164,7 +173,7 @@ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0}; -double releaseVals4[32] = { +double releaseVals4[32] = { // Release value of 4 0.6 , 0.45 , 0.3 , 0.2 , 0.17 , 0.16 , 0.15 , 0.14 , 0.13 , 0.125 , 0.12 , 0.115 , @@ -173,7 +182,7 @@ 0.07 , 0.065 , 0.06 , 0.055 , 0.05 , 0.045 , 0.04 , 0.035 , 0.03 , 0.02 , 0.01 , 0}; -double releaseVals3[32] = { +double releaseVals3[32] = { // Release value of 3 0.6 , 0.5 , 0.43 , 0.37 , 0.32 , 0.28 , 0.26 , 0.24 , 0.22 , 0.2 , 0.18 , 0.17 , @@ -182,7 +191,7 @@ 0.08 , 0.07 , 0.06 , 0.05 , 0.04 , 0.035 , 0.03 , 0.025 , 0.02 , 0.015 , 0.01 , 0}; -double releaseVals2[32] = { +double releaseVals2[32] = { // Release value of 2 0.6 , 0.55 , 0.5 , 0.46 , 0.43 , 0.4 , 0.37 , 0.34 , 0.32 , 0.3 , 0.28 , 0.26 , @@ -191,7 +200,7 @@ 0.12 , 0.11 , 0.1 , 0.09 , 0.08 , 0.07 , 0.06 , 0.05 , 0.04 , 0.03 , 0.015 , 0}; -double releaseVals1[32] = { +double releaseVals1[32] = { // Release value of 1 - proceeds slowest, in a linear fashion 0.6 , 0.580645161 , 0.561290323 , 0.541935484 , 0.522580645 , 0.503225806 , 0.483870968 , 0.464516129 , 0.44516129 , 0.425806452 , 0.406451613 , 0.387096774 , @@ -211,49 +220,40 @@ C7 , D7 , E7 , F7 , G7 , A7 , B7 }; -void uLCD_Display_Thread(void const *args){ - //mtx.lock(); +void uLCD_Display_Thread(void const *args){ // uLCD displays curernt waveform shape, current octave, and the values for the ADSR coefficients while(1){ uLCD.locate(0,0); - uLCD.printf("Shape: %i\r\n",myWave); - uLCD.printf("Octave: %i\r\n",currentOctave); - uLCD.printf("Attack: %i\r\n",currentAttackVal); - uLCD.printf("Decay: %i\r\n",currentDecayVal); - uLCD.printf("Sustain: %i\r\n",currentSustainVal); - uLCD.printf("Release: %i\r\n",currentReleaseVal); + switch(myWave){ + case sine: + uLCD.printf("Shape: Sine\r\n"); // if wave type is sine wave, display sine + break; + case square: + uLCD.printf("Shape: Square\r\n"); // if wave type is square wave, display square + break; + case sawtooth: + uLCD.printf("Shape: Sawtooth\r\n"); // if wave type is sawtooth wave, display sawtooth + break; + default: + break; + } + uLCD.printf("Octave: %i\r\n",currentOctave); // displays octave + uLCD.printf("Attack: %i\r\n",currentAttackVal); // displays attack value + uLCD.printf("Decay: %i\r\n",currentDecayVal); // displays decay value + uLCD.printf("Sustain: %i\r\n",currentSustainVal); // displays sustain value + uLCD.printf("Release: %i\r\n",currentReleaseVal); // displays release value } - //mtx.unlock(); - //Thread::wait(250); - } +} -void clear_Buffer(void){ +void clear_Buffer(void){ // clears buffer that holds samples sampleBuffer.clear(); } -void set_Note_Freq(int frequency){ - //accumulator_reset(); +void set_Note_Freq(int frequency){ // updates the frequency of the note being played noteFreq = frequency; - //set_Frequency_Tuner(); clear_Buffer(); } -//void change_Wave(const WaveType currentWave) { -// switch(currentWave) { -// case sine: -// currentLookupTable = sineTable; -// break; -// case square: -// currentLookupTable = squareTable; -// break; -// case sawtooth: -// currentLookupTable = sawtoothTable; -// break; -// default: -// break; -// } -//} - -void change_Attack_Table(int attackVal) +void change_Attack_Table(int attackVal) // change which table of coefficients to use for altering the attack portion of the waveform { switch(attackVal){ case 5: @@ -276,7 +276,7 @@ } } -void change_Decay_Table(int decayVal) +void change_Decay_Table(int decayVal) // change which table of coefficients to use for altering the decay portion of the waveform { switch(decayVal){ case 5: @@ -299,27 +299,22 @@ } } -void change_Sustain_Table(int sustainVal) + void change_Sustain_Table(int sustainVal) // change which table of coefficients to use for altering the sustain portion of the waveform { switch(sustainVal){ case 5: - //sustainAmplitude = .8; currentSustainTable = sustainVals5; break; case 4: - //sustainAmplitude = .65; currentSustainTable = sustainVals4; break; case 3: - //sustainAmplitude = .5; currentSustainTable = sustainVals3; break; case 2: - //sustainAmplitude = .35; currentSustainTable = sustainVals2; break; case 1: - //sustainAmplitude = .2; currentSustainTable = sustainVals1; break; default: @@ -327,7 +322,7 @@ } } -void change_Release_Table(int releaseVal) +void change_Release_Table(int releaseVal) // change which table of coefficients to use for altering the release portion of the waveform { switch(releaseVal){ case 5: @@ -349,7 +344,13 @@ break; } } -void initialize_sustainVals() + +/* Having different sustain values for the amplitude of the wave would make the math neccesary to generate the other +coefficient matrices very complex, so only .6 is used, meaning a sustain value of 1-5 will all correspond to a sustain amplitude +of .6. Since the sustain coefficient matrices are 160 elements long, they are all filled in a for loop with this function call. +*/ + +void initialize_sustainVals() { for(int j = 0; j < 160; j++) { @@ -360,16 +361,13 @@ sustainVals1[j] = .6; } } - -void buffer_Samples(void){ - for(int j=0;j<num_samples;j++){ - //accumulator_Increment(); // Increment the phase accumulator - lookupTableIndex = phaseAccumulator >> 24; // Get address into wavetable - sampleBuffer.push_back(currentLookupTable[lookupTableIndex] / 255); // divide by 255 so that we get values between 0 and 1 - } -} +/* Applies the envelope to the waveform. Each set of coefficients is applied to a certain portion of the waveform to alter its shape. +The attack coefficients are appplied to the first 32 samples, the decay coefficients are applied to samples 33-64, the sustain coefficients +are applied to samples 65 - 224, and the release coefficients are appplied to samples 225-256. +*/ -void apply_Envelope(void){ + +void apply_Envelope(void){ int attack_range, decay_range, sustain_range, release_range; attack_range = sampleBuffer.size() * (1/8); // The attack portion of the waveform will take (1/8) of the note's duration decay_range = attack_range + (sampleBuffer.size() * (1/8)); // The decay portion of the waveform will take (1/8) of the note's duration @@ -393,9 +391,9 @@ } } -void generate_sineWave(int frequency) +void generate_sineWave(int frequency) // Generates samples for a sine wave of a given input frequency { - double t = 0; + double t = 0; // Represents time, since we want each note to last 2 seconds and have 256 samples for(int i = 0; i < 256 ; i++) { sampleBuffer.push_back(((sin(2*(PI)*frequency*t)) + 1)/2); // scaled to be a % of maximum output voltage (3.3V) @@ -403,20 +401,20 @@ } } -void generate_sawtoothWave(int frequency) +void generate_sawtoothWave(int frequency) // Generates samples for a sawtooth wave of a given input frequency { - double t = 0; + double t = 0; // Represents time, since we want each note to last 2 seconds and have 256 samples for(int i = 0; i<256 ; i++) { sampleBuffer.push_back((2*(t*frequency) - (.5 + (t*frequency)) + 1) / 2); - t = t + timeIncrement; // increment t for calculation of next value in the waveform + t = t + timeIncrement; // increment t for calculation of next value in the waveform } } -void generate_squareWave(int frequency) +void generate_squareWave(int frequency) // Generates samples for a square wave of a given input frequency. Looks at whether we have seen an even or odd number of 'widths' to determine if wave should be high or low at given t { - double width = (1 / 2 * frequency); //Width of a half period of the square wave - double t = 0; + double width = (1 / 2 * frequency); // Width of a half period of the square wave + double t = 0; // Represents time, since we want a 2 second note with 256 samples for(int i = 0; i < 256; i++) { if(((int)(t / width) % 2 ) == 0) // Even, write a 1 for the square wave @@ -427,6 +425,13 @@ } } +/* Generates the waveforms that will be output to the AnalogOut pin after being altered by the ADSR coefficient matrices. +The envelope is only applied to sine waves here because when applied to the other wave shapes, the sound does not sounds good. +@param: frequency - the frequency of the waveform to be generated +@param: currentWaveType - the shape of the wave that needs to be generated +*/ + + void create_samples(int frequency, WaveType currentWaveType) { switch(currentWaveType){ @@ -451,7 +456,10 @@ } - +/* Outputs the samples that are currently in the buffer one at a time. There is a period of time +where the program waits so that the 256 samples fill up the entire 2 seconds. The buffer is cleared +after the output is finished so that next time the buffer will be ready for new samples. +*/ void output_samples() { for( int sample = 0; sample < 256; sample++) @@ -459,6 +467,7 @@ synthPin = sampleBuffer[sample]; Thread::wait(timeIncrement * 1000); } + clear_Buffer(); } @@ -467,15 +476,15 @@ //Interrupt routine to parse message with one new character per serial RX interrupt void parse_message() { - PC.printf("Parse_message was called"); + //PC.printf("Parse_message was called"); while(Blue.readable()) { keyPress = Blue.getc(); - PC.putc(keyPress); + //PC.putc(keyPress); readyFlag = true; - PC.printf("\n\r Value of readyFlag is: %i",readyFlag); - PC.printf("Value of keyPress is: %c\n\r",keyPress); - wait(1); + //PC.printf("\n\r Value of readyFlag is: %i",readyFlag); + //PC.printf("Value of keyPress is: %c\n\r",keyPress); + //wait(1); } } @@ -496,32 +505,32 @@ { int AttackBits, SustainBits, DecayBits, ReleaseBits, OctaveBits, NoteBits; - AttackBits = currentAttackVal; - DecayBits = currentDecayVal; - SustainBits = currentSustainVal; - ReleaseBits = currentReleaseVal; + AttackBits = currentAttackVal; // Holds the value of the attack parameter + DecayBits = currentDecayVal; // Holds the value of the decay parameter + SustainBits = currentSustainVal;// Holds the value of the sustain parameter + ReleaseBits = currentReleaseVal;// Holds the value of the release parameter OctaveBits = currentOctave; switch(note){ - case 'C': + case 'C': // a C corresponds to a 3 NoteBits = 3; break; case 'D': - NoteBits = 4; + NoteBits = 4; // a D corresponds to a 4 break; case 'E': - NoteBits = 5; + NoteBits = 5; // an E corresponds to a 5 break; case 'F': - NoteBits = 6; + NoteBits = 6; // an F corresponds to a 6 break; case 'G': - NoteBits = 7; + NoteBits = 7; // a G corresponds to a 7 break; case 'A': - NoteBits = 1; + NoteBits = 1; // an A corresponds to a 1 break; case 'B': - NoteBits = 2; + NoteBits = 2; // a B corresponds to a 2 break; default: NoteBits = 0; @@ -530,9 +539,9 @@ int writeVal; writeVal = (AttackBits << 15) | (DecayBits << 12) | (SustainBits << 9) | (ReleaseBits << 6) | (OctaveBits << 3) | (NoteBits); - FILE *fp = fopen("/sd/noteRecords/note_record_01.txt", "w"); + FILE *fp = fopen("/sd/noteRecords/note_record_01.txt", "w"); // creates handle for file we want to write to if(fp == NULL) { - error("Could not open file for write\n"); + error("Could not open file for write\n"); // if this is not a valid name, tell user there is an error } fprintf(fp,"%X\r\n",writeVal); // writes value to the text file in hexadecimal fclose(fp); @@ -540,22 +549,22 @@ int main() { - Thread thread1(uLCD_Display_Thread); + Thread thread1(uLCD_Display_Thread); // the thread that displays the current values of the parameters as well as the octave and wave shape - // make directory to hold the record of notes played - mkdir("/sd/noteRecords", 0777); + + mkdir("/sd/noteRecords", 0777); // make directory to hold the record of notes played - initialize_sustainVals(); // fill the lookup tables with the sustain values in them + initialize_sustainVals(); // fill the lookup tables with the sustain values in them - PC.baud(9600); - Blue.baud(9600); + PC.baud(9600); // setup baud rate for PC serial connection + Blue.baud(9600); // setup baud rate for bluetooth serial connection - //attach interrupt function for each new Bluetooth serial character - Blue.attach(&parse_message,Serial::RxIrq); + + Blue.attach(&parse_message,Serial::RxIrq); //attach interrupt function for each new Bluetooth serial character while(1) { //check for a new button message ready - if((keyPress == C_NOTE_KEY) && (readyFlag)){ // button Z pressed - set_Note_Freq(noteArray[currentOctave-1][0]); + if((keyPress == C_NOTE_KEY) && (readyFlag)){ // button Z pressed + set_Note_Freq(noteArray[currentOctave-1][0]); // set the note frequency to the proper value create_samples(noteFreq, myWave); write_to_SDCard('C'); readyFlag = false;