Committer:
jinu
Date:
Thu Feb 09 06:08:17 2017 +0000
Revision:
0:6ba9b94b8997
NRF51 serialization libraries for mDot

Who changed what in which revision?

UserRevisionLine numberNew contents of line
jinu 0:6ba9b94b8997 1 /* Copyright (c) Nordic Semiconductor ASA
jinu 0:6ba9b94b8997 2 * All rights reserved.
jinu 0:6ba9b94b8997 3 *
jinu 0:6ba9b94b8997 4 * Redistribution and use in source and binary forms, with or without modification,
jinu 0:6ba9b94b8997 5 * are permitted provided that the following conditions are met:
jinu 0:6ba9b94b8997 6 *
jinu 0:6ba9b94b8997 7 * 1. Redistributions of source code must retain the above copyright notice, this
jinu 0:6ba9b94b8997 8 * list of conditions and the following disclaimer.
jinu 0:6ba9b94b8997 9 *
jinu 0:6ba9b94b8997 10 * 2. Redistributions in binary form must reproduce the above copyright notice, this
jinu 0:6ba9b94b8997 11 * list of conditions and the following disclaimer in the documentation and/or
jinu 0:6ba9b94b8997 12 * other materials provided with the distribution.
jinu 0:6ba9b94b8997 13 *
jinu 0:6ba9b94b8997 14 * 3. Neither the name of Nordic Semiconductor ASA nor the names of other
jinu 0:6ba9b94b8997 15 * contributors to this software may be used to endorse or promote products
jinu 0:6ba9b94b8997 16 * derived from this software without specific prior written permission.
jinu 0:6ba9b94b8997 17 *
jinu 0:6ba9b94b8997 18 * 4. This software must only be used in a processor manufactured by Nordic
jinu 0:6ba9b94b8997 19 * Semiconductor ASA, or in a processor manufactured by a third party that
jinu 0:6ba9b94b8997 20 * is used in combination with a processor manufactured by Nordic Semiconductor.
jinu 0:6ba9b94b8997 21 *
jinu 0:6ba9b94b8997 22 *
jinu 0:6ba9b94b8997 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
jinu 0:6ba9b94b8997 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
jinu 0:6ba9b94b8997 25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
jinu 0:6ba9b94b8997 26 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
jinu 0:6ba9b94b8997 27 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
jinu 0:6ba9b94b8997 28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
jinu 0:6ba9b94b8997 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
jinu 0:6ba9b94b8997 30 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
jinu 0:6ba9b94b8997 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
jinu 0:6ba9b94b8997 32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
jinu 0:6ba9b94b8997 33 */
jinu 0:6ba9b94b8997 34
jinu 0:6ba9b94b8997 35 /**
jinu 0:6ba9b94b8997 36 * @defgroup nrf_soc_api SoC Library API
jinu 0:6ba9b94b8997 37 * @{
jinu 0:6ba9b94b8997 38 *
jinu 0:6ba9b94b8997 39 * @brief APIs for the SoC library.
jinu 0:6ba9b94b8997 40 *
jinu 0:6ba9b94b8997 41 */
jinu 0:6ba9b94b8997 42
jinu 0:6ba9b94b8997 43 #ifndef NRF_SOC_H__
jinu 0:6ba9b94b8997 44 #define NRF_SOC_H__
jinu 0:6ba9b94b8997 45
jinu 0:6ba9b94b8997 46 #include <stdint.h>
jinu 0:6ba9b94b8997 47 #include <stdbool.h>
jinu 0:6ba9b94b8997 48 #include "nrf_svc.h"
jinu 0:6ba9b94b8997 49 #include "nrf51.h"
jinu 0:6ba9b94b8997 50 #include "nrf51_bitfields.h"
jinu 0:6ba9b94b8997 51 #include "nrf_error_soc.h"
jinu 0:6ba9b94b8997 52
jinu 0:6ba9b94b8997 53 /** @addtogroup NRF_SOC_DEFINES Defines
jinu 0:6ba9b94b8997 54 * @{ */
jinu 0:6ba9b94b8997 55
jinu 0:6ba9b94b8997 56 /**@brief The number of the lowest SVC number reserved for the SoC library. */
jinu 0:6ba9b94b8997 57 #define SOC_SVC_BASE (0x20)
jinu 0:6ba9b94b8997 58 #define SOC_SVC_BASE_NOT_AVAILABLE (0x23)
jinu 0:6ba9b94b8997 59
jinu 0:6ba9b94b8997 60 /**@brief Guranteed time for application to process radio inactive notification. */
jinu 0:6ba9b94b8997 61 #define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US (62)
jinu 0:6ba9b94b8997 62
jinu 0:6ba9b94b8997 63 /**@brief The minimum allowed timeslot extension time. */
jinu 0:6ba9b94b8997 64 #define NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US (200)
jinu 0:6ba9b94b8997 65
jinu 0:6ba9b94b8997 66 #define SOC_ECB_KEY_LENGTH (16) /**< ECB key length. */
jinu 0:6ba9b94b8997 67 #define SOC_ECB_CLEARTEXT_LENGTH (16) /**< ECB cleartext length. */
jinu 0:6ba9b94b8997 68 #define SOC_ECB_CIPHERTEXT_LENGTH (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */
jinu 0:6ba9b94b8997 69
jinu 0:6ba9b94b8997 70 #define SD_EVT_IRQn (SWI2_IRQn) /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */
jinu 0:6ba9b94b8997 71 #define SD_EVT_IRQHandler (SWI2_IRQHandler) /**< SoftDevice Event IRQ handler. Used for both protocol events and SoC events. */
jinu 0:6ba9b94b8997 72 #define RADIO_NOTIFICATION_IRQn (SWI1_IRQn) /**< The radio notification IRQ number. */
jinu 0:6ba9b94b8997 73 #define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) /**< The radio notification IRQ handler. */
jinu 0:6ba9b94b8997 74
jinu 0:6ba9b94b8997 75 #define NRF_RADIO_LENGTH_MIN_US (100) /**< The shortest allowed radio timeslot, in microseconds. */
jinu 0:6ba9b94b8997 76 #define NRF_RADIO_LENGTH_MAX_US (100000) /**< The longest allowed radio timeslot, in microseconds. */
jinu 0:6ba9b94b8997 77
jinu 0:6ba9b94b8997 78 #define NRF_RADIO_DISTANCE_MAX_US (128000000UL - 1UL) /**< The longest timeslot distance, in microseconds, allowed for the distance parameter (see @ref nrf_radio_request_normal_t) in the request. */
jinu 0:6ba9b94b8997 79
jinu 0:6ba9b94b8997 80 #define NRF_RADIO_EARLIEST_TIMEOUT_MAX_US (128000000UL - 1UL) /**< The longest timeout, in microseconds, allowed when requesting the earliest possible timeslot. */
jinu 0:6ba9b94b8997 81
jinu 0:6ba9b94b8997 82 #define NRF_RADIO_START_JITTER_US (2) /**< The maximum jitter in NRF_RADIO_CALLBACK_SIGNAL_TYPE_START relative to the requested start time. */
jinu 0:6ba9b94b8997 83
jinu 0:6ba9b94b8997 84 /** @} */
jinu 0:6ba9b94b8997 85
jinu 0:6ba9b94b8997 86 /** @addtogroup NRF_SOC_TYPES Types
jinu 0:6ba9b94b8997 87 * @{ */
jinu 0:6ba9b94b8997 88
jinu 0:6ba9b94b8997 89 /**@brief The SVC numbers used by the SVC functions in the SoC library. */
jinu 0:6ba9b94b8997 90 enum NRF_SOC_SVCS
jinu 0:6ba9b94b8997 91 {
jinu 0:6ba9b94b8997 92 SD_FLASH_PAGE_ERASE = SOC_SVC_BASE,
jinu 0:6ba9b94b8997 93 SD_FLASH_WRITE,
jinu 0:6ba9b94b8997 94 SD_FLASH_PROTECT,
jinu 0:6ba9b94b8997 95 SD_MUTEX_NEW = SOC_SVC_BASE_NOT_AVAILABLE,
jinu 0:6ba9b94b8997 96 SD_MUTEX_ACQUIRE,
jinu 0:6ba9b94b8997 97 SD_MUTEX_RELEASE,
jinu 0:6ba9b94b8997 98 SD_NVIC_ENABLEIRQ,
jinu 0:6ba9b94b8997 99 SD_NVIC_DISABLEIRQ,
jinu 0:6ba9b94b8997 100 SD_NVIC_GETPENDINGIRQ,
jinu 0:6ba9b94b8997 101 SD_NVIC_SETPENDINGIRQ,
jinu 0:6ba9b94b8997 102 SD_NVIC_CLEARPENDINGIRQ,
jinu 0:6ba9b94b8997 103 SD_NVIC_SETPRIORITY,
jinu 0:6ba9b94b8997 104 SD_NVIC_GETPRIORITY,
jinu 0:6ba9b94b8997 105 SD_NVIC_SYSTEMRESET,
jinu 0:6ba9b94b8997 106 SD_NVIC_CRITICAL_REGION_ENTER,
jinu 0:6ba9b94b8997 107 SD_NVIC_CRITICAL_REGION_EXIT,
jinu 0:6ba9b94b8997 108 SD_RAND_APPLICATION_POOL_CAPACITY,
jinu 0:6ba9b94b8997 109 SD_RAND_APPLICATION_BYTES_AVAILABLE,
jinu 0:6ba9b94b8997 110 SD_RAND_APPLICATION_GET_VECTOR,
jinu 0:6ba9b94b8997 111 SD_POWER_MODE_SET,
jinu 0:6ba9b94b8997 112 SD_POWER_SYSTEM_OFF,
jinu 0:6ba9b94b8997 113 SD_POWER_RESET_REASON_GET,
jinu 0:6ba9b94b8997 114 SD_POWER_RESET_REASON_CLR,
jinu 0:6ba9b94b8997 115 SD_POWER_POF_ENABLE,
jinu 0:6ba9b94b8997 116 SD_POWER_POF_THRESHOLD_SET,
jinu 0:6ba9b94b8997 117 SD_POWER_RAMON_SET,
jinu 0:6ba9b94b8997 118 SD_POWER_RAMON_CLR,
jinu 0:6ba9b94b8997 119 SD_POWER_RAMON_GET,
jinu 0:6ba9b94b8997 120 SD_POWER_GPREGRET_SET,
jinu 0:6ba9b94b8997 121 SD_POWER_GPREGRET_CLR,
jinu 0:6ba9b94b8997 122 SD_POWER_GPREGRET_GET,
jinu 0:6ba9b94b8997 123 SD_POWER_DCDC_MODE_SET,
jinu 0:6ba9b94b8997 124 SD_APP_EVT_WAIT,
jinu 0:6ba9b94b8997 125 SD_CLOCK_HFCLK_REQUEST,
jinu 0:6ba9b94b8997 126 SD_CLOCK_HFCLK_RELEASE,
jinu 0:6ba9b94b8997 127 SD_CLOCK_HFCLK_IS_RUNNING,
jinu 0:6ba9b94b8997 128 SD_PPI_CHANNEL_ENABLE_GET,
jinu 0:6ba9b94b8997 129 SD_PPI_CHANNEL_ENABLE_SET,
jinu 0:6ba9b94b8997 130 SD_PPI_CHANNEL_ENABLE_CLR,
jinu 0:6ba9b94b8997 131 SD_PPI_CHANNEL_ASSIGN,
jinu 0:6ba9b94b8997 132 SD_PPI_GROUP_TASK_ENABLE,
jinu 0:6ba9b94b8997 133 SD_PPI_GROUP_TASK_DISABLE,
jinu 0:6ba9b94b8997 134 SD_PPI_GROUP_ASSIGN,
jinu 0:6ba9b94b8997 135 SD_PPI_GROUP_GET,
jinu 0:6ba9b94b8997 136 SD_RADIO_NOTIFICATION_CFG_SET,
jinu 0:6ba9b94b8997 137 SD_ECB_BLOCK_ENCRYPT,
jinu 0:6ba9b94b8997 138 SD_RADIO_SESSION_OPEN,
jinu 0:6ba9b94b8997 139 SD_RADIO_SESSION_CLOSE,
jinu 0:6ba9b94b8997 140 SD_RADIO_REQUEST,
jinu 0:6ba9b94b8997 141 SD_EVT_GET,
jinu 0:6ba9b94b8997 142 SD_TEMP_GET,
jinu 0:6ba9b94b8997 143 SVC_SOC_LAST
jinu 0:6ba9b94b8997 144 };
jinu 0:6ba9b94b8997 145
jinu 0:6ba9b94b8997 146 /**@brief Possible values of a ::nrf_mutex_t. */
jinu 0:6ba9b94b8997 147 enum NRF_MUTEX_VALUES
jinu 0:6ba9b94b8997 148 {
jinu 0:6ba9b94b8997 149 NRF_MUTEX_FREE,
jinu 0:6ba9b94b8997 150 NRF_MUTEX_TAKEN
jinu 0:6ba9b94b8997 151 };
jinu 0:6ba9b94b8997 152
jinu 0:6ba9b94b8997 153 /**@brief Possible values of ::nrf_app_irq_priority_t. */
jinu 0:6ba9b94b8997 154 enum NRF_APP_PRIORITIES
jinu 0:6ba9b94b8997 155 {
jinu 0:6ba9b94b8997 156 NRF_APP_PRIORITY_HIGH = 1,
jinu 0:6ba9b94b8997 157 NRF_APP_PRIORITY_LOW = 3
jinu 0:6ba9b94b8997 158 };
jinu 0:6ba9b94b8997 159
jinu 0:6ba9b94b8997 160 /**@brief Possible values of ::nrf_power_mode_t. */
jinu 0:6ba9b94b8997 161 enum NRF_POWER_MODES
jinu 0:6ba9b94b8997 162 {
jinu 0:6ba9b94b8997 163 NRF_POWER_MODE_CONSTLAT, /**< Constant latency mode. See power management in the reference manual. */
jinu 0:6ba9b94b8997 164 NRF_POWER_MODE_LOWPWR /**< Low power mode. See power management in the reference manual. */
jinu 0:6ba9b94b8997 165 };
jinu 0:6ba9b94b8997 166
jinu 0:6ba9b94b8997 167
jinu 0:6ba9b94b8997 168 /**@brief Possible values of ::nrf_power_failure_threshold_t */
jinu 0:6ba9b94b8997 169 enum NRF_POWER_THRESHOLDS
jinu 0:6ba9b94b8997 170 {
jinu 0:6ba9b94b8997 171 NRF_POWER_THRESHOLD_V21, /**< 2.1 Volts power failure threshold. */
jinu 0:6ba9b94b8997 172 NRF_POWER_THRESHOLD_V23, /**< 2.3 Volts power failure threshold. */
jinu 0:6ba9b94b8997 173 NRF_POWER_THRESHOLD_V25, /**< 2.5 Volts power failure threshold. */
jinu 0:6ba9b94b8997 174 NRF_POWER_THRESHOLD_V27 /**< 2.7 Volts power failure threshold. */
jinu 0:6ba9b94b8997 175 };
jinu 0:6ba9b94b8997 176
jinu 0:6ba9b94b8997 177
jinu 0:6ba9b94b8997 178 /**@brief Possible values of ::nrf_power_dcdc_mode_t. */
jinu 0:6ba9b94b8997 179 enum NRF_POWER_DCDC_MODES
jinu 0:6ba9b94b8997 180 {
jinu 0:6ba9b94b8997 181 NRF_POWER_DCDC_MODE_OFF, /**< The DCDC is always off. */
jinu 0:6ba9b94b8997 182 NRF_POWER_DCDC_MODE_ON, /**< The DCDC is always on. */
jinu 0:6ba9b94b8997 183 NRF_POWER_DCDC_MODE_AUTOMATIC /**< The DCDC is automatically managed. */
jinu 0:6ba9b94b8997 184 };
jinu 0:6ba9b94b8997 185
jinu 0:6ba9b94b8997 186 /**@brief Possible values of ::nrf_radio_notification_distance_t. */
jinu 0:6ba9b94b8997 187 enum NRF_RADIO_NOTIFICATION_DISTANCES
jinu 0:6ba9b94b8997 188 {
jinu 0:6ba9b94b8997 189 NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0, /**< The event does not have a notification. */
jinu 0:6ba9b94b8997 190 NRF_RADIO_NOTIFICATION_DISTANCE_800US, /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 191 NRF_RADIO_NOTIFICATION_DISTANCE_1740US, /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 192 NRF_RADIO_NOTIFICATION_DISTANCE_2680US, /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 193 NRF_RADIO_NOTIFICATION_DISTANCE_3620US, /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 194 NRF_RADIO_NOTIFICATION_DISTANCE_4560US, /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 195 NRF_RADIO_NOTIFICATION_DISTANCE_5500US /**< The distance from the active notification to start of radio activity. */
jinu 0:6ba9b94b8997 196 };
jinu 0:6ba9b94b8997 197
jinu 0:6ba9b94b8997 198
jinu 0:6ba9b94b8997 199 /**@brief Possible values of ::nrf_radio_notification_type_t. */
jinu 0:6ba9b94b8997 200 enum NRF_RADIO_NOTIFICATION_TYPES
jinu 0:6ba9b94b8997 201 {
jinu 0:6ba9b94b8997 202 NRF_RADIO_NOTIFICATION_TYPE_NONE = 0, /**< The event does not have a radio notification signal. */
jinu 0:6ba9b94b8997 203 NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE, /**< Using interrupt for notification when the radio will be enabled. */
jinu 0:6ba9b94b8997 204 NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE, /**< Using interrupt for notification when the radio has been disabled. */
jinu 0:6ba9b94b8997 205 NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH, /**< Using interrupt for notification both when the radio will be enabled and disabled. */
jinu 0:6ba9b94b8997 206 };
jinu 0:6ba9b94b8997 207
jinu 0:6ba9b94b8997 208 /**@brief SoC Events. */
jinu 0:6ba9b94b8997 209 enum NRF_SOC_EVTS
jinu 0:6ba9b94b8997 210 {
jinu 0:6ba9b94b8997 211 NRF_EVT_HFCLKSTARTED, /**< Event indicating that the HFCLK has started. */
jinu 0:6ba9b94b8997 212 NRF_EVT_POWER_FAILURE_WARNING, /**< Event indicating that a power failure warning has occurred. */
jinu 0:6ba9b94b8997 213 NRF_EVT_FLASH_OPERATION_SUCCESS, /**< Event indicating that the ongoing flash operation has completed successfully. */
jinu 0:6ba9b94b8997 214 NRF_EVT_FLASH_OPERATION_ERROR, /**< Event indicating that the ongoing flash operation has timed out with an error. */
jinu 0:6ba9b94b8997 215 NRF_EVT_RADIO_BLOCKED, /**< Event indicating that a radio timeslot was blocked. */
jinu 0:6ba9b94b8997 216 NRF_EVT_RADIO_CANCELED, /**< Event indicating that a radio timeslot was canceled by SoftDevice. */
jinu 0:6ba9b94b8997 217 NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN, /**< Event indicating that a radio signal callback handler return was invalid. */
jinu 0:6ba9b94b8997 218 NRF_EVT_RADIO_SESSION_IDLE, /**< Event indicating that a radio session is idle. */
jinu 0:6ba9b94b8997 219 NRF_EVT_RADIO_SESSION_CLOSED, /**< Event indicating that a radio session is closed. */
jinu 0:6ba9b94b8997 220 NRF_EVT_NUMBER_OF_EVTS
jinu 0:6ba9b94b8997 221 };
jinu 0:6ba9b94b8997 222
jinu 0:6ba9b94b8997 223 /** @} */
jinu 0:6ba9b94b8997 224
jinu 0:6ba9b94b8997 225 /** @addtogroup NRF_SOC_TYPES Types
jinu 0:6ba9b94b8997 226 * @{ */
jinu 0:6ba9b94b8997 227
jinu 0:6ba9b94b8997 228 /**@brief Represents a mutex for use with the nrf_mutex functions.
jinu 0:6ba9b94b8997 229 * @note Accessing the value directly is not safe, use the mutex functions!
jinu 0:6ba9b94b8997 230 */
jinu 0:6ba9b94b8997 231 typedef volatile uint8_t nrf_mutex_t;
jinu 0:6ba9b94b8997 232
jinu 0:6ba9b94b8997 233 /**@brief The interrupt priorities available to the application while the softdevice is active. */
jinu 0:6ba9b94b8997 234 typedef uint8_t nrf_app_irq_priority_t;
jinu 0:6ba9b94b8997 235
jinu 0:6ba9b94b8997 236 /**@brief Represents a power mode, used in power mode functions */
jinu 0:6ba9b94b8997 237 typedef uint8_t nrf_power_mode_t;
jinu 0:6ba9b94b8997 238
jinu 0:6ba9b94b8997 239 /**@brief Represents a power failure threshold value. */
jinu 0:6ba9b94b8997 240 typedef uint8_t nrf_power_failure_threshold_t;
jinu 0:6ba9b94b8997 241
jinu 0:6ba9b94b8997 242 /**@brief Represents a DCDC mode value. */
jinu 0:6ba9b94b8997 243 typedef uint32_t nrf_power_dcdc_mode_t;
jinu 0:6ba9b94b8997 244
jinu 0:6ba9b94b8997 245 /**@brief Radio notification distances. */
jinu 0:6ba9b94b8997 246 typedef uint8_t nrf_radio_notification_distance_t;
jinu 0:6ba9b94b8997 247
jinu 0:6ba9b94b8997 248 /**@brief Radio notification types. */
jinu 0:6ba9b94b8997 249 typedef uint8_t nrf_radio_notification_type_t;
jinu 0:6ba9b94b8997 250
jinu 0:6ba9b94b8997 251 /** @brief The Radio signal callback types. */
jinu 0:6ba9b94b8997 252 enum NRF_RADIO_CALLBACK_SIGNAL_TYPE
jinu 0:6ba9b94b8997 253 {
jinu 0:6ba9b94b8997 254 NRF_RADIO_CALLBACK_SIGNAL_TYPE_START, /**< This signal indicates the start of the radio timeslot. */
jinu 0:6ba9b94b8997 255 NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0, /**< This signal indicates the NRF_TIMER0 interrupt. */
jinu 0:6ba9b94b8997 256 NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO, /**< This signal indicates the NRF_RADIO interrupt. */
jinu 0:6ba9b94b8997 257 NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED, /**< This signal indicates extend action failed. */
jinu 0:6ba9b94b8997 258 NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED /**< This signal indicates extend action succeeded. */
jinu 0:6ba9b94b8997 259 };
jinu 0:6ba9b94b8997 260
jinu 0:6ba9b94b8997 261 /** @brief The actions requested by the signal callback.
jinu 0:6ba9b94b8997 262 *
jinu 0:6ba9b94b8997 263 * This code gives the SOC instructions about what action to take when the signal callback has
jinu 0:6ba9b94b8997 264 * returned.
jinu 0:6ba9b94b8997 265 */
jinu 0:6ba9b94b8997 266 enum NRF_RADIO_SIGNAL_CALLBACK_ACTION
jinu 0:6ba9b94b8997 267 {
jinu 0:6ba9b94b8997 268 NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE, /**< Return without action. */
jinu 0:6ba9b94b8997 269 NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND, /**< Request an extension of the current timeslot (maximum execution time for this action is when the extension succeeded). */
jinu 0:6ba9b94b8997 270 NRF_RADIO_SIGNAL_CALLBACK_ACTION_END, /**< End the current radio timeslot. */
jinu 0:6ba9b94b8997 271 NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END /**< Request a new radio timeslot and end the current timeslot. */
jinu 0:6ba9b94b8997 272 };
jinu 0:6ba9b94b8997 273
jinu 0:6ba9b94b8997 274 /**@brief Radio timeslot high frequency clock source configuration. */
jinu 0:6ba9b94b8997 275 enum NRF_RADIO_HFCLK_CFG
jinu 0:6ba9b94b8997 276 {
jinu 0:6ba9b94b8997 277 NRF_RADIO_HFCLK_CFG_DEFAULT, /**< Use the currently selected oscillator as HF clock source during the timeslot (i.e. the source is not specified). */
jinu 0:6ba9b94b8997 278 NRF_RADIO_HFCLK_CFG_FORCE_XTAL, /**< Force external crystal to be used as HF clock source during whole the timeslot. */
jinu 0:6ba9b94b8997 279 };
jinu 0:6ba9b94b8997 280
jinu 0:6ba9b94b8997 281 /** @brief Radio timeslot priorities. */
jinu 0:6ba9b94b8997 282 enum NRF_RADIO_PRIORITY
jinu 0:6ba9b94b8997 283 {
jinu 0:6ba9b94b8997 284 NRF_RADIO_PRIORITY_HIGH, /**< High (equal priority as the normal connection priority of the SoftDevice stack(s)). */
jinu 0:6ba9b94b8997 285 NRF_RADIO_PRIORITY_NORMAL, /**< Normal (equal priority as the priority of secondary activites of the SoftDevice stack(s)). */
jinu 0:6ba9b94b8997 286 };
jinu 0:6ba9b94b8997 287
jinu 0:6ba9b94b8997 288 /** @brief Radio timeslot request type. */
jinu 0:6ba9b94b8997 289 enum NRF_RADIO_REQUEST_TYPE
jinu 0:6ba9b94b8997 290 {
jinu 0:6ba9b94b8997 291 NRF_RADIO_REQ_TYPE_EARLIEST, /**< Request timeslot as early as possible. This should always be used for the first request in a session. */
jinu 0:6ba9b94b8997 292 NRF_RADIO_REQ_TYPE_NORMAL /**< Normal timeslot request. */
jinu 0:6ba9b94b8997 293 };
jinu 0:6ba9b94b8997 294
jinu 0:6ba9b94b8997 295 /** @brief Parameters for a request for a timeslot as early as possible. */
jinu 0:6ba9b94b8997 296 typedef struct
jinu 0:6ba9b94b8997 297 {
jinu 0:6ba9b94b8997 298 uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
jinu 0:6ba9b94b8997 299 uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
jinu 0:6ba9b94b8997 300 uint32_t length_us; /**< The radio timeslot length (in the range 100 to 100,000] microseconds). */
jinu 0:6ba9b94b8997 301 uint32_t timeout_us; /**< Longest acceptable delay until the start of the requested timeslot (up to @ref NRF_RADIO_EARLIEST_TIMEOUT_MAX_US microseconds). */
jinu 0:6ba9b94b8997 302 } nrf_radio_request_earliest_t;
jinu 0:6ba9b94b8997 303
jinu 0:6ba9b94b8997 304 /** @brief Parameters for a normal radio request. */
jinu 0:6ba9b94b8997 305 typedef struct
jinu 0:6ba9b94b8997 306 {
jinu 0:6ba9b94b8997 307 uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */
jinu 0:6ba9b94b8997 308 uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */
jinu 0:6ba9b94b8997 309 uint32_t distance_us; /**< Distance from the start of the previous radio timeslot (up to @ref NRF_RADIO_DISTANCE_MAX_US microseconds). */
jinu 0:6ba9b94b8997 310 uint32_t length_us; /**< The radio timeslot length (in the range [100..100,000] microseconds). */
jinu 0:6ba9b94b8997 311 } nrf_radio_request_normal_t;
jinu 0:6ba9b94b8997 312
jinu 0:6ba9b94b8997 313 /** @brief Radio request parameters. */
jinu 0:6ba9b94b8997 314 typedef struct
jinu 0:6ba9b94b8997 315 {
jinu 0:6ba9b94b8997 316 uint8_t request_type; /**< Type of request, see @ref NRF_RADIO_REQUEST_TYPE. */
jinu 0:6ba9b94b8997 317 union
jinu 0:6ba9b94b8997 318 {
jinu 0:6ba9b94b8997 319 nrf_radio_request_earliest_t earliest; /**< Parameters for a request for a timeslot as early as possible. */
jinu 0:6ba9b94b8997 320 nrf_radio_request_normal_t normal; /**< Parameters for a normal radio request. */
jinu 0:6ba9b94b8997 321 } params;
jinu 0:6ba9b94b8997 322 } nrf_radio_request_t;
jinu 0:6ba9b94b8997 323
jinu 0:6ba9b94b8997 324 /**@brief Return parameters of the radio timeslot signal callback. */
jinu 0:6ba9b94b8997 325 typedef struct
jinu 0:6ba9b94b8997 326 {
jinu 0:6ba9b94b8997 327 uint8_t callback_action; /**< The action requested by the application when returning from the signal callback, see @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION. */
jinu 0:6ba9b94b8997 328 union
jinu 0:6ba9b94b8997 329 {
jinu 0:6ba9b94b8997 330 struct
jinu 0:6ba9b94b8997 331 {
jinu 0:6ba9b94b8997 332 nrf_radio_request_t * p_next; /**< The request parameters for the next radio timeslot. */
jinu 0:6ba9b94b8997 333 } request; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END. */
jinu 0:6ba9b94b8997 334 struct
jinu 0:6ba9b94b8997 335 {
jinu 0:6ba9b94b8997 336 uint32_t length_us; /**< Requested extension of the timeslot duration (microseconds) (for minimum time see @ref NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US). */
jinu 0:6ba9b94b8997 337 } extend; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND. */
jinu 0:6ba9b94b8997 338 } params;
jinu 0:6ba9b94b8997 339 } nrf_radio_signal_callback_return_param_t;
jinu 0:6ba9b94b8997 340
jinu 0:6ba9b94b8997 341 /**@brief The radio signal callback type.
jinu 0:6ba9b94b8997 342 *
jinu 0:6ba9b94b8997 343 * @note In case of invalid return parameters, the radio timeslot will automatically end
jinu 0:6ba9b94b8997 344 * immediately after returning from the signal callback and the
jinu 0:6ba9b94b8997 345 * @ref NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN event will be sent.
jinu 0:6ba9b94b8997 346 * @note The returned struct pointer must remain valid after the signal callback
jinu 0:6ba9b94b8997 347 * function returns. For instance, this means that it must not point to a stack variable.
jinu 0:6ba9b94b8997 348 *
jinu 0:6ba9b94b8997 349 * @param[in] signal_type Type of signal, see @ref NRF_RADIO_CALLBACK_SIGNAL_TYPE.
jinu 0:6ba9b94b8997 350 *
jinu 0:6ba9b94b8997 351 * @return Pointer to structure containing action requested by the application.
jinu 0:6ba9b94b8997 352 */
jinu 0:6ba9b94b8997 353 typedef nrf_radio_signal_callback_return_param_t * (*nrf_radio_signal_callback_t) (uint8_t signal_type);
jinu 0:6ba9b94b8997 354
jinu 0:6ba9b94b8997 355 /**@brief AES ECB data structure */
jinu 0:6ba9b94b8997 356 typedef struct
jinu 0:6ba9b94b8997 357 {
jinu 0:6ba9b94b8997 358 uint8_t key[SOC_ECB_KEY_LENGTH]; /**< Encryption key. */
jinu 0:6ba9b94b8997 359 uint8_t cleartext[SOC_ECB_CLEARTEXT_LENGTH]; /**< Clear Text data. */
jinu 0:6ba9b94b8997 360 uint8_t ciphertext[SOC_ECB_CIPHERTEXT_LENGTH]; /**< Cipher Text data. */
jinu 0:6ba9b94b8997 361 } nrf_ecb_hal_data_t;
jinu 0:6ba9b94b8997 362
jinu 0:6ba9b94b8997 363 /** @} */
jinu 0:6ba9b94b8997 364
jinu 0:6ba9b94b8997 365 /** @addtogroup NRF_SOC_FUNCTIONS Functions
jinu 0:6ba9b94b8997 366 * @{ */
jinu 0:6ba9b94b8997 367
jinu 0:6ba9b94b8997 368 /**@brief Initialize a mutex.
jinu 0:6ba9b94b8997 369 *
jinu 0:6ba9b94b8997 370 * @param[in] p_mutex Pointer to the mutex to initialize.
jinu 0:6ba9b94b8997 371 *
jinu 0:6ba9b94b8997 372 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 373 */
jinu 0:6ba9b94b8997 374 SVCALL(SD_MUTEX_NEW, uint32_t, sd_mutex_new(nrf_mutex_t * p_mutex));
jinu 0:6ba9b94b8997 375
jinu 0:6ba9b94b8997 376 /**@brief Attempt to acquire a mutex.
jinu 0:6ba9b94b8997 377 *
jinu 0:6ba9b94b8997 378 * @param[in] p_mutex Pointer to the mutex to acquire.
jinu 0:6ba9b94b8997 379 *
jinu 0:6ba9b94b8997 380 * @retval ::NRF_SUCCESS The mutex was successfully acquired.
jinu 0:6ba9b94b8997 381 * @retval ::NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired.
jinu 0:6ba9b94b8997 382 */
jinu 0:6ba9b94b8997 383 SVCALL(SD_MUTEX_ACQUIRE, uint32_t, sd_mutex_acquire(nrf_mutex_t * p_mutex));
jinu 0:6ba9b94b8997 384
jinu 0:6ba9b94b8997 385 /**@brief Release a mutex.
jinu 0:6ba9b94b8997 386 *
jinu 0:6ba9b94b8997 387 * @param[in] p_mutex Pointer to the mutex to release.
jinu 0:6ba9b94b8997 388 *
jinu 0:6ba9b94b8997 389 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 390 */
jinu 0:6ba9b94b8997 391 SVCALL(SD_MUTEX_RELEASE, uint32_t, sd_mutex_release(nrf_mutex_t * p_mutex));
jinu 0:6ba9b94b8997 392
jinu 0:6ba9b94b8997 393 /**@brief Enable External Interrupt.
jinu 0:6ba9b94b8997 394 * @note Corresponds to NVIC_EnableIRQ in CMSIS.
jinu 0:6ba9b94b8997 395 *
jinu 0:6ba9b94b8997 396 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 397 *
jinu 0:6ba9b94b8997 398 * @param[in] IRQn See the NVIC_EnableIRQ documentation in CMSIS.
jinu 0:6ba9b94b8997 399 *
jinu 0:6ba9b94b8997 400 * @retval ::NRF_SUCCESS The interrupt was enabled.
jinu 0:6ba9b94b8997 401 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
jinu 0:6ba9b94b8997 402 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt has a priority not available for the application.
jinu 0:6ba9b94b8997 403 */
jinu 0:6ba9b94b8997 404 SVCALL(SD_NVIC_ENABLEIRQ, uint32_t, sd_nvic_EnableIRQ(IRQn_Type IRQn));
jinu 0:6ba9b94b8997 405
jinu 0:6ba9b94b8997 406 /**@brief Disable External Interrupt.
jinu 0:6ba9b94b8997 407 * @note Corresponds to NVIC_DisableIRQ in CMSIS.
jinu 0:6ba9b94b8997 408 *
jinu 0:6ba9b94b8997 409 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 410 *
jinu 0:6ba9b94b8997 411 * @param[in] IRQn See the NVIC_DisableIRQ documentation in CMSIS
jinu 0:6ba9b94b8997 412 *
jinu 0:6ba9b94b8997 413 * @retval ::NRF_SUCCESS The interrupt was disabled.
jinu 0:6ba9b94b8997 414 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
jinu 0:6ba9b94b8997 415 */
jinu 0:6ba9b94b8997 416 SVCALL(SD_NVIC_DISABLEIRQ, uint32_t, sd_nvic_DisableIRQ(IRQn_Type IRQn));
jinu 0:6ba9b94b8997 417
jinu 0:6ba9b94b8997 418 /**@brief Get Pending Interrupt.
jinu 0:6ba9b94b8997 419 * @note Corresponds to NVIC_GetPendingIRQ in CMSIS.
jinu 0:6ba9b94b8997 420 *
jinu 0:6ba9b94b8997 421 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 422 *
jinu 0:6ba9b94b8997 423 * @param[in] IRQn See the NVIC_GetPendingIRQ documentation in CMSIS.
jinu 0:6ba9b94b8997 424 * @param[out] p_pending_irq Return value from NVIC_GetPendingIRQ.
jinu 0:6ba9b94b8997 425 *
jinu 0:6ba9b94b8997 426 * @retval ::NRF_SUCCESS The interrupt is available for the application.
jinu 0:6ba9b94b8997 427 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
jinu 0:6ba9b94b8997 428 */
jinu 0:6ba9b94b8997 429 SVCALL(SD_NVIC_GETPENDINGIRQ, uint32_t, sd_nvic_GetPendingIRQ(IRQn_Type IRQn, uint32_t * p_pending_irq));
jinu 0:6ba9b94b8997 430
jinu 0:6ba9b94b8997 431 /**@brief Set Pending Interrupt.
jinu 0:6ba9b94b8997 432 * @note Corresponds to NVIC_SetPendingIRQ in CMSIS.
jinu 0:6ba9b94b8997 433 *
jinu 0:6ba9b94b8997 434 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 435 *
jinu 0:6ba9b94b8997 436 * @param[in] IRQn See the NVIC_SetPendingIRQ documentation in CMSIS.
jinu 0:6ba9b94b8997 437 *
jinu 0:6ba9b94b8997 438 * @retval ::NRF_SUCCESS The interrupt is set pending.
jinu 0:6ba9b94b8997 439 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
jinu 0:6ba9b94b8997 440 */
jinu 0:6ba9b94b8997 441 SVCALL(SD_NVIC_SETPENDINGIRQ, uint32_t, sd_nvic_SetPendingIRQ(IRQn_Type IRQn));
jinu 0:6ba9b94b8997 442
jinu 0:6ba9b94b8997 443 /**@brief Clear Pending Interrupt.
jinu 0:6ba9b94b8997 444 * @note Corresponds to NVIC_ClearPendingIRQ in CMSIS.
jinu 0:6ba9b94b8997 445 *
jinu 0:6ba9b94b8997 446 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 447 *
jinu 0:6ba9b94b8997 448 * @param[in] IRQn See the NVIC_ClearPendingIRQ documentation in CMSIS.
jinu 0:6ba9b94b8997 449 *
jinu 0:6ba9b94b8997 450 * @retval ::NRF_SUCCESS The interrupt pending flag is cleared.
jinu 0:6ba9b94b8997 451 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
jinu 0:6ba9b94b8997 452 */
jinu 0:6ba9b94b8997 453 SVCALL(SD_NVIC_CLEARPENDINGIRQ, uint32_t, sd_nvic_ClearPendingIRQ(IRQn_Type IRQn));
jinu 0:6ba9b94b8997 454
jinu 0:6ba9b94b8997 455 /**@brief Set Interrupt Priority.
jinu 0:6ba9b94b8997 456 * @note Corresponds to NVIC_SetPriority in CMSIS.
jinu 0:6ba9b94b8997 457 *
jinu 0:6ba9b94b8997 458 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 459 * @pre{priority is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 460 *
jinu 0:6ba9b94b8997 461 * @param[in] IRQn See the NVIC_SetPriority documentation in CMSIS.
jinu 0:6ba9b94b8997 462 * @param[in] priority A valid IRQ priority for use by the application.
jinu 0:6ba9b94b8997 463 *
jinu 0:6ba9b94b8997 464 * @retval ::NRF_SUCCESS The interrupt and priority level is available for the application.
jinu 0:6ba9b94b8997 465 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
jinu 0:6ba9b94b8997 466 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt priority is not available for the application.
jinu 0:6ba9b94b8997 467 */
jinu 0:6ba9b94b8997 468 SVCALL(SD_NVIC_SETPRIORITY, uint32_t, sd_nvic_SetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t priority));
jinu 0:6ba9b94b8997 469
jinu 0:6ba9b94b8997 470 /**@brief Get Interrupt Priority.
jinu 0:6ba9b94b8997 471 * @note Corresponds to NVIC_GetPriority in CMSIS.
jinu 0:6ba9b94b8997 472 *
jinu 0:6ba9b94b8997 473 * @pre{IRQn is valid and not reserved by the stack}
jinu 0:6ba9b94b8997 474 *
jinu 0:6ba9b94b8997 475 * @param[in] IRQn See the NVIC_GetPriority documentation in CMSIS.
jinu 0:6ba9b94b8997 476 * @param[out] p_priority Return value from NVIC_GetPriority.
jinu 0:6ba9b94b8997 477 *
jinu 0:6ba9b94b8997 478 * @retval ::NRF_SUCCESS The interrupt priority is returned in p_priority.
jinu 0:6ba9b94b8997 479 * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE - IRQn is not available for the application.
jinu 0:6ba9b94b8997 480 */
jinu 0:6ba9b94b8997 481 SVCALL(SD_NVIC_GETPRIORITY, uint32_t, sd_nvic_GetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t * p_priority));
jinu 0:6ba9b94b8997 482
jinu 0:6ba9b94b8997 483 /**@brief System Reset.
jinu 0:6ba9b94b8997 484 * @note Corresponds to NVIC_SystemReset in CMSIS.
jinu 0:6ba9b94b8997 485 *
jinu 0:6ba9b94b8997 486 * @retval ::NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN
jinu 0:6ba9b94b8997 487 */
jinu 0:6ba9b94b8997 488 SVCALL(SD_NVIC_SYSTEMRESET, uint32_t, sd_nvic_SystemReset(void));
jinu 0:6ba9b94b8997 489
jinu 0:6ba9b94b8997 490 /**@brief Enters critical region.
jinu 0:6ba9b94b8997 491 *
jinu 0:6ba9b94b8997 492 * @post Application interrupts will be disabled.
jinu 0:6ba9b94b8997 493 * @sa sd_nvic_critical_region_exit
jinu 0:6ba9b94b8997 494 *
jinu 0:6ba9b94b8997 495 * @param[out] p_is_nested_critical_region 1: If in a nested critical region.
jinu 0:6ba9b94b8997 496 * 0: Otherwise.
jinu 0:6ba9b94b8997 497 *
jinu 0:6ba9b94b8997 498 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 499 */
jinu 0:6ba9b94b8997 500 SVCALL(SD_NVIC_CRITICAL_REGION_ENTER, uint32_t, sd_nvic_critical_region_enter(uint8_t * p_is_nested_critical_region));
jinu 0:6ba9b94b8997 501
jinu 0:6ba9b94b8997 502 /**@brief Exit critical region.
jinu 0:6ba9b94b8997 503 *
jinu 0:6ba9b94b8997 504 * @pre Application has entered a critical region using ::sd_nvic_critical_region_enter.
jinu 0:6ba9b94b8997 505 * @post If not in a nested critical region, the application interrupts will restored to the state before ::sd_nvic_critical_region_enter was called.
jinu 0:6ba9b94b8997 506 *
jinu 0:6ba9b94b8997 507 * @param[in] is_nested_critical_region If this is set to 1, the critical region won't be exited. @sa sd_nvic_critical_region_enter.
jinu 0:6ba9b94b8997 508 *
jinu 0:6ba9b94b8997 509 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 510 */
jinu 0:6ba9b94b8997 511 SVCALL(SD_NVIC_CRITICAL_REGION_EXIT, uint32_t, sd_nvic_critical_region_exit(uint8_t is_nested_critical_region));
jinu 0:6ba9b94b8997 512
jinu 0:6ba9b94b8997 513 /**@brief Query the capacity of the application random pool.
jinu 0:6ba9b94b8997 514 *
jinu 0:6ba9b94b8997 515 * @param[out] p_pool_capacity The capacity of the pool.
jinu 0:6ba9b94b8997 516 *
jinu 0:6ba9b94b8997 517 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 518 */
jinu 0:6ba9b94b8997 519 SVCALL(SD_RAND_APPLICATION_POOL_CAPACITY, uint32_t, sd_rand_application_pool_capacity_get(uint8_t * p_pool_capacity));
jinu 0:6ba9b94b8997 520
jinu 0:6ba9b94b8997 521 /**@brief Get number of random bytes available to the application.
jinu 0:6ba9b94b8997 522 *
jinu 0:6ba9b94b8997 523 * @param[out] p_bytes_available The number of bytes currently available in the pool.
jinu 0:6ba9b94b8997 524 *
jinu 0:6ba9b94b8997 525 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 526 */
jinu 0:6ba9b94b8997 527 SVCALL(SD_RAND_APPLICATION_BYTES_AVAILABLE, uint32_t, sd_rand_application_bytes_available_get(uint8_t * p_bytes_available));
jinu 0:6ba9b94b8997 528
jinu 0:6ba9b94b8997 529 /**@brief Get random bytes from the application pool.
jinu 0:6ba9b94b8997 530 *
jinu 0:6ba9b94b8997 531 * @param[out] p_buff Pointer to unit8_t buffer for storing the bytes.
jinu 0:6ba9b94b8997 532 * @param[in] length Number of bytes to take from pool and place in p_buff.
jinu 0:6ba9b94b8997 533 *
jinu 0:6ba9b94b8997 534 * @retval ::NRF_SUCCESS The requested bytes were written to p_buff.
jinu 0:6ba9b94b8997 535 * @retval ::NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer, because there were not enough bytes available.
jinu 0:6ba9b94b8997 536 */
jinu 0:6ba9b94b8997 537 SVCALL(SD_RAND_APPLICATION_GET_VECTOR, uint32_t, sd_rand_application_vector_get(uint8_t * p_buff, uint8_t length));
jinu 0:6ba9b94b8997 538
jinu 0:6ba9b94b8997 539 /**@brief Gets the reset reason register.
jinu 0:6ba9b94b8997 540 *
jinu 0:6ba9b94b8997 541 * @param[out] p_reset_reason Contents of the NRF_POWER->RESETREAS register.
jinu 0:6ba9b94b8997 542 *
jinu 0:6ba9b94b8997 543 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 544 */
jinu 0:6ba9b94b8997 545 SVCALL(SD_POWER_RESET_REASON_GET, uint32_t, sd_power_reset_reason_get(uint32_t * p_reset_reason));
jinu 0:6ba9b94b8997 546
jinu 0:6ba9b94b8997 547 /**@brief Clears the bits of the reset reason register.
jinu 0:6ba9b94b8997 548 *
jinu 0:6ba9b94b8997 549 * @param[in] reset_reason_clr_msk Contains the bits to clear from the reset reason register.
jinu 0:6ba9b94b8997 550 *
jinu 0:6ba9b94b8997 551 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 552 */
jinu 0:6ba9b94b8997 553 SVCALL(SD_POWER_RESET_REASON_CLR, uint32_t, sd_power_reset_reason_clr(uint32_t reset_reason_clr_msk));
jinu 0:6ba9b94b8997 554
jinu 0:6ba9b94b8997 555 /**@brief Sets the power mode when in CPU sleep.
jinu 0:6ba9b94b8997 556 *
jinu 0:6ba9b94b8997 557 * @param[in] power_mode The power mode to use when in CPU sleep. @sa sd_app_evt_wait
jinu 0:6ba9b94b8997 558 *
jinu 0:6ba9b94b8997 559 * @retval ::NRF_SUCCESS The power mode was set.
jinu 0:6ba9b94b8997 560 * @retval ::NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown.
jinu 0:6ba9b94b8997 561 */
jinu 0:6ba9b94b8997 562 SVCALL(SD_POWER_MODE_SET, uint32_t, sd_power_mode_set(nrf_power_mode_t power_mode));
jinu 0:6ba9b94b8997 563
jinu 0:6ba9b94b8997 564 /**@brief Puts the chip in System OFF mode.
jinu 0:6ba9b94b8997 565 *
jinu 0:6ba9b94b8997 566 * @retval ::NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN
jinu 0:6ba9b94b8997 567 */
jinu 0:6ba9b94b8997 568 SVCALL(SD_POWER_SYSTEM_OFF, uint32_t, sd_power_system_off(void));
jinu 0:6ba9b94b8997 569
jinu 0:6ba9b94b8997 570 /**@brief Enables or disables the power-fail comparator.
jinu 0:6ba9b94b8997 571 *
jinu 0:6ba9b94b8997 572 * Enabling this will give a softdevice event (NRF_EVT_POWER_FAILURE_WARNING) when the power failure warning occurs.
jinu 0:6ba9b94b8997 573 * The event can be retrieved with sd_evt_get();
jinu 0:6ba9b94b8997 574 *
jinu 0:6ba9b94b8997 575 * @param[in] pof_enable True if the power-fail comparator should be enabled, false if it should be disabled.
jinu 0:6ba9b94b8997 576 *
jinu 0:6ba9b94b8997 577 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 578 */
jinu 0:6ba9b94b8997 579 SVCALL(SD_POWER_POF_ENABLE, uint32_t, sd_power_pof_enable(uint8_t pof_enable));
jinu 0:6ba9b94b8997 580
jinu 0:6ba9b94b8997 581 /**@brief Sets the power-fail threshold value.
jinu 0:6ba9b94b8997 582 *
jinu 0:6ba9b94b8997 583 * @param[in] threshold The power-fail threshold value to use.
jinu 0:6ba9b94b8997 584 *
jinu 0:6ba9b94b8997 585 * @retval ::NRF_SUCCESS The power failure threshold was set.
jinu 0:6ba9b94b8997 586 * @retval ::NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown.
jinu 0:6ba9b94b8997 587 */
jinu 0:6ba9b94b8997 588 SVCALL(SD_POWER_POF_THRESHOLD_SET, uint32_t, sd_power_pof_threshold_set(nrf_power_failure_threshold_t threshold));
jinu 0:6ba9b94b8997 589
jinu 0:6ba9b94b8997 590 /**@brief Sets bits in the NRF_POWER->RAMON register.
jinu 0:6ba9b94b8997 591 *
jinu 0:6ba9b94b8997 592 * @param[in] ramon Contains the bits needed to be set in the NRF_POWER->RAMON register.
jinu 0:6ba9b94b8997 593 *
jinu 0:6ba9b94b8997 594 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 595 */
jinu 0:6ba9b94b8997 596 SVCALL(SD_POWER_RAMON_SET, uint32_t, sd_power_ramon_set(uint32_t ramon));
jinu 0:6ba9b94b8997 597
jinu 0:6ba9b94b8997 598 /** @brief Clears bits in the NRF_POWER->RAMON register.
jinu 0:6ba9b94b8997 599 *
jinu 0:6ba9b94b8997 600 * @param ramon Contains the bits needed to be cleared in the NRF_POWER->RAMON register.
jinu 0:6ba9b94b8997 601 *
jinu 0:6ba9b94b8997 602 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 603 */
jinu 0:6ba9b94b8997 604 SVCALL(SD_POWER_RAMON_CLR, uint32_t, sd_power_ramon_clr(uint32_t ramon));
jinu 0:6ba9b94b8997 605
jinu 0:6ba9b94b8997 606 /**@brief Get contents of NRF_POWER->RAMON register, indicates power status of ram blocks.
jinu 0:6ba9b94b8997 607 *
jinu 0:6ba9b94b8997 608 * @param[out] p_ramon Content of NRF_POWER->RAMON register.
jinu 0:6ba9b94b8997 609 *
jinu 0:6ba9b94b8997 610 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 611 */
jinu 0:6ba9b94b8997 612 SVCALL(SD_POWER_RAMON_GET, uint32_t, sd_power_ramon_get(uint32_t * p_ramon));
jinu 0:6ba9b94b8997 613
jinu 0:6ba9b94b8997 614 /**@brief Set bits in the NRF_POWER->GPREGRET register.
jinu 0:6ba9b94b8997 615 *
jinu 0:6ba9b94b8997 616 * @param[in] gpregret_msk Bits to be set in the GPREGRET register.
jinu 0:6ba9b94b8997 617 *
jinu 0:6ba9b94b8997 618 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 619 */
jinu 0:6ba9b94b8997 620 SVCALL(SD_POWER_GPREGRET_SET, uint32_t, sd_power_gpregret_set(uint32_t gpregret_msk));
jinu 0:6ba9b94b8997 621
jinu 0:6ba9b94b8997 622 /**@brief Clear bits in the NRF_POWER->GPREGRET register.
jinu 0:6ba9b94b8997 623 *
jinu 0:6ba9b94b8997 624 * @param[in] gpregret_msk Bits to be clear in the GPREGRET register.
jinu 0:6ba9b94b8997 625 *
jinu 0:6ba9b94b8997 626 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 627 */
jinu 0:6ba9b94b8997 628 SVCALL(SD_POWER_GPREGRET_CLR, uint32_t, sd_power_gpregret_clr(uint32_t gpregret_msk));
jinu 0:6ba9b94b8997 629
jinu 0:6ba9b94b8997 630 /**@brief Get contents of the NRF_POWER->GPREGRET register.
jinu 0:6ba9b94b8997 631 *
jinu 0:6ba9b94b8997 632 * @param[out] p_gpregret Contents of the GPREGRET register.
jinu 0:6ba9b94b8997 633 *
jinu 0:6ba9b94b8997 634 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 635 */
jinu 0:6ba9b94b8997 636 SVCALL(SD_POWER_GPREGRET_GET, uint32_t, sd_power_gpregret_get(uint32_t *p_gpregret));
jinu 0:6ba9b94b8997 637
jinu 0:6ba9b94b8997 638 /**@brief Sets the DCDC mode.
jinu 0:6ba9b94b8997 639 *
jinu 0:6ba9b94b8997 640 * Depending on the internal state of the SoftDevice, the mode change may not happen immediately.
jinu 0:6ba9b94b8997 641 * The DCDC mode switch will be blocked when occurring in close proximity to radio transmissions. When
jinu 0:6ba9b94b8997 642 * the radio transmission is done, the last mode will be used.
jinu 0:6ba9b94b8997 643 *
jinu 0:6ba9b94b8997 644 * @param[in] dcdc_mode The mode of the DCDC.
jinu 0:6ba9b94b8997 645 *
jinu 0:6ba9b94b8997 646 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 647 * @retval ::NRF_ERROR_INVALID_PARAM The DCDC mode is invalid.
jinu 0:6ba9b94b8997 648 */
jinu 0:6ba9b94b8997 649 SVCALL(SD_POWER_DCDC_MODE_SET, uint32_t, sd_power_dcdc_mode_set(nrf_power_dcdc_mode_t dcdc_mode));
jinu 0:6ba9b94b8997 650
jinu 0:6ba9b94b8997 651 /**@brief Request the high frequency crystal oscillator.
jinu 0:6ba9b94b8997 652 *
jinu 0:6ba9b94b8997 653 * Will start the high frequency crystal oscillator, the startup time of the crystal varies
jinu 0:6ba9b94b8997 654 * and the ::sd_clock_hfclk_is_running function can be polled to check if it has started.
jinu 0:6ba9b94b8997 655 *
jinu 0:6ba9b94b8997 656 * @see sd_clock_hfclk_is_running
jinu 0:6ba9b94b8997 657 * @see sd_clock_hfclk_release
jinu 0:6ba9b94b8997 658 *
jinu 0:6ba9b94b8997 659 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 660 */
jinu 0:6ba9b94b8997 661 SVCALL(SD_CLOCK_HFCLK_REQUEST, uint32_t, sd_clock_hfclk_request(void));
jinu 0:6ba9b94b8997 662
jinu 0:6ba9b94b8997 663 /**@brief Releases the high frequency crystal oscillator.
jinu 0:6ba9b94b8997 664 *
jinu 0:6ba9b94b8997 665 * Will stop the high frequency crystal oscillator, this happens immediately.
jinu 0:6ba9b94b8997 666 *
jinu 0:6ba9b94b8997 667 * @see sd_clock_hfclk_is_running
jinu 0:6ba9b94b8997 668 * @see sd_clock_hfclk_request
jinu 0:6ba9b94b8997 669 *
jinu 0:6ba9b94b8997 670 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 671 */
jinu 0:6ba9b94b8997 672 SVCALL(SD_CLOCK_HFCLK_RELEASE, uint32_t, sd_clock_hfclk_release(void));
jinu 0:6ba9b94b8997 673
jinu 0:6ba9b94b8997 674 /**@brief Checks if the high frequency crystal oscillator is running.
jinu 0:6ba9b94b8997 675 *
jinu 0:6ba9b94b8997 676 * @see sd_clock_hfclk_request
jinu 0:6ba9b94b8997 677 * @see sd_clock_hfclk_release
jinu 0:6ba9b94b8997 678 *
jinu 0:6ba9b94b8997 679 * @param[out] p_is_running 1 if the external crystal oscillator is running, 0 if not.
jinu 0:6ba9b94b8997 680 *
jinu 0:6ba9b94b8997 681 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 682 */
jinu 0:6ba9b94b8997 683 SVCALL(SD_CLOCK_HFCLK_IS_RUNNING, uint32_t, sd_clock_hfclk_is_running(uint32_t * p_is_running));
jinu 0:6ba9b94b8997 684
jinu 0:6ba9b94b8997 685 /**@brief Waits for an application event.
jinu 0:6ba9b94b8997 686 *
jinu 0:6ba9b94b8997 687 * An application event is either an application interrupt or a pended interrupt when the
jinu 0:6ba9b94b8997 688 * interrupt is disabled. When the interrupt is enabled it will be taken immediately since
jinu 0:6ba9b94b8997 689 * this function will wait in thread mode, then the execution will return in the application's
jinu 0:6ba9b94b8997 690 * main thread. When an interrupt is disabled and gets pended it will return to the application's
jinu 0:6ba9b94b8997 691 * thread main. The application must ensure that the pended flag is cleared using
jinu 0:6ba9b94b8997 692 * ::sd_nvic_ClearPendingIRQ in order to sleep using this function. This is only necessary for
jinu 0:6ba9b94b8997 693 * disabled interrupts, as the interrupt handler will clear the pending flag automatically for
jinu 0:6ba9b94b8997 694 * enabled interrupts.
jinu 0:6ba9b94b8997 695 *
jinu 0:6ba9b94b8997 696 * In order to wake up from disabled interrupts, the SEVONPEND flag has to be set in the Cortex-M0
jinu 0:6ba9b94b8997 697 * System Control Register (SCR). @sa CMSIS_SCB
jinu 0:6ba9b94b8997 698 *
jinu 0:6ba9b94b8997 699 * @note If an application interrupt has happened since the last time sd_app_evt_wait was
jinu 0:6ba9b94b8997 700 * called this function will return immediately and not go to sleep. This is to avoid race
jinu 0:6ba9b94b8997 701 * conditions that can occur when a flag is updated in the interrupt handler and processed
jinu 0:6ba9b94b8997 702 * in the main loop.
jinu 0:6ba9b94b8997 703 *
jinu 0:6ba9b94b8997 704 * @post An application interrupt has happened or a interrupt pending flag is set.
jinu 0:6ba9b94b8997 705 *
jinu 0:6ba9b94b8997 706 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 707 */
jinu 0:6ba9b94b8997 708 SVCALL(SD_APP_EVT_WAIT, uint32_t, sd_app_evt_wait(void));
jinu 0:6ba9b94b8997 709
jinu 0:6ba9b94b8997 710 /**@brief Get PPI channel enable register contents.
jinu 0:6ba9b94b8997 711 *
jinu 0:6ba9b94b8997 712 * @param[out] p_channel_enable The contents of the PPI CHEN register.
jinu 0:6ba9b94b8997 713 *
jinu 0:6ba9b94b8997 714 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 715 */
jinu 0:6ba9b94b8997 716 SVCALL(SD_PPI_CHANNEL_ENABLE_GET, uint32_t, sd_ppi_channel_enable_get(uint32_t * p_channel_enable));
jinu 0:6ba9b94b8997 717
jinu 0:6ba9b94b8997 718 /**@brief Set PPI channel enable register.
jinu 0:6ba9b94b8997 719 *
jinu 0:6ba9b94b8997 720 * @param[in] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register.
jinu 0:6ba9b94b8997 721 *
jinu 0:6ba9b94b8997 722 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 723 */
jinu 0:6ba9b94b8997 724 SVCALL(SD_PPI_CHANNEL_ENABLE_SET, uint32_t, sd_ppi_channel_enable_set(uint32_t channel_enable_set_msk));
jinu 0:6ba9b94b8997 725
jinu 0:6ba9b94b8997 726 /**@brief Clear PPI channel enable register.
jinu 0:6ba9b94b8997 727 *
jinu 0:6ba9b94b8997 728 * @param[in] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register.
jinu 0:6ba9b94b8997 729 *
jinu 0:6ba9b94b8997 730 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 731 */
jinu 0:6ba9b94b8997 732 SVCALL(SD_PPI_CHANNEL_ENABLE_CLR, uint32_t, sd_ppi_channel_enable_clr(uint32_t channel_enable_clr_msk));
jinu 0:6ba9b94b8997 733
jinu 0:6ba9b94b8997 734 /**@brief Assign endpoints to a PPI channel.
jinu 0:6ba9b94b8997 735 *
jinu 0:6ba9b94b8997 736 * @param[in] channel_num Number of the PPI channel to assign.
jinu 0:6ba9b94b8997 737 * @param[in] evt_endpoint Event endpoint of the PPI channel.
jinu 0:6ba9b94b8997 738 * @param[in] task_endpoint Task endpoint of the PPI channel.
jinu 0:6ba9b94b8997 739 *
jinu 0:6ba9b94b8997 740 * @retval ::NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid.
jinu 0:6ba9b94b8997 741 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 742 */
jinu 0:6ba9b94b8997 743 SVCALL(SD_PPI_CHANNEL_ASSIGN, uint32_t, sd_ppi_channel_assign(uint8_t channel_num, const volatile void * evt_endpoint, const volatile void * task_endpoint));
jinu 0:6ba9b94b8997 744
jinu 0:6ba9b94b8997 745 /**@brief Task to enable a channel group.
jinu 0:6ba9b94b8997 746 *
jinu 0:6ba9b94b8997 747 * @param[in] group_num Number of the channel group.
jinu 0:6ba9b94b8997 748 *
jinu 0:6ba9b94b8997 749 * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid
jinu 0:6ba9b94b8997 750 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 751 */
jinu 0:6ba9b94b8997 752 SVCALL(SD_PPI_GROUP_TASK_ENABLE, uint32_t, sd_ppi_group_task_enable(uint8_t group_num));
jinu 0:6ba9b94b8997 753
jinu 0:6ba9b94b8997 754 /**@brief Task to disable a channel group.
jinu 0:6ba9b94b8997 755 *
jinu 0:6ba9b94b8997 756 * @param[in] group_num Number of the PPI group.
jinu 0:6ba9b94b8997 757 *
jinu 0:6ba9b94b8997 758 * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
jinu 0:6ba9b94b8997 759 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 760 */
jinu 0:6ba9b94b8997 761 SVCALL(SD_PPI_GROUP_TASK_DISABLE, uint32_t, sd_ppi_group_task_disable(uint8_t group_num));
jinu 0:6ba9b94b8997 762
jinu 0:6ba9b94b8997 763 /**@brief Assign PPI channels to a channel group.
jinu 0:6ba9b94b8997 764 *
jinu 0:6ba9b94b8997 765 * @param[in] group_num Number of the channel group.
jinu 0:6ba9b94b8997 766 * @param[in] channel_msk Mask of the channels to assign to the group.
jinu 0:6ba9b94b8997 767 *
jinu 0:6ba9b94b8997 768 * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
jinu 0:6ba9b94b8997 769 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 770 */
jinu 0:6ba9b94b8997 771 SVCALL(SD_PPI_GROUP_ASSIGN, uint32_t, sd_ppi_group_assign(uint8_t group_num, uint32_t channel_msk));
jinu 0:6ba9b94b8997 772
jinu 0:6ba9b94b8997 773 /**@brief Gets the PPI channels of a channel group.
jinu 0:6ba9b94b8997 774 *
jinu 0:6ba9b94b8997 775 * @param[in] group_num Number of the channel group.
jinu 0:6ba9b94b8997 776 * @param[out] p_channel_msk Mask of the channels assigned to the group.
jinu 0:6ba9b94b8997 777 *
jinu 0:6ba9b94b8997 778 * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
jinu 0:6ba9b94b8997 779 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 780 */
jinu 0:6ba9b94b8997 781 SVCALL(SD_PPI_GROUP_GET, uint32_t, sd_ppi_group_get(uint8_t group_num, uint32_t * p_channel_msk));
jinu 0:6ba9b94b8997 782
jinu 0:6ba9b94b8997 783 /**@brief Configures the Radio Notification signal.
jinu 0:6ba9b94b8997 784 *
jinu 0:6ba9b94b8997 785 * @note
jinu 0:6ba9b94b8997 786 * - The notification signal latency depends on the interrupt priority settings of SWI used
jinu 0:6ba9b94b8997 787 * for notification signal.
jinu 0:6ba9b94b8997 788 * - In the period between the ACTIVE signal and the start of the Radio Event, the SoftDevice
jinu 0:6ba9b94b8997 789 * will interrupt the application to do Radio Event preparation.
jinu 0:6ba9b94b8997 790 * - Using the Radio Notification feature may limit the bandwidth, as the SoftDevice may have
jinu 0:6ba9b94b8997 791 * to shorten the connection events to have time for the Radio Notification signals.
jinu 0:6ba9b94b8997 792 *
jinu 0:6ba9b94b8997 793 * @param[in] type Type of notification signal.
jinu 0:6ba9b94b8997 794 * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio
jinu 0:6ba9b94b8997 795 * notification. Using @ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is
jinu 0:6ba9b94b8997 796 * recommended (but not required) to be used with
jinu 0:6ba9b94b8997 797 * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE.
jinu 0:6ba9b94b8997 798 *
jinu 0:6ba9b94b8997 799 * @param[in] distance Distance between the notification signal and start of radio activity.
jinu 0:6ba9b94b8997 800 * This parameter is ignored when @ref NRF_RADIO_NOTIFICATION_TYPE_NONE or
jinu 0:6ba9b94b8997 801 * @ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used.
jinu 0:6ba9b94b8997 802 *
jinu 0:6ba9b94b8997 803 * @retval ::NRF_ERROR_INVALID_PARAM The group number is invalid.
jinu 0:6ba9b94b8997 804 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 805 */
jinu 0:6ba9b94b8997 806 SVCALL(SD_RADIO_NOTIFICATION_CFG_SET, uint32_t, sd_radio_notification_cfg_set(nrf_radio_notification_type_t type, nrf_radio_notification_distance_t distance));
jinu 0:6ba9b94b8997 807
jinu 0:6ba9b94b8997 808 /**@brief Encrypts a block according to the specified parameters.
jinu 0:6ba9b94b8997 809 *
jinu 0:6ba9b94b8997 810 * 128-bit AES encryption.
jinu 0:6ba9b94b8997 811 *
jinu 0:6ba9b94b8997 812 * @param[in, out] p_ecb_data Pointer to the ECB parameters' struct (two input
jinu 0:6ba9b94b8997 813 * parameters and one output parameter).
jinu 0:6ba9b94b8997 814 *
jinu 0:6ba9b94b8997 815 * @retval ::NRF_SUCCESS
jinu 0:6ba9b94b8997 816 */
jinu 0:6ba9b94b8997 817 SVCALL(SD_ECB_BLOCK_ENCRYPT, uint32_t, sd_ecb_block_encrypt(nrf_ecb_hal_data_t * p_ecb_data));
jinu 0:6ba9b94b8997 818
jinu 0:6ba9b94b8997 819 /**@brief Gets any pending events generated by the SoC API.
jinu 0:6ba9b94b8997 820 *
jinu 0:6ba9b94b8997 821 * The application should keep calling this function to get events, until ::NRF_ERROR_NOT_FOUND is returned.
jinu 0:6ba9b94b8997 822 *
jinu 0:6ba9b94b8997 823 * @param[out] p_evt_id Set to one of the values in @ref NRF_SOC_EVTS, if any events are pending.
jinu 0:6ba9b94b8997 824 *
jinu 0:6ba9b94b8997 825 * @retval ::NRF_SUCCESS An event was pending. The event id is written in the p_evt_id parameter.
jinu 0:6ba9b94b8997 826 * @retval ::NRF_ERROR_NOT_FOUND No pending events.
jinu 0:6ba9b94b8997 827 */
jinu 0:6ba9b94b8997 828 SVCALL(SD_EVT_GET, uint32_t, sd_evt_get(uint32_t * p_evt_id));
jinu 0:6ba9b94b8997 829
jinu 0:6ba9b94b8997 830 /**@brief Get the temperature measured on the chip
jinu 0:6ba9b94b8997 831 *
jinu 0:6ba9b94b8997 832 * This function will block until the temperature measurement is done.
jinu 0:6ba9b94b8997 833 * It takes around 50us from call to return.
jinu 0:6ba9b94b8997 834 *
jinu 0:6ba9b94b8997 835 * @note Pan #28 in PAN-028 v 1.6 "Negative measured values are not represented correctly" is corrected by this function.
jinu 0:6ba9b94b8997 836 *
jinu 0:6ba9b94b8997 837 * @param[out] p_temp Result of temperature measurement. Die temperature in 0.25 degrees celsius.
jinu 0:6ba9b94b8997 838 *
jinu 0:6ba9b94b8997 839 * @retval ::NRF_SUCCESS A temperature measurement was done, and the temperature was written to temp
jinu 0:6ba9b94b8997 840 */
jinu 0:6ba9b94b8997 841 SVCALL(SD_TEMP_GET, uint32_t, sd_temp_get(int32_t * p_temp));
jinu 0:6ba9b94b8997 842
jinu 0:6ba9b94b8997 843 /**@brief Flash Write
jinu 0:6ba9b94b8997 844 *
jinu 0:6ba9b94b8997 845 * Commands to write a buffer to flash
jinu 0:6ba9b94b8997 846 *
jinu 0:6ba9b94b8997 847 * This call initiates the flash access command, and its completion will be communicated to the
jinu 0:6ba9b94b8997 848 * application with exactly one of the following events:
jinu 0:6ba9b94b8997 849 * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
jinu 0:6ba9b94b8997 850 * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started.
jinu 0:6ba9b94b8997 851 *
jinu 0:6ba9b94b8997 852 * @note
jinu 0:6ba9b94b8997 853 * - This call takes control over the radio and the CPU during flash erase and write to make sure that
jinu 0:6ba9b94b8997 854 * they will not interfere with the flash access. This means that all interrupts will be blocked
jinu 0:6ba9b94b8997 855 * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
jinu 0:6ba9b94b8997 856 * and the command parameters).
jinu 0:6ba9b94b8997 857 *
jinu 0:6ba9b94b8997 858 *
jinu 0:6ba9b94b8997 859 * @param[in] p_dst Pointer to start of flash location to be written.
jinu 0:6ba9b94b8997 860 * @param[in] p_src Pointer to buffer with data to be written
jinu 0:6ba9b94b8997 861 * @param[in] size Number of 32-bit words to write. Maximum size is 256 32bit words.
jinu 0:6ba9b94b8997 862 *
jinu 0:6ba9b94b8997 863 * @retval ::NRF_ERROR_INVALID_ADDR Tried to write to a non existing flash address, or p_dst or p_src was unaligned.
jinu 0:6ba9b94b8997 864 * @retval ::NRF_ERROR_BUSY The previous command has not yet completed.
jinu 0:6ba9b94b8997 865 * @retval ::NRF_ERROR_INVALID_LENGTH Size was 0, or more than 256 words.
jinu 0:6ba9b94b8997 866 * @retval ::NRF_ERROR_FORBIDDEN Tried to write to or read from protected location.
jinu 0:6ba9b94b8997 867 * @retval ::NRF_SUCCESS The command was accepted.
jinu 0:6ba9b94b8997 868 */
jinu 0:6ba9b94b8997 869 SVCALL(SD_FLASH_WRITE, uint32_t, sd_flash_write(uint32_t * const p_dst, uint32_t const * const p_src, uint32_t size));
jinu 0:6ba9b94b8997 870
jinu 0:6ba9b94b8997 871
jinu 0:6ba9b94b8997 872 /**@brief Flash Erase page
jinu 0:6ba9b94b8997 873 *
jinu 0:6ba9b94b8997 874 * Commands to erase a flash page
jinu 0:6ba9b94b8997 875 *
jinu 0:6ba9b94b8997 876 * This call initiates the flash access command, and its completion will be communicated to the
jinu 0:6ba9b94b8997 877 * application with exactly one of the following events:
jinu 0:6ba9b94b8997 878 * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
jinu 0:6ba9b94b8997 879 * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started.
jinu 0:6ba9b94b8997 880 *
jinu 0:6ba9b94b8997 881 * @note
jinu 0:6ba9b94b8997 882 * - This call takes control over the radio and the CPU during flash erase and write to make sure that
jinu 0:6ba9b94b8997 883 * they will not interfere with the flash access. This means that all interrupts will be blocked
jinu 0:6ba9b94b8997 884 * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
jinu 0:6ba9b94b8997 885 * and the command parameters).
jinu 0:6ba9b94b8997 886 *
jinu 0:6ba9b94b8997 887 *
jinu 0:6ba9b94b8997 888 * @param[in] page_number Pagenumber of the page to erase
jinu 0:6ba9b94b8997 889 * @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error.
jinu 0:6ba9b94b8997 890 * @retval ::NRF_ERROR_INVALID_ADDR Tried to erase to a non existing flash page.
jinu 0:6ba9b94b8997 891 * @retval ::NRF_ERROR_BUSY The previous command has not yet completed.
jinu 0:6ba9b94b8997 892 * @retval ::NRF_ERROR_FORBIDDEN Tried to erase a protected page.
jinu 0:6ba9b94b8997 893 * @retval ::NRF_SUCCESS The command was accepted.
jinu 0:6ba9b94b8997 894 */
jinu 0:6ba9b94b8997 895 SVCALL(SD_FLASH_PAGE_ERASE, uint32_t, sd_flash_page_erase(uint32_t page_number));
jinu 0:6ba9b94b8997 896
jinu 0:6ba9b94b8997 897
jinu 0:6ba9b94b8997 898 /**@brief Flash Protection set
jinu 0:6ba9b94b8997 899 *
jinu 0:6ba9b94b8997 900 * Commands to set the flash protection registers PROTENSETx
jinu 0:6ba9b94b8997 901 *
jinu 0:6ba9b94b8997 902 * @note To read the values in PROTENSETx you can read them directly. They are only write-protected.
jinu 0:6ba9b94b8997 903 *
jinu 0:6ba9b94b8997 904 * @param[in] protenset0 Value to be written to PROTENSET0
jinu 0:6ba9b94b8997 905 * @param[in] protenset1 Value to be written to PROTENSET1
jinu 0:6ba9b94b8997 906 *
jinu 0:6ba9b94b8997 907 * @retval ::NRF_ERROR_FORBIDDEN Tried to protect the SoftDevice
jinu 0:6ba9b94b8997 908 * @retval ::NRF_SUCCESS Values successfully written to PROTENSETx
jinu 0:6ba9b94b8997 909 */
jinu 0:6ba9b94b8997 910 SVCALL(SD_FLASH_PROTECT, uint32_t, sd_flash_protect(uint32_t protenset0, uint32_t protenset1));
jinu 0:6ba9b94b8997 911
jinu 0:6ba9b94b8997 912 /**@brief Opens a session for radio requests.
jinu 0:6ba9b94b8997 913 *
jinu 0:6ba9b94b8997 914 * @note Only one session can be open at a time.
jinu 0:6ba9b94b8997 915 * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) will be called when the radio timeslot
jinu 0:6ba9b94b8997 916 * starts. From this point the NRF_RADIO and NRF_TIMER0 peripherals can be freely accessed
jinu 0:6ba9b94b8997 917 * by the application.
jinu 0:6ba9b94b8997 918 * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0) is called whenever the NRF_TIMER0
jinu 0:6ba9b94b8997 919 * interrupt occurs.
jinu 0:6ba9b94b8997 920 * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO) is called whenever the NRF_RADIO
jinu 0:6ba9b94b8997 921 * interrupt occurs.
jinu 0:6ba9b94b8997 922 * @note p_radio_signal_callback() will be called at ARM interrupt priority level 0. This
jinu 0:6ba9b94b8997 923 * implies that none of the sd_* API calls can be used from p_radio_signal_callback().
jinu 0:6ba9b94b8997 924 *
jinu 0:6ba9b94b8997 925 * @param[in] p_radio_signal_callback The signal callback.
jinu 0:6ba9b94b8997 926 *
jinu 0:6ba9b94b8997 927 * @retval ::NRF_ERROR_INVALID_ADDR p_radio_signal_callback is an invalid function pointer.
jinu 0:6ba9b94b8997 928 * @retval ::NRF_ERROR_BUSY If session cannot be opened.
jinu 0:6ba9b94b8997 929 * @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error.
jinu 0:6ba9b94b8997 930 * @retval ::NRF_SUCCESS Otherwise.
jinu 0:6ba9b94b8997 931 */
jinu 0:6ba9b94b8997 932 SVCALL(SD_RADIO_SESSION_OPEN, uint32_t, sd_radio_session_open(nrf_radio_signal_callback_t p_radio_signal_callback));
jinu 0:6ba9b94b8997 933
jinu 0:6ba9b94b8997 934 /**@brief Closes a session for radio requests.
jinu 0:6ba9b94b8997 935 *
jinu 0:6ba9b94b8997 936 * @note Any current radio timeslot will be finished before the session is closed.
jinu 0:6ba9b94b8997 937 * @note If a radio timeslot is scheduled when the session is closed, it will be canceled.
jinu 0:6ba9b94b8997 938 * @note The application cannot consider the session closed until the NRF_EVT_RADIO_SESSION_CLOSED
jinu 0:6ba9b94b8997 939 * event is received.
jinu 0:6ba9b94b8997 940 *
jinu 0:6ba9b94b8997 941 * @retval ::NRF_ERROR_FORBIDDEN If session not opened.
jinu 0:6ba9b94b8997 942 * @retval ::NRF_ERROR_BUSY If session is currently being closed.
jinu 0:6ba9b94b8997 943 * @retval ::NRF_SUCCESS Otherwise.
jinu 0:6ba9b94b8997 944 */
jinu 0:6ba9b94b8997 945 SVCALL(SD_RADIO_SESSION_CLOSE, uint32_t, sd_radio_session_close(void));
jinu 0:6ba9b94b8997 946
jinu 0:6ba9b94b8997 947 /**@brief Requests a radio timeslot.
jinu 0:6ba9b94b8997 948 *
jinu 0:6ba9b94b8997 949 * @note The timing of the radio timeslot is specified by p_request->distance_us. For the first
jinu 0:6ba9b94b8997 950 * request in a session, p_request->distance_us is required to be 0 by convention, and
jinu 0:6ba9b94b8997 951 * the timeslot is scheduled at the first possible opportunity. All following radio timeslots are
jinu 0:6ba9b94b8997 952 * requested with a distance of p_request->distance_us measured from the start of the
jinu 0:6ba9b94b8997 953 * previous radio timeslot.
jinu 0:6ba9b94b8997 954 * @note A too small p_request->distance_us will lead to a NRF_EVT_RADIO_BLOCKED event.
jinu 0:6ba9b94b8997 955 * @note Timeslots scheduled too close will lead to a NRF_EVT_RADIO_BLOCKED event.
jinu 0:6ba9b94b8997 956 * @note See the SoftDevice Specification for more on radio timeslot scheduling, distances and lengths.
jinu 0:6ba9b94b8997 957 * @note If an opportunity for the first radio timeslot is not found before 100ms after the call to this
jinu 0:6ba9b94b8997 958 * function, it is not scheduled, and instead a NRF_EVT_RADIO_BLOCKED event is sent.
jinu 0:6ba9b94b8997 959 * The application may then try to schedule the first radio timeslot again.
jinu 0:6ba9b94b8997 960 * @note Successful requests will result in nrf_radio_signal_callback_t(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START).
jinu 0:6ba9b94b8997 961 * Unsuccessful requests will result in a NRF_EVT_RADIO_BLOCKED event, see @ref NRF_SOC_EVTS.
jinu 0:6ba9b94b8997 962 * @note The jitter in the start time of the radio timeslots is +/- NRF_RADIO_START_JITTER_US us.
jinu 0:6ba9b94b8997 963 * @note The nrf_radio_signal_callback_t(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) call has a latency relative to the
jinu 0:6ba9b94b8997 964 * specified radio timeslot start, but this does not affect the actual start time of the timeslot.
jinu 0:6ba9b94b8997 965 * @note NRF_TIMER0 is reset at the start of the radio timeslot, and is clocked at 1MHz from the high frequency
jinu 0:6ba9b94b8997 966 * (16 MHz) clock source. If p_request->hfclk_force_xtal is true, the high frequency clock is
jinu 0:6ba9b94b8997 967 * guaranteed to be clocked from the external crystal.
jinu 0:6ba9b94b8997 968 * @note The SoftDevice will neither access the NRF_RADIO peripheral nor the NRF_TIMER0 peripheral
jinu 0:6ba9b94b8997 969 * during the radio timeslot.
jinu 0:6ba9b94b8997 970 *
jinu 0:6ba9b94b8997 971 * @param[in] p_request Pointer to the request parameters.
jinu 0:6ba9b94b8997 972 *
jinu 0:6ba9b94b8997 973 * @retval ::NRF_ERROR_FORBIDDEN If session not opened or the session is not IDLE.
jinu 0:6ba9b94b8997 974 * @retval ::NRF_ERROR_INVALID_ADDR If the p_request pointer is invalid.
jinu 0:6ba9b94b8997 975 * @retval ::NRF_ERROR_INVALID_PARAM If the parameters of p_request are not valid.
jinu 0:6ba9b94b8997 976 * @retval ::NRF_SUCCESS Otherwise.
jinu 0:6ba9b94b8997 977 */
jinu 0:6ba9b94b8997 978 SVCALL(SD_RADIO_REQUEST, uint32_t, sd_radio_request(nrf_radio_request_t * p_request ));
jinu 0:6ba9b94b8997 979
jinu 0:6ba9b94b8997 980 /** @} */
jinu 0:6ba9b94b8997 981
jinu 0:6ba9b94b8997 982 #endif // NRF_SOC_H__
jinu 0:6ba9b94b8997 983
jinu 0:6ba9b94b8997 984 /**@} */
jinu 0:6ba9b94b8997 985