Code to detect walking and convert to input for video game

Dependencies:   LSM9DS1_Library_cal2 XBee mbed

Fork of FootModule by Justin Gensel

Revision:
5:c4ae0656a736
Parent:
4:43a6ec1af346
--- a/main.cpp	Sun Apr 30 19:48:22 2017 +0000
+++ b/main.cpp	Mon May 01 12:38:55 2017 +0000
@@ -16,224 +16,7 @@
 DigitalOut led4(LED4);
 Serial pc(USBTX, USBRX);
 DigitalIn pb1(p17);
-//USBKeyboard keyboard;
-// Calculate pitch, roll, and heading.
-// Pitch/roll calculations taken from this app note:
-// http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf?fpsp=1
-// Heading calculations taken from this app note:
-// http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf
-#include <math.h>
 
-//---------------------------------------------------------------------------------------------------
-// Definitions
-
-#define sampleFreq  952.0f      // sample frequency in Hz
-#define betaDef     0.1f        // 2 * proportional gain
-
-//---------------------------------------------------------------------------------------------------
-// Variable definitions
-
-volatile float beta = betaDef;                              // 2 * proportional gain (Kp)
-volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f;  // quaternion of sensor frame relative to auxiliary frame
-
-//---------------------------------------------------------------------------------------------------
-// Function declarations
-
-float invSqrt(float x);
-
-//====================================================================================================
-// Functions
-
-//---------------------------------------------------------------------------------------------------
-// AHRS algorithm update
-void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
-void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
-{
-    float recipNorm;
-    float s0, s1, s2, s3;
-    float qDot1, qDot2, qDot3, qDot4;
-    float hx, hy;
-    float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
-
-    // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
-    if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
-        MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az);
-        return;
-    }
-
-    // Rate of change of quaternion from gyroscope
-    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
-    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
-    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
-    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
-
-    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
-    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
-
-        // Normalise accelerometer measurement
-        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
-        ax *= recipNorm;
-        ay *= recipNorm;
-        az *= recipNorm;
-
-        // Normalise magnetometer measurement
-        recipNorm = invSqrt(mx * mx + my * my + mz * mz);
-        mx *= recipNorm;
-        my *= recipNorm;
-        mz *= recipNorm;
-
-        // Auxiliary variables to avoid repeated arithmetic
-        _2q0mx = 2.0f * q0 * mx;
-        _2q0my = 2.0f * q0 * my;
-        _2q0mz = 2.0f * q0 * mz;
-        _2q1mx = 2.0f * q1 * mx;
-        _2q0 = 2.0f * q0;
-        _2q1 = 2.0f * q1;
-        _2q2 = 2.0f * q2;
-        _2q3 = 2.0f * q3;
-        _2q0q2 = 2.0f * q0 * q2;
-        _2q2q3 = 2.0f * q2 * q3;
-        q0q0 = q0 * q0;
-        q0q1 = q0 * q1;
-        q0q2 = q0 * q2;
-        q0q3 = q0 * q3;
-        q1q1 = q1 * q1;
-        q1q2 = q1 * q2;
-        q1q3 = q1 * q3;
-        q2q2 = q2 * q2;
-        q2q3 = q2 * q3;
-        q3q3 = q3 * q3;
-
-        // Reference direction of Earth's magnetic field
-        hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
-        hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
-        _2bx = sqrt(hx * hx + hy * hy);
-        _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
-        _4bx = 2.0f * _2bx;
-        _4bz = 2.0f * _2bz;
-
-        // Gradient decent algorithm corrective step
-        s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
-        s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
-        s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
-        s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
-        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
-        s0 *= recipNorm;
-        s1 *= recipNorm;
-        s2 *= recipNorm;
-        s3 *= recipNorm;
-
-        // Apply feedback step
-        qDot1 -= beta * s0;
-        qDot2 -= beta * s1;
-        qDot3 -= beta * s2;
-        qDot4 -= beta * s3;
-    }
-
-    // Integrate rate of change of quaternion to yield quaternion
-    q0 += qDot1 * (1.0f / sampleFreq);
-    q1 += qDot2 * (1.0f / sampleFreq);
-    q2 += qDot3 * (1.0f / sampleFreq);
-    q3 += qDot4 * (1.0f / sampleFreq);
-
-    // Normalise quaternion
-    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
-    q0 *= recipNorm;
-    q1 *= recipNorm;
-    q2 *= recipNorm;
-    q3 *= recipNorm;
-}
-
-//---------------------------------------------------------------------------------------------------
-// IMU algorithm update
-
-void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az)
-{
-    float recipNorm;
-    float s0, s1, s2, s3;
-    float qDot1, qDot2, qDot3, qDot4;
-    float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
-
-    // Rate of change of quaternion from gyroscope
-    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
-    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
-    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
-    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
-
-    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
-    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
-
-        // Normalise accelerometer measurement
-        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
-        ax *= recipNorm;
-        ay *= recipNorm;
-        az *= recipNorm;
-
-        // Auxiliary variables to avoid repeated arithmetic
-        _2q0 = 2.0f * q0;
-        _2q1 = 2.0f * q1;
-        _2q2 = 2.0f * q2;
-        _2q3 = 2.0f * q3;
-        _4q0 = 4.0f * q0;
-        _4q1 = 4.0f * q1;
-        _4q2 = 4.0f * q2;
-        _8q1 = 8.0f * q1;
-        _8q2 = 8.0f * q2;
-        q0q0 = q0 * q0;
-        q1q1 = q1 * q1;
-        q2q2 = q2 * q2;
-        q3q3 = q3 * q3;
-
-        // Gradient decent algorithm corrective step
-        s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
-        s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
-        s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
-        s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
-        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
-        s0 *= recipNorm;
-        s1 *= recipNorm;
-        s2 *= recipNorm;
-        s3 *= recipNorm;
-
-        // Apply feedback step
-        qDot1 -= beta * s0;
-        qDot2 -= beta * s1;
-        qDot3 -= beta * s2;
-        qDot4 -= beta * s3;
-    }
-
-    // Integrate rate of change of quaternion to yield quaternion
-    q0 += qDot1 * (1.0f / sampleFreq);
-    q1 += qDot2 * (1.0f / sampleFreq);
-    q2 += qDot3 * (1.0f / sampleFreq);
-    q3 += qDot4 * (1.0f / sampleFreq);
-
-    // Normalise quaternion
-    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
-    q0 *= recipNorm;
-    q1 *= recipNorm;
-    q2 *= recipNorm;
-    q3 *= recipNorm;
-}
-
-//---------------------------------------------------------------------------------------------------
-// Fast inverse square-root
-// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
-
-float invSqrt(float x)
-{
-    float halfx = 0.5f * x;
-    float y = x;
-    long i = *(long*)&y;
-    i = 0x5f3759df - (i>>1);
-    y = *(float*)&i;
-    y = y * (1.5f - (halfx * y * y));
-    return y;
-}
-
-//====================================================================================================
-// END OF CODE
-//====================================================================================================
 
 
 
@@ -296,21 +79,12 @@
     wireless.sendDirection(DIR_NONE);
     isWalking = false;
 }
-void resetForward()
-{
-    q0 = 1.0f;
-    q1 = 0.0f;
-    q2 = 0.0f;
-    q3 = 0.0f;
-    MadgwickAHRSupdate(IMU.calcGyro(gx), IMU.calcGyro(gy), IMU.calcGyro(gz), IMU.calcAccel(ax), IMU.calcAccel(ay), IMU.calcAccel(az), IMU.calcMag(mx), IMU.calcMag(my), IMU.calcMag(mz));
-}
 
 
 
 
 int main()
 {
-    //LSM9DS1 lol(p9, p10, 0x6B, 0x1E);
 
     pb1.mode(PullUp);
     IMU.begin();
@@ -344,7 +118,6 @@
                                 IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));;
     }
     led3 = 1;
-    resetStart.attach(resetForward, 0.1);
     while(1) {
         while(!IMU.tempAvailable());
         IMU.readTemp();
@@ -355,22 +128,13 @@
         while(!IMU.gyroAvailable());
         IMU.readGyro();
 
-        MadgwickAHRSupdate(IMU.calcGyro(IMU.gx), IMU.calcGyro(IMU.gy), IMU.calcGyro(IMU.gz), IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az), IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
-        float Yaw_m=atan2(2*q1*q2-2*q0*q3,2*q0*q0+2*q1*q1-1)*180/PI;
-        float Pitch_m=-1*asin(2*q1*q3+2*q0*q2)*180/PI;
-        float Roll_m=atan2(2*q2*q3-2*q0*q1,2*q0*q0+2*q3*q3-1)*180/PI;
-
-        if( Yaw_m < 0 ) Yaw_m += 360.0;
-        //pc.printf("yaw: %f\n\r", Yaw_m);
-        //pc.printf("Yaw: %f\n\r Roll: %f\n\r Pitch: %f\n\n\n\r", Yaw_m, Roll_m, Pitch_m);
-
         if(abs(IMU.calcGyro(IMU.gy)) > 100) {
 
             //Calculate heading relative to forward direction
             float currHeading = printAttitude(IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az), IMU.calcMag(IMU.mx),IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz));
             currHeading = correctHeading(currHeading, forward);
             pc.printf("heading: %f\n\r", currHeading);
-            //pc.printf("corrected heading: %f\n\r", currHeading);
+      
             //Start timeout to detect when stopped walking
             walkingTimer.attach(printStop, 0.3);