IMU LSM9DS1 Library
Dependents: IMU 4180Lab2Part1 segway-selfBalancingRobot test
Diff: LSM9DS1.cpp
- Revision:
- 0:e8167f37725c
- Child:
- 1:87d535bf8c53
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.cpp Mon Oct 26 14:55:43 2015 +0000 @@ -0,0 +1,1197 @@ +/****************************************************************************** +SFE_LSM9DS1.cpp +SFE_LSM9DS1 Library Source File +Jim Lindblom @ SparkFun Electronics +Original Creation Date: February 27, 2015 +https://github.com/sparkfun/LSM9DS1_Breakout + +This file implements all functions of the LSM9DS1 class. Functions here range +from higher level stuff, like reading/writing LSM9DS1 registers to low-level, +hardware reads and writes. Both SPI and I2C handler functions can be found +towards the bottom of this file. + +Development environment specifics: + IDE: Arduino 1.6 + Hardware Platform: Arduino Uno + LSM9DS1 Breakout Version: 1.0 + +This code is beerware; if you see me (or any other SparkFun employee) at the +local, and you've found our code helpful, please buy us a round! + +Distributed as-is; no warranty is given. +******************************************************************************/ + +#include "LSM9DS1.h" +#include "LSM9DS1_Registers.h" +#include "LSM9DS1_Types.h" +//#include <Wire.h> // Wire library is used for I2C +//#include <SPI.h> // SPI library is used for...SPI. + +//#if defined(ARDUINO) && ARDUINO >= 100 +// #include "Arduino.h" +//#else +// #include "WProgram.h" +//#endif + +#define LSM9DS1_COMMUNICATION_TIMEOUT 1000 + +float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; +extern Serial pc; + +LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) + :i2c(sda, scl) +{ + init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B +} +/* cw +LSM9DS1::LSM9DS1() +{ + init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1)); +} + +LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) +{ + init(interface, xgAddr, mAddr); +} +*/ + +void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) +{ + settings.device.commInterface = interface; + settings.device.agAddress = xgAddr; + settings.device.mAddress = mAddr; + + settings.gyro.enabled = true; + settings.gyro.enableX = true; + settings.gyro.enableY = true; + settings.gyro.enableZ = true; + // gyro scale can be 245, 500, or 2000 + settings.gyro.scale = 245; + // gyro sample rate: value between 1-6 + // 1 = 14.9 4 = 238 + // 2 = 59.5 5 = 476 + // 3 = 119 6 = 952 + settings.gyro.sampleRate = 6; + // gyro cutoff frequency: value between 0-3 + // Actual value of cutoff frequency depends + // on sample rate. + settings.gyro.bandwidth = 0; + settings.gyro.lowPowerEnable = false; + settings.gyro.HPFEnable = false; + // Gyro HPF cutoff frequency: value between 0-9 + // Actual value depends on sample rate. Only applies + // if gyroHPFEnable is true. + settings.gyro.HPFCutoff = 0; + settings.gyro.flipX = false; + settings.gyro.flipY = false; + settings.gyro.flipZ = false; + settings.gyro.orientation = 0; + settings.gyro.latchInterrupt = true; + + settings.accel.enabled = true; + settings.accel.enableX = true; + settings.accel.enableY = true; + settings.accel.enableZ = true; + // accel scale can be 2, 4, 8, or 16 + settings.accel.scale = 2; + // accel sample rate can be 1-6 + // 1 = 10 Hz 4 = 238 Hz + // 2 = 50 Hz 5 = 476 Hz + // 3 = 119 Hz 6 = 952 Hz + settings.accel.sampleRate = 6; + // Accel cutoff freqeuncy can be any value between -1 - 3. + // -1 = bandwidth determined by sample rate + // 0 = 408 Hz 2 = 105 Hz + // 1 = 211 Hz 3 = 50 Hz + settings.accel.bandwidth = -1; + settings.accel.highResEnable = false; + // accelHighResBandwidth can be any value between 0-3 + // LP cutoff is set to a factor of sample rate + // 0 = ODR/50 2 = ODR/9 + // 1 = ODR/100 3 = ODR/400 + settings.accel.highResBandwidth = 0; + + settings.mag.enabled = true; + // mag scale can be 4, 8, 12, or 16 + settings.mag.scale = 4; + // mag data rate can be 0-7 + // 0 = 0.625 Hz 4 = 10 Hz + // 1 = 1.25 Hz 5 = 20 Hz + // 2 = 2.5 Hz 6 = 40 Hz + // 3 = 5 Hz 7 = 80 Hz + settings.mag.sampleRate = 7; + settings.mag.tempCompensationEnable = false; + // magPerformance can be any value between 0-3 + // 0 = Low power mode 2 = high performance + // 1 = medium performance 3 = ultra-high performance + settings.mag.XYPerformance = 3; + settings.mag.ZPerformance = 3; + settings.mag.lowPowerEnable = false; + // magOperatingMode can be 0-2 + // 0 = continuous conversion + // 1 = single-conversion + // 2 = power down + settings.mag.operatingMode = 0; + + settings.temp.enabled = true; + for (int i=0; i<3; i++) + { + gBias[i] = 0; + aBias[i] = 0; + mBias[i] = 0; + gBiasRaw[i] = 0; + aBiasRaw[i] = 0; + mBiasRaw[i] = 0; + } + _autoCalc = false; +} + + +uint16_t LSM9DS1::begin() +{ + //! Todo: don't use _xgAddress or _mAddress, duplicating memory + _xgAddress = settings.device.agAddress; + _mAddress = settings.device.mAddress; + + constrainScales(); + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + // Now, initialize our hardware interface. + if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C + initI2C(); // Initialize I2C + else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI + initSPI(); // Initialize SPI + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I + uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I + pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); + uint16_t whoAmICombined = (xgTest << 8) | mTest; + + if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) + return 0; + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + + // Magnetometer initialization stuff: + initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. + + // Once everything is initialized, return the WHO_AM_I registers we read: + return whoAmICombined; +} + +void LSM9DS1::initGyro() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG1_G (Default value: 0x00) + // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] + // ODR_G[2:0] - Output data rate selection + // FS_G[1:0] - Gyroscope full-scale selection + // BW_G[1:0] - Gyroscope bandwidth selection + + // To disable gyro, set sample rate bits to 0. We'll only set sample + // rate if the gyro is enabled. + if (settings.gyro.enabled) + { + tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; + } + switch (settings.gyro.scale) + { + case 500: + tempRegValue |= (0x1 << 3); + break; + case 2000: + tempRegValue |= (0x3 << 3); + break; + // Otherwise we'll set it to 245 dps (0x0 << 4) + } + tempRegValue |= (settings.gyro.bandwidth & 0x3); + xgWriteByte(CTRL_REG1_G, tempRegValue); + + // CTRL_REG2_G (Default value: 0x00) + // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] + // INT_SEL[1:0] - INT selection configuration + // OUT_SEL[1:0] - Out selection configuration + xgWriteByte(CTRL_REG2_G, 0x00); + + // CTRL_REG3_G (Default value: 0x00) + // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] + // LP_mode - Low-power mode enable (0: disabled, 1: enabled) + // HP_EN - HPF enable (0:disabled, 1: enabled) + // HPCF_G[3:0] - HPF cutoff frequency + tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; + if (settings.gyro.HPFEnable) + { + tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); + } + xgWriteByte(CTRL_REG3_G, tempRegValue); + + // CTRL_REG4 (Default value: 0x38) + // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] + // Zen_G - Z-axis output enable (0:disable, 1:enable) + // Yen_G - Y-axis output enable (0:disable, 1:enable) + // Xen_G - X-axis output enable (0:disable, 1:enable) + // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) + // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) + tempRegValue = 0; + if (settings.gyro.enableZ) tempRegValue |= (1<<5); + if (settings.gyro.enableY) tempRegValue |= (1<<4); + if (settings.gyro.enableX) tempRegValue |= (1<<3); + if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); + xgWriteByte(CTRL_REG4, tempRegValue); + + // ORIENT_CFG_G (Default value: 0x00) + // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] + // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) + // Orient [2:0] - Directional user orientation selection + tempRegValue = 0; + if (settings.gyro.flipX) tempRegValue |= (1<<5); + if (settings.gyro.flipY) tempRegValue |= (1<<4); + if (settings.gyro.flipZ) tempRegValue |= (1<<3); + xgWriteByte(ORIENT_CFG_G, tempRegValue); +} + +void LSM9DS1::initAccel() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG5_XL (0x1F) (Default value: 0x38) + // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] + // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. + // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples + // Zen_XL - Z-axis output enabled + // Yen_XL - Y-axis output enabled + // Xen_XL - X-axis output enabled + if (settings.accel.enableZ) tempRegValue |= (1<<5); + if (settings.accel.enableY) tempRegValue |= (1<<4); + if (settings.accel.enableX) tempRegValue |= (1<<3); + + xgWriteByte(CTRL_REG5_XL, tempRegValue); + + // CTRL_REG6_XL (0x20) (Default value: 0x00) + // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] + // ODR_XL[2:0] - Output data rate & power mode selection + // FS_XL[1:0] - Full-scale selection + // BW_SCAL_ODR - Bandwidth selection + // BW_XL[1:0] - Anti-aliasing filter bandwidth selection + tempRegValue = 0; + // To disable the accel, set the sampleRate bits to 0. + if (settings.accel.enabled) + { + tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; + } + switch (settings.accel.scale) + { + case 4: + tempRegValue |= (0x2 << 3); + break; + case 8: + tempRegValue |= (0x3 << 3); + break; + case 16: + tempRegValue |= (0x1 << 3); + break; + // Otherwise it'll be set to 2g (0x0 << 3) + } + if (settings.accel.bandwidth >= 0) + { + tempRegValue |= (1<<2); // Set BW_SCAL_ODR + tempRegValue |= (settings.accel.bandwidth & 0x03); + } + xgWriteByte(CTRL_REG6_XL, tempRegValue); + + // CTRL_REG7_XL (0x21) (Default value: 0x00) + // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] + // HR - High resolution mode (0: disable, 1: enable) + // DCF[1:0] - Digital filter cutoff frequency + // FDS - Filtered data selection + // HPIS1 - HPF enabled for interrupt function + tempRegValue = 0; + if (settings.accel.highResEnable) + { + tempRegValue |= (1<<7); // Set HR bit + tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; + } + xgWriteByte(CTRL_REG7_XL, tempRegValue); +} + +// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average +// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch +// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store +// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to +// subtract the biases ourselves. This results in a more accurate measurement in general and can +// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner +// is good practice. +void LSM9DS1::calibrate(bool autoCalc) +{ + uint8_t data[6] = {0, 0, 0, 0, 0, 0}; + uint8_t samples = 0; + int ii; + int32_t aBiasRawTemp[3] = {0, 0, 0}; + int32_t gBiasRawTemp[3] = {0, 0, 0}; + + // Turn on FIFO and set threshold to 32 samples + enableFIFO(true); + setFIFO(FIFO_THS, 0x1F); + while (samples < 0x1F) + { + samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples + } + for(ii = 0; ii < samples ; ii++) + { // Read the gyro data stored in the FIFO + readGyro(); + gBiasRawTemp[0] += gx; + gBiasRawTemp[1] += gy; + gBiasRawTemp[2] += gz; + readAccel(); + aBiasRawTemp[0] += ax; + aBiasRawTemp[1] += ay; + aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! + } + for (ii = 0; ii < 3; ii++) + { + gBiasRaw[ii] = gBiasRawTemp[ii] / samples; + gBias[ii] = calcGyro(gBiasRaw[ii]); + aBiasRaw[ii] = aBiasRawTemp[ii] / samples; + aBias[ii] = calcAccel(aBiasRaw[ii]); + } + + enableFIFO(false); + setFIFO(FIFO_OFF, 0x00); + + if (autoCalc) _autoCalc = true; +} + +void LSM9DS1::calibrateMag(bool loadIn) +{ + int i, j; + int16_t magMin[3] = {0, 0, 0}; + int16_t magMax[3] = {0, 0, 0}; // The road warrior + + for (i=0; i<128; i++) + { + while (!magAvailable()) + ; + readMag(); + int16_t magTemp[3] = {0, 0, 0}; + magTemp[0] = mx; + magTemp[1] = my; + magTemp[2] = mz; + for (j = 0; j < 3; j++) + { + if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; + if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; + } + } + for (j = 0; j < 3; j++) + { + mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; + mBias[j] = calcMag(mBiasRaw[j]); + if (loadIn) + magOffset(j, mBiasRaw[j]); + } + +} +void LSM9DS1::magOffset(uint8_t axis, int16_t offset) +{ + if (axis > 2) + return; + uint8_t msb, lsb; + msb = (offset & 0xFF00) >> 8; + lsb = offset & 0x00FF; + mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); + mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); +} + +void LSM9DS1::initMag() +{ + uint8_t tempRegValue = 0; + + // CTRL_REG1_M (Default value: 0x10) + // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] + // TEMP_COMP - Temperature compensation + // OM[1:0] - X & Y axes op mode selection + // 00:low-power, 01:medium performance + // 10: high performance, 11:ultra-high performance + // DO[2:0] - Output data rate selection + // ST - Self-test enable + if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); + tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; + tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; + mWriteByte(CTRL_REG1_M, tempRegValue); + + // CTRL_REG2_M (Default value 0x00) + // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] + // FS[1:0] - Full-scale configuration + // REBOOT - Reboot memory content (0:normal, 1:reboot) + // SOFT_RST - Reset config and user registers (0:default, 1:reset) + tempRegValue = 0; + switch (settings.mag.scale) + { + case 8: + tempRegValue |= (0x1 << 5); + break; + case 12: + tempRegValue |= (0x2 << 5); + break; + case 16: + tempRegValue |= (0x3 << 5); + break; + // Otherwise we'll default to 4 gauss (00) + } + mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss + + // CTRL_REG3_M (Default value: 0x03) + // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] + // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) + // LP - Low-power mode cofiguration (1:enable) + // SIM - SPI mode selection (0:write-only, 1:read/write enable) + // MD[1:0] - Operating mode + // 00:continuous conversion, 01:single-conversion, + // 10,11: Power-down + tempRegValue = 0; + if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); + tempRegValue |= (settings.mag.operatingMode & 0x3); + mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode + + // CTRL_REG4_M (Default value: 0x00) + // [0][0][0][0][OMZ1][OMZ0][BLE][0] + // OMZ[1:0] - Z-axis operative mode selection + // 00:low-power mode, 01:medium performance + // 10:high performance, 10:ultra-high performance + // BLE - Big/little endian data + tempRegValue = 0; + tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; + mWriteByte(CTRL_REG4_M, tempRegValue); + + // CTRL_REG5_M (Default value: 0x00) + // [0][BDU][0][0][0][0][0][0] + // BDU - Block data update for magnetic data + // 0:continuous, 1:not updated until MSB/LSB are read + tempRegValue = 0; + mWriteByte(CTRL_REG5_M, tempRegValue); +} + +uint8_t LSM9DS1::accelAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return (status & (1<<0)); +} + +uint8_t LSM9DS1::gyroAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return ((status & (1<<1)) >> 1); +} + +uint8_t LSM9DS1::tempAvailable() +{ + uint8_t status = xgReadByte(STATUS_REG_1); + + return ((status & (1<<2)) >> 2); +} + +uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) +{ + uint8_t status; + status = mReadByte(STATUS_REG_M); + + return ((status & (1<<axis)) >> axis); +} + +void LSM9DS1::readAccel() +{ + uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp + xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL + ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax + ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay + az = (temp[5] << 8) | temp[4]; // Store z-axis values into az + if (_autoCalc) + { + ax -= aBiasRaw[X_AXIS]; + ay -= aBiasRaw[Y_AXIS]; + az -= aBiasRaw[Z_AXIS]; + } +} + +int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + int16_t value; + xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); + value = (temp[1] << 8) | temp[0]; + + if (_autoCalc) + value -= aBiasRaw[axis]; + + return value; +} + +void LSM9DS1::readMag() +{ + uint8_t temp[6]; // We'll read six bytes from the mag into temp + mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M + mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx + my = (temp[3] << 8) | temp[2]; // Store y-axis values into my + mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz +} + +int16_t LSM9DS1::readMag(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); + return (temp[1] << 8) | temp[0]; +} + +void LSM9DS1::readTemp() +{ + uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp + xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L + temperature = ((int16_t)temp[1] << 8) | temp[0]; +} + +void LSM9DS1::readGyro() +{ + uint8_t temp[6]; // We'll read six bytes from the gyro into temp + xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G + gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx + gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy + gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz + if (_autoCalc) + { + gx -= gBiasRaw[X_AXIS]; + gy -= gBiasRaw[Y_AXIS]; + gz -= gBiasRaw[Z_AXIS]; + } +} + +int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) +{ + uint8_t temp[2]; + int16_t value; + + xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); + + value = (temp[1] << 8) | temp[0]; + + if (_autoCalc) + value -= gBiasRaw[axis]; + + return value; +} + +float LSM9DS1::calcGyro(int16_t gyro) +{ + // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): + return gRes * gyro; +} + +float LSM9DS1::calcAccel(int16_t accel) +{ + // Return the accel raw reading times our pre-calculated g's / (ADC tick): + return aRes * accel; +} + +float LSM9DS1::calcMag(int16_t mag) +{ + // Return the mag raw reading times our pre-calculated Gs / (ADC tick): + return mRes * mag; +} + +void LSM9DS1::setGyroScale(uint16_t gScl) +{ + // Read current value of CTRL_REG1_G: + uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); + // Mask out scale bits (3 & 4): + ctrl1RegValue &= 0xE7; + switch (gScl) + { + case 500: + ctrl1RegValue |= (0x1 << 3); + settings.gyro.scale = 500; + break; + case 2000: + ctrl1RegValue |= (0x3 << 3); + settings.gyro.scale = 2000; + break; + default: // Otherwise we'll set it to 245 dps (0x0 << 4) + settings.gyro.scale = 245; + break; + } + xgWriteByte(CTRL_REG1_G, ctrl1RegValue); + + calcgRes(); +} + +void LSM9DS1::setAccelScale(uint8_t aScl) +{ + // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: + uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); + // Mask out accel scale bits: + tempRegValue &= 0xE7; + + switch (aScl) + { + case 4: + tempRegValue |= (0x2 << 3); + settings.accel.scale = 4; + break; + case 8: + tempRegValue |= (0x3 << 3); + settings.accel.scale = 8; + break; + case 16: + tempRegValue |= (0x1 << 3); + settings.accel.scale = 16; + break; + default: // Otherwise it'll be set to 2g (0x0 << 3) + settings.accel.scale = 2; + break; + } + xgWriteByte(CTRL_REG6_XL, tempRegValue); + + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM9DS1::setMagScale(uint8_t mScl) +{ + // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: + uint8_t temp = mReadByte(CTRL_REG2_M); + // Then mask out the mag scale bits: + temp &= 0xFF^(0x3 << 5); + + switch (mScl) + { + case 8: + temp |= (0x1 << 5); + settings.mag.scale = 8; + break; + case 12: + temp |= (0x2 << 5); + settings.mag.scale = 12; + break; + case 16: + temp |= (0x3 << 5); + settings.mag.scale = 16; + break; + default: // Otherwise we'll default to 4 gauss (00) + settings.mag.scale = 4; + break; + } + + // And write the new register value back into CTRL_REG6_XM: + mWriteByte(CTRL_REG2_M, temp); + + // We've updated the sensor, but we also need to update our class variables + // First update mScale: + //mScale = mScl; + // Then calculate a new mRes, which relies on mScale being set correctly: + calcmRes(); +} + +void LSM9DS1::setGyroODR(uint8_t gRate) +{ + // Only do this if gRate is not 0 (which would disable the gyro) + if ((gRate & 0x07) != 0) + { + // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: + uint8_t temp = xgReadByte(CTRL_REG1_G); + // Then mask out the gyro ODR bits: + temp &= 0xFF^(0x7 << 5); + temp |= (gRate & 0x07) << 5; + // Update our settings struct + settings.gyro.sampleRate = gRate & 0x07; + // And write the new register value back into CTRL_REG1_G: + xgWriteByte(CTRL_REG1_G, temp); + } +} + +void LSM9DS1::setAccelODR(uint8_t aRate) +{ + // Only do this if aRate is not 0 (which would disable the accel) + if ((aRate & 0x07) != 0) + { + // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: + uint8_t temp = xgReadByte(CTRL_REG6_XL); + // Then mask out the accel ODR bits: + temp &= 0x1F; + // Then shift in our new ODR bits: + temp |= ((aRate & 0x07) << 5); + settings.accel.sampleRate = aRate & 0x07; + // And write the new register value back into CTRL_REG1_XM: + xgWriteByte(CTRL_REG6_XL, temp); + } +} + +void LSM9DS1::setMagODR(uint8_t mRate) +{ + // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: + uint8_t temp = mReadByte(CTRL_REG1_M); + // Then mask out the mag ODR bits: + temp &= 0xFF^(0x7 << 2); + // Then shift in our new ODR bits: + temp |= ((mRate & 0x07) << 2); + settings.mag.sampleRate = mRate & 0x07; + // And write the new register value back into CTRL_REG5_XM: + mWriteByte(CTRL_REG1_M, temp); +} + +void LSM9DS1::calcgRes() +{ + gRes = ((float) settings.gyro.scale) / 32768.0; +} + +void LSM9DS1::calcaRes() +{ + aRes = ((float) settings.accel.scale) / 32768.0; +} + +void LSM9DS1::calcmRes() +{ + //mRes = ((float) settings.mag.scale) / 32768.0; + switch (settings.mag.scale) + { + case 4: + mRes = magSensitivity[0]; + break; + case 8: + mRes = magSensitivity[1]; + break; + case 12: + mRes = magSensitivity[2]; + break; + case 16: + mRes = magSensitivity[3]; + break; + } + +} + +void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, + h_lactive activeLow, pp_od pushPull) +{ + // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of + // those two values. + // [generator] should be an OR'd list of values from the interrupt_generators enum + xgWriteByte(interrupt, generator); + + // Configure CTRL_REG8 + uint8_t temp; + temp = xgReadByte(CTRL_REG8); + + if (activeLow) temp |= (1<<5); + else temp &= ~(1<<5); + + if (pushPull) temp &= ~(1<<4); + else temp |= (1<<4); + + xgWriteByte(CTRL_REG8, temp); +} + +void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) +{ + uint8_t temp = 0; + + temp = threshold & 0x7F; + if (sleepOn) temp |= (1<<7); + xgWriteByte(ACT_THS, temp); + + xgWriteByte(ACT_DUR, duration); +} + +uint8_t LSM9DS1::getInactivity() +{ + uint8_t temp = xgReadByte(STATUS_REG_0); + temp &= (0x10); + return temp; +} + +void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) +{ + // Use variables from accel_interrupt_generator, OR'd together to create + // the [generator]value. + uint8_t temp = generator; + if (andInterrupts) temp |= 0x80; + xgWriteByte(INT_GEN_CFG_XL, temp); +} + +void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) +{ + // Write threshold value to INT_GEN_THS_?_XL. + // axis will be 0, 1, or 2 (x, y, z respectively) + xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); + + // Write duration and wait to INT_GEN_DUR_XL + uint8_t temp; + temp = (duration & 0x7F); + if (wait) temp |= 0x80; + xgWriteByte(INT_GEN_DUR_XL, temp); +} + +uint8_t LSM9DS1::getAccelIntSrc() +{ + uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); + + // Check if the IA_XL (interrupt active) bit is set + if (intSrc & (1<<6)) + { + return (intSrc & 0x3F); + } + + return 0; +} + +void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) +{ + // Use variables from accel_interrupt_generator, OR'd together to create + // the [generator]value. + uint8_t temp = generator; + if (aoi) temp |= 0x80; + if (latch) temp |= 0x40; + xgWriteByte(INT_GEN_CFG_G, temp); +} + +void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) +{ + uint8_t buffer[2]; + buffer[0] = (threshold & 0x7F00) >> 8; + buffer[1] = (threshold & 0x00FF); + // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. + // axis will be 0, 1, or 2 (x, y, z respectively) + xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); + xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); + + // Write duration and wait to INT_GEN_DUR_XL + uint8_t temp; + temp = (duration & 0x7F); + if (wait) temp |= 0x80; + xgWriteByte(INT_GEN_DUR_G, temp); +} + +uint8_t LSM9DS1::getGyroIntSrc() +{ + uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); + + // Check if the IA_G (interrupt active) bit is set + if (intSrc & (1<<6)) + { + return (intSrc & 0x3F); + } + + return 0; +} + +void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) +{ + // Mask out non-generator bits (0-4) + uint8_t config = (generator & 0xE0); + // IEA bit is 0 for active-low, 1 for active-high. + if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); + // IEL bit is 0 for latched, 1 for not-latched + if (!latch) config |= (1<<1); + // As long as we have at least 1 generator, enable the interrupt + if (generator != 0) config |= (1<<0); + + mWriteByte(INT_CFG_M, config); +} + +void LSM9DS1::configMagThs(uint16_t threshold) +{ + // Write high eight bits of [threshold] to INT_THS_H_M + mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); + // Write low eight bits of [threshold] to INT_THS_L_M + mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); +} + +uint8_t LSM9DS1::getMagIntSrc() +{ + uint8_t intSrc = mReadByte(INT_SRC_M); + + // Check if the INT (interrupt active) bit is set + if (intSrc & (1<<0)) + { + return (intSrc & 0xFE); + } + + return 0; +} + +void LSM9DS1::sleepGyro(bool enable) +{ + uint8_t temp = xgReadByte(CTRL_REG9); + if (enable) temp |= (1<<6); + else temp &= ~(1<<6); + xgWriteByte(CTRL_REG9, temp); +} + +void LSM9DS1::enableFIFO(bool enable) +{ + uint8_t temp = xgReadByte(CTRL_REG9); + if (enable) temp |= (1<<1); + else temp &= ~(1<<1); + xgWriteByte(CTRL_REG9, temp); +} + +void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) +{ + // Limit threshold - 0x1F (31) is the maximum. If more than that was asked + // limit it to the maximum. + uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; + xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); +} + +uint8_t LSM9DS1::getFIFOSamples() +{ + return (xgReadByte(FIFO_SRC) & 0x3F); +} + +void LSM9DS1::constrainScales() +{ + if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && + (settings.gyro.scale != 2000)) + { + settings.gyro.scale = 245; + } + + if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && + (settings.accel.scale != 8) && (settings.accel.scale != 16)) + { + settings.accel.scale = 2; + } + + if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && + (settings.mag.scale != 12) && (settings.mag.scale != 16)) + { + settings.mag.scale = 4; + } +} + +void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) +{ + // Whether we're using I2C or SPI, write a byte using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) { + printf("yo"); + I2CwriteByte(_xgAddress, subAddress, data); + } else if (settings.device.commInterface == IMU_MODE_SPI) { + SPIwriteByte(_xgAddress, subAddress, data); + } +} + +void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) +{ + // Whether we're using I2C or SPI, write a byte using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CwriteByte(_mAddress, subAddress, data); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIwriteByte(_mAddress, subAddress, data); +} + +uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) +{ + // Whether we're using I2C or SPI, read a byte using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CreadByte(_xgAddress, subAddress); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIreadByte(_xgAddress, subAddress); +} + +void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + // Whether we're using I2C or SPI, read multiple bytes using the + // gyro-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) { + I2CreadBytes(_xgAddress, subAddress, dest, count); + } else if (settings.device.commInterface == IMU_MODE_SPI) { + SPIreadBytes(_xgAddress, subAddress, dest, count); + } +} + +uint8_t LSM9DS1::mReadByte(uint8_t subAddress) +{ + // Whether we're using I2C or SPI, read a byte using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + return I2CreadByte(_mAddress, subAddress); + else if (settings.device.commInterface == IMU_MODE_SPI) + return SPIreadByte(_mAddress, subAddress); +} + +void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + // Whether we're using I2C or SPI, read multiple bytes using the + // accelerometer-specific I2C address or SPI CS pin. + if (settings.device.commInterface == IMU_MODE_I2C) + I2CreadBytes(_mAddress, subAddress, dest, count); + else if (settings.device.commInterface == IMU_MODE_SPI) + SPIreadBytes(_mAddress, subAddress, dest, count); +} + +void LSM9DS1::initSPI() +{ + /* cw + pinMode(_xgAddress, OUTPUT); + digitalWrite(_xgAddress, HIGH); + pinMode(_mAddress, OUTPUT); + digitalWrite(_mAddress, HIGH); + + SPI.begin(); + // Maximum SPI frequency is 10MHz, could divide by 2 here: + SPI.setClockDivider(SPI_CLOCK_DIV2); + // Data is read and written MSb first. + SPI.setBitOrder(MSBFIRST); + // Data is captured on rising edge of clock (CPHA = 0) + // Base value of the clock is HIGH (CPOL = 1) + SPI.setDataMode(SPI_MODE0); + */ +} + +void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) +{ + /*cw + digitalWrite(csPin, LOW); // Initiate communication + + // If write, bit 0 (MSB) should be 0 + // If single write, bit 1 should be 0 + SPI.transfer(subAddress & 0x3F); // Send Address + SPI.transfer(data); // Send data + + digitalWrite(csPin, HIGH); // Close communication + */ +} + +uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) +{ + uint8_t temp; + // Use the multiple read function to read 1 byte. + // Value is returned to `temp`. + SPIreadBytes(csPin, subAddress, &temp, 1); + return temp; +} + +void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, + uint8_t * dest, uint8_t count) +{ + // To indicate a read, set bit 0 (msb) of first byte to 1 + uint8_t rAddress = 0x80 | (subAddress & 0x3F); + // Mag SPI port is different. If we're reading multiple bytes, + // set bit 1 to 1. The remaining six bytes are the address to be read + if ((csPin == _mAddress) && count > 1) + rAddress |= 0x40; + + /* cw + digitalWrite(csPin, LOW); // Initiate communication + SPI.transfer(rAddress); + for (int i=0; i<count; i++) + { + dest[i] = SPI.transfer(0x00); // Read into destination array + } + digitalWrite(csPin, HIGH); // Close communication + */ +} + +void LSM9DS1::initI2C() +{ + /* cw + Wire.begin(); // Initialize I2C library + */ + + //already initialized in constructor! +} + +// Wire.h read and write protocols +void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + /* cw + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer + */ + char temp_data[2] = {subAddress, data}; + i2c.write(address, temp_data, 2); +} + +uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) +{ + /* cw + int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; + uint8_t data; // `data` will store the register data + + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address + while ((Wire.available() < 1) && (timeout-- > 0)) + delay(1); + + if (timeout <= 0) + return 255; //! Bad! 255 will be misinterpreted as a good value. + + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register + */ + char data; + char temp[1] = {subAddress}; + + i2c.write(address, temp, 1); + //i2c.write(address & 0xFE); + temp[1] = 0x00; + i2c.write(address, temp, 1); + //i2c.write( address | 0x01); + int a = i2c.read(address, &data, 1); + return data; +} + +uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) +{ + /* cw + int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; + Wire.beginTransmission(address); // Initialize the Tx buffer + // Next send the register to be read. OR with 0x80 to indicate multi-read. + Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer + + Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; + Wire.requestFrom(address, count); // Read bytes from slave register address + while ((Wire.available() < count) && (timeout-- > 0)) + delay(1); + if (timeout <= 0) + return -1; + + for (int i=0; i<count;) + { + if (Wire.available()) + { + dest[i++] = Wire.read(); + } + } + return count; + */ + int i; + char temp_dest[count]; + char temp[1] = {subAddress}; + i2c.write(address, temp, 1); + i2c.read(address, temp_dest, count); + + //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion + for (i=0; i < count; i++) { + dest[i] = temp_dest[i]; + } + return count; +}