Arianna autonomous DAQ firmware

Dependencies:   mbed SDFileSystemFilinfo AriSnProtocol NetServicesMin AriSnComm MODSERIAL PowerControlClkPatch DS1820OW

SnSigProcUtils.h

Committer:
uci1
Date:
2015-11-24
Revision:
110:d1da040a0cf2
Parent:
84:80b15993944e

File content as of revision 110:d1da040a0cf2:

#ifndef SN_SnSigProcUtils
#define SN_SnSigProcUtils

#include <cmath>
#include <stdint.h>

#include "SnConstants.h"
#include "SnSigProcDataTable.h"

struct SnSigProcUtils {
    
    static const double kPi;
    static const double kTwoPi;
        
    
    template<typename Num_t, typename Res_t>
    static
    void GetArraySumAndMaxSingleLoop(const Num_t* const data, const uint32_t n,
                                     Res_t& sum, Res_t& max) {
        const Num_t* d = data;
        max = static_cast<Res_t>(*d);
        sum = static_cast<Res_t>(*d);
        ++d; // skip past element 0
        for (uint32_t i=1; i<n; ++i, ++d) {
            sum += static_cast<Res_t>(*d);
            if (*d > max) {
                max = static_cast<Res_t>(*d);
            }
        }
    }
    
    template<typename Dst_t, typename Src_t>
    static
    void MemCpyOrLoopCpy(Dst_t* const dst, const Src_t* const src,
                         const uint32_t n) {
#ifdef DEBUG_
        printf("MemCpyOrLoopCpy : loop\r\n");
#endif
        Dst_t* d = dst;
        const Src_t* s = src;
        for (uint32_t i=0; i<n; ++i, ++d, ++s) {
            *d = static_cast<Dst_t>(*s);
        }
    }
    

    template<typename Same_t>
    static
    void MemCpyOrLoopCpy(Same_t* const dst, const Same_t* const src,
                         const uint32_t n) {
        // can only memcpy if the types are the same
#ifdef DEBUG_
        printf("MemCpyOrLoopCpy : memcpy\r\n");
#endif
        memcpy(dst, src, sizeof(Same_t)*n);
    }
    
    // the number of samples is a template parameter rather than
    // an input parameter so that we can be sure to use the proper
    // lookup tables, and that we should be somewhat safe against
    // using the wrong tables if the number of samples changes in the
    // future, as the code should no longer compile.
    template<uint32_t nn, typename Num_t>
    static
    bool DiscreteCpxFFT(Num_t* const data,
                        const bool inverse) {
        // replace the data in the 'data' array by its discrete, complex-valued FFT
        // 
        // if inverse is true, will do the inverse FFT
        // (unlike the function provided in NumRecC, the inverse FFT will
        // be provided already be normalized)
        // so calling DiscreteCpxFFT inverse on the result of
        // DiscreteCpxFFT forward will yield the original data (within
        // numerical accuracy)
        //
        // See RealFFT for notes on normalization. However, unlike RealFFT,
        // the factors of 2 and special bin treatments are not necessary
        // for the complex FFT, since both positive and negative
        // frequencies are stored in their own bins.
        // 
        // NOTE: "data" must be of length 2*nn!! since the calculation is done
        // in place. the time domain data should be in the first half of "data".
        // nn must be a power of two
        // the fft is organized like: [ real_0, img_0, real_1, img_1, ... ]
        //
        // NUM REC C - 12.2, pg 507-508
        //
        // return true iff FFT succeeded
        
        if ( ((nn-1)&nn)!=0 ) {
#ifdef DEBUG
            printf("<DiscreteCpxFFT>: nn (=%u) must be a power of 2.",nn);
            return false;
#endif
        } else {
        
          static const uint32_t n = nn<<1;  // nn * 2
          Num_t tempr,tempi;
          uint32_t m;
          uint32_t i,j=1;
          Num_t* di=data, * di1=data+1, * dj, * dj1;
#ifdef USE_DFFT_LUTS
          const typename SnSigProcDataTable<n>::DfftDivideIndicies_t* kdi = 
            SnSigProcDataTable<n>::kDfftDivideIndicies;
#endif
          for (i=1; i<n; i+=2, di+=2, di1+=2) {
             if (j > i) {
                dj    = data + j - 1;
                dj1   = dj + 1;
                tempr = *dj;  *dj  = *di;  *di  = tempr;
                tempr = *dj1; *dj1 = *di1; *di1 = tempr;
             }
#ifdef USE_DFFT_LUTS
             j = *kdi++;
             m = *kdi++;
#else
             m = nn;
             while (m>1 && j>m) {
                j -= m;
                m >>= 1;
             }
             j += m;
#endif
          }

#ifdef USE_DFFT_LUTS
          double wr, wi;
          const typename SnSigProcDataTable<n>::DfftTwidleFactor_t* ktf = 
            SnSigProcDataTable<n>::kDfftTwidleFactors;          
#else
          double wtemp, wr, wpr, wpi, wi, theta;
          const int8_t isign = inverse ? -1 : 1;
#endif
          uint32_t mmax=2, istep;
          while (n > mmax) {
             istep = mmax<<1;
#ifndef USE_DFFT_LUTS // if not defined!
             theta = isign * (kTwoPi / mmax);
             wtemp = std::sin(0.5*theta);
             wpr   = -2.0 * wtemp * wtemp;
             wpi   = std::sin(theta);
             wr    = 1.0;
             wi    = 0.0;
#endif
             for (m=1; m<mmax; m+=2) {
#ifdef USE_DFFT_LUTS
                wr = *ktf++;
                wi = *ktf++;
                if (inverse) {
                    wi = -wi;
                }
#endif
                for (i=m; i<=n; i+=istep) {
                   j     = i + mmax;
                   dj    = data + j - 1;
                   dj1   = dj+1;
                   di    = data + i - 1;
                   di1   = di+1;
                   tempr = wr * (*dj)  - wi*(*dj1);
                   tempi = wr * (*dj1) + wi*(*dj);
                   *dj   = *di  - tempr;
                   *dj1  = *di1 - tempi;
                   *di  += tempr;
                   *di1 += tempi;
                }
#ifndef USE_DFFT_LUTS // if not defined!
                wtemp = wr;
                wr = wtemp*wpr - wi*wpi    + wr;
                wi = wi*wpr    + wtemp*wpi + wi;
#endif
             }
             mmax = istep;
          }
          if (inverse) {
             // scale amplitude back
             di = data;
             static const Num_t tn = 2.0/static_cast<Num_t>(n);
             for (i=0; i<n; ++i, ++di) {
                *di *= tn;
             }
          }
        }
        
        return true;
    }

    // the number of samples is a template parameter rather than
    // an input parameter so that we can be sure to use the proper
    // lookup tables, and that we should be somewhat safe against
    // using the wrong tables if the number of samples changes in the
    // future, as the code should no longer compile.
    template<uint32_t n, typename Num_t>
    static
    bool RealFFT(Num_t* const data,
                 const bool inverse) {
        // replace the real-valued data with the positive frequency half of its
        // complex fourier transform
        //
        // the real valued first & last components of the complex transform
        // are stored in data[0] and data[1], respectively
        //
        // n must be a power of 2
        //
        // data goes from [0..n-1]
        // 
        // Note on the normalization convention used:
        // The 2/n normalization is applied only on the inverse FFT.
        // * To normalize the *amplitude* of frequencies in the forward
        //   FFT, multiply by 2/n in bins [2..n-1] (which store two both
        //   the pos and neg frequencies) and 1/n in bins [0..1]. For
        //   example, if you have in the time domain (200*sine_50MHz +
        //   300*sine_230MHz) and you want to see a spike at 50MHz with
        //   amplitude 200 and a spike at 230MHz with amplitude 300, you
        //   should multiply bins 0 and 1 by 1/n and the other bins by 2/n.
        // * To normalize the *total power* of the forward FFT, multiply
        //   by 2/sqrt(n) for bins [2..n-1] (which store two both
        //   the pos and neg frequencies) and 1/sqrt(n) in bins [0..1].
        //   This is the normalization chosen by NewGraphFromRealFFT when its
        //   "normalize" parameter is true.
        //
        // if inverse is true, will perform the inverse FFT
        // (unlike the function provided in NumRecC, the inverse FFT will
        // be provided already be mulitplied by 2/n) -- so taking the inverse
        // FFT of the result of the forward FFT will yield directly the original
        // data (within numerical accuracy).
        //
        // NUM REC C - 12.3, pg 513-514
        //
        // return true iff the FFT succeeded
        
        if ( ((n-1)&n)!=0 ) {
#ifdef DEBUG
            printf("<RealFFT>: n (=%u) must be a power of 2.",n);
#endif
            return false;
        } else {
       
            double theta = kPi / static_cast<double>(n>>1);
            float c1=0.5, c2;
            if (inverse) {
                c2 = 0.5;
                theta = -theta;     // set up for inverse tranform
            } else {
                c2 = -0.5;
                DiscreteCpxFFT<(n/2)>(data,false); // forward FFT
            }
        
#ifdef USE_DFFT_LUTS
            typename SnSigProcDataTable<n>::RealDfftTwidleFactor_t
                wr, wi; 
            const typename SnSigProcDataTable<n>::RealDfftTwidleFactor_t
                * krtf = SnSigProcDataTable<n>::kRealDfftTwidleFactor;
#else
            double wtemp     = std::sin(0.5*theta);
            const double wpr = -2.0*wtemp*wtemp;
            const double wpi = std::sin(theta);
            double wr        = 1.0+wpr;
            double wi        = wpi;
#endif
            float h1r, h1i, h2r, h2i;
            const uint32_t n4  = n>>2; // n/4
            uint32_t i;
            Num_t* d1 = data+2,   * d2 = d1+1,
                 * d3 = data+n-2, * d4 = d3+1;
            for (i=1; i<n4; ++i, d1+=2, d2+=2, d3-=2, d4-=2) {
#ifdef USE_DFFT_LUTS
                wr = *krtf++;
                wi = *krtf++;
                if (inverse) {
                    wi = -wi;
                }
#endif
                h1r   =  c1 * ((*d1)+(*d3));
                h1i   =  c1 * ((*d2)-(*d4));
                h2r   = -c2 * ((*d2)+(*d4));
                h2i   =  c2 * ((*d1)-(*d3));
                *d1   =  h1r + wr*h2r - wi*h2i;
                *d2   =  h1i + wr*h2i + wi*h2r;
                *d3   =  h1r - wr*h2r + wi*h2i;
                *d4   = -h1i + wr*h2i + wi*h2r;
#ifndef USE_DFFT_LUTS // if not defined!
                wtemp = wr;
                wr    = wtemp*wpr - wi*wpi    + wr;
                wi    = wi*wpr    + wtemp*wpi + wi;
#endif
            }
           
            // now fill in the beginning and end of the array
            if (inverse) {
                h1r   = *data;
                d1    = data+1;
                *data = c1*(h1r + (*d1));
                *d1   = c1*(h1r - (*d1));
                DiscreteCpxFFT<(n/2)>(data,inverse);       // inverse tranform
            } else {
                h1r   = *data;
                d1    = data+1;
                *data = h1r + (*d1);
                *d1   = h1r - (*d1);
            }
        }
        return true;
    }

    template<typename Num_t>
    static
    uint32_t ReplaceRfftWithSpectrum(Num_t* const rfft,
                                     const uint32_t n,
                                     const bool doSqrt) {
        // rfft should contain the result of RealFFT and n is the number
        // of samples.
        // this routine will replace the first half of the array
        // with the "spectrum" (frequency magnitude) at each freq bin.
        // valid freq bins are from [0, (n/2)+1]
        //
        // return the number of freq bins filled, or else 0 on error
        
        if (rfft!=0) {
            //const uint32_t hn = n>>1; // n/2
            //uint32_t j=0;
            // set the first freq bin
            rfft[0] = (doSqrt) ? std::abs(rfft[0])
                : (rfft[0]*rfft[0]);
            // store the last freq bin
            const Num_t hibin = 
                (doSqrt) ? std::abs(rfft[1])
                         : (rfft[1]*rfft[1]);
            // loop over other freqs
            const Num_t* fe=rfft+2; // evens
            const Num_t* fo=fe+1;   // odds
            Num_t* fbin=rfft+1;     // current freq bin
            for (uint32_t i=2; i<n; i+=2, fe+=2, fo+=2, ++fbin) {
                *fbin = ( ((*fe)*(*fe)) + ((*fo)*(*fo)) );
                if (doSqrt) {
                    *fbin = std::sqrt(static_cast<float>(*fbin));
                }
            }
            // set the last freq bin
            *fbin = hibin;

            return (fbin-rfft+1);
        }
        return 0;
    }
    
};

#endif // SN_SnSigProcUtils