Jeon byungchul
/
aws-iot-example
this is fork and i will modify for STM32
Fork of AWS-test by
aws-iot/src/aws_iot_mqtt_client_publish.cpp
- Committer:
- bcjun@aname.co.kr
- Date:
- 2017-08-04
- Revision:
- 3:1ef624d94403
- Parent:
- 2:db59f45ad3d3
File content as of revision 3:1ef624d94403:
/* * Copyright 2015-2016 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ // Based on Eclipse Paho. /******************************************************************************* * Copyright (c) 2014 IBM Corp. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v1.0 which accompany this distribution. * * The Eclipse Public License is available at * http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * Contributors: * Ian Craggs - initial API and implementation and/or initial documentation * Ian Craggs - fix for https://bugs.eclipse.org/bugs/show_bug.cgi?id=453144 *******************************************************************************/ /** * @file aws_iot_mqtt_client_publish.c * @brief MQTT client publish API definitions */ #ifdef __cplusplus extern "C" { #endif #include "aws_iot_mqtt_client_common_internal.h" /** * @param stringVar pointer to the String into which the data is to be read * @param stringLen pointer to variable which has the length of the string * @param pptr pointer to the output buffer - incremented by the number of bytes used & returned * @param enddata pointer to the end of the data: do not read beyond * @return IOT_SUCCESS if successful, IOT_FAILURE if not */ static IoT_Error_t _aws_iot_mqtt_read_string_with_len(char **stringVar, uint16_t *stringLen, unsigned char **pptr, unsigned char *enddata) { IoT_Error_t rc = IOT_FAILURE; FUNC_ENTRY; /* the first two bytes are the length of the string */ /* enough length to read the integer? */ if(enddata - (*pptr) > 1) { *stringLen = aws_iot_mqtt_internal_read_uint16_t(pptr); /* increments pptr to point past length */ if(&(*pptr)[*stringLen] <= enddata) { *stringVar = (char *) *pptr; *pptr += *stringLen; rc = IOT_SUCCESS; } } FUNC_EXIT_RC(rc); } /** * Serializes the supplied publish data into the supplied buffer, ready for sending * @param pTxBuf the buffer into which the packet will be serialized * @param txBufLen the length in bytes of the supplied buffer * @param dup uint8_t - the MQTT dup flag * @param qos QoS - the MQTT QoS value * @param retained uint8_t - the MQTT retained flag * @param packetId uint16_t - the MQTT packet identifier * @param pTopicName char * - the MQTT topic in the publish * @param topicNameLen uint16_t - the length of the Topic Name * @param pPayload byte buffer - the MQTT publish payload * @param payloadLen size_t - the length of the MQTT payload * @param pSerializedLen uint32_t - pointer to the variable that stores serialized len * * @return An IoT Error Type defining successful/failed call */ static IoT_Error_t _aws_iot_mqtt_internal_serialize_publish(unsigned char *pTxBuf, size_t txBufLen, uint8_t dup, QoS qos, uint8_t retained, uint16_t packetId, const char *pTopicName, uint16_t topicNameLen, const unsigned char *pPayload, size_t payloadLen, uint32_t *pSerializedLen) { unsigned char *ptr; uint32_t rem_len; IoT_Error_t rc; MQTTHeader header = {0}; FUNC_ENTRY; if(NULL == pTxBuf || NULL == pPayload || NULL == pSerializedLen) { FUNC_EXIT_RC(NULL_VALUE_ERROR); } ptr = pTxBuf; rem_len = 0; rem_len += (uint32_t) (topicNameLen + payloadLen + 2); if(qos > 0) { rem_len += 2; /* packetId */ } if(aws_iot_mqtt_internal_get_final_packet_length_from_remaining_length(rem_len) > txBufLen) { FUNC_EXIT_RC(MQTT_TX_BUFFER_TOO_SHORT_ERROR); } rc = aws_iot_mqtt_internal_init_header(&header, PUBLISH, qos, dup, retained); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } aws_iot_mqtt_internal_write_char(&ptr, header.byte); /* write header */ ptr += aws_iot_mqtt_internal_write_len_to_buffer(ptr, rem_len); /* write remaining length */; aws_iot_mqtt_internal_write_utf8_string(&ptr, pTopicName, topicNameLen); if(qos > 0) { aws_iot_mqtt_internal_write_uint_16(&ptr, packetId); } memcpy(ptr, pPayload, payloadLen); ptr += payloadLen; *pSerializedLen = (uint32_t) (ptr - pTxBuf); FUNC_EXIT_RC(IOT_SUCCESS); } /** * Serializes the ack packet into the supplied buffer. * @param pTxBuf the buffer into which the packet will be serialized * @param txBufLen the length in bytes of the supplied buffer * @param msgType the MQTT packet type * @param dup the MQTT dup flag * @param packetId the MQTT packet identifier * @param pSerializedLen uint32_t - pointer to the variable that stores serialized len * * @return An IoT Error Type defining successful/failed call */ IoT_Error_t aws_iot_mqtt_internal_serialize_ack(unsigned char *pTxBuf, size_t txBufLen, MessageTypes msgType, uint8_t dup, uint16_t packetId, uint32_t *pSerializedLen) { unsigned char *ptr; QoS requestQoS; IoT_Error_t rc; MQTTHeader header = {0}; FUNC_ENTRY; if(NULL == pTxBuf || pSerializedLen == NULL) { FUNC_EXIT_RC(NULL_VALUE_ERROR); } ptr = pTxBuf; /* Minimum byte length required by ACK headers is * 2 for fixed and 2 for variable part */ if(4 > txBufLen) { FUNC_EXIT_RC(MQTT_TX_BUFFER_TOO_SHORT_ERROR); } requestQoS = (PUBREL == msgType) ? QOS1 : QOS0; rc = aws_iot_mqtt_internal_init_header(&header, msgType, requestQoS, dup, 0); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } aws_iot_mqtt_internal_write_char(&ptr, header.byte); /* write header */ ptr += aws_iot_mqtt_internal_write_len_to_buffer(ptr, 2); /* write remaining length */ aws_iot_mqtt_internal_write_uint_16(&ptr, packetId); *pSerializedLen = (uint32_t) (ptr - pTxBuf); FUNC_EXIT_RC(IOT_SUCCESS); } /** * @brief Publish an MQTT message on a topic * * Called to publish an MQTT message on a topic. * @note Call is blocking. In the case of a QoS 0 message the function returns * after the message was successfully passed to the TLS layer. In the case of QoS 1 * the function returns after the receipt of the PUBACK control packet. * This is the internal function which is called by the publish API to perform the operation. * Not meant to be called directly as it doesn't do validations or client state changes * * @param pClient Reference to the IoT Client * @param pTopicName Topic Name to publish to * @param topicNameLen Length of the topic name * @param pParams Pointer to Publish Message parameters * * @return An IoT Error Type defining successful/failed publish */ static IoT_Error_t _aws_iot_mqtt_internal_publish(AWS_IoT_Client *pClient, const char *pTopicName, uint16_t topicNameLen, IoT_Publish_Message_Params *pParams) { TimerAWS timer; uint32_t len = 0; uint16_t packet_id; unsigned char dup, type; IoT_Error_t rc; FUNC_ENTRY; init_timer(&timer); countdown_ms(&timer, pClient->clientData.commandTimeoutMs); if(QOS1 == pParams->qos) { pParams->id = aws_iot_mqtt_get_next_packet_id(pClient); } rc = _aws_iot_mqtt_internal_serialize_publish(pClient->clientData.writeBuf, pClient->clientData.writeBufSize, 0, pParams->qos, pParams->isRetained, pParams->id, pTopicName, topicNameLen, (unsigned char *) pParams->payload, pParams->payloadLen, &len); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } /* send the publish packet */ rc = aws_iot_mqtt_internal_send_packet(pClient, len, &timer); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } /* Wait for ack if QoS1 */ if(QOS1 == pParams->qos) { rc = aws_iot_mqtt_internal_wait_for_read(pClient, PUBACK, &timer); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } rc = aws_iot_mqtt_internal_deserialize_ack(&type, &dup, &packet_id, pClient->clientData.readBuf, pClient->clientData.readBufSize); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } } FUNC_EXIT_RC(IOT_SUCCESS); } /** * @brief Publish an MQTT message on a topic * * Called to publish an MQTT message on a topic. * @note Call is blocking. In the case of a QoS 0 message the function returns * after the message was successfully passed to the TLS layer. In the case of QoS 1 * the function returns after the receipt of the PUBACK control packet. * This is the outer function which does the validations and calls the internal publish above * to perform the actual operation. It is also responsible for client state changes * * @param pClient Reference to the IoT Client * @param pTopicName Topic Name to publish to * @param topicNameLen Length of the topic name * @param pParams Pointer to Publish Message parameters * * @return An IoT Error Type defining successful/failed publish */ IoT_Error_t aws_iot_mqtt_publish(AWS_IoT_Client *pClient, const char *pTopicName, uint16_t topicNameLen, IoT_Publish_Message_Params *pParams) { IoT_Error_t rc, pubRc; ClientState clientState; FUNC_ENTRY; if(NULL == pClient || NULL == pTopicName || 0 == topicNameLen || NULL == pParams) { FUNC_EXIT_RC(NULL_VALUE_ERROR); } if(!aws_iot_mqtt_is_client_connected(pClient)) { FUNC_EXIT_RC(NETWORK_DISCONNECTED_ERROR); } clientState = aws_iot_mqtt_get_client_state(pClient); if(CLIENT_STATE_CONNECTED_IDLE != clientState && CLIENT_STATE_CONNECTED_WAIT_FOR_CB_RETURN != clientState) { FUNC_EXIT_RC(MQTT_CLIENT_NOT_IDLE_ERROR); } rc = aws_iot_mqtt_set_client_state(pClient, clientState, CLIENT_STATE_CONNECTED_PUBLISH_IN_PROGRESS); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } pubRc = _aws_iot_mqtt_internal_publish(pClient, pTopicName, topicNameLen, pParams); rc = aws_iot_mqtt_set_client_state(pClient, CLIENT_STATE_CONNECTED_PUBLISH_IN_PROGRESS, clientState); if(IOT_SUCCESS == pubRc && IOT_SUCCESS != rc) { pubRc = rc; } FUNC_EXIT_RC(pubRc); } /** * Deserializes the supplied (wire) buffer into publish data * @param dup returned uint8_t - the MQTT dup flag * @param qos returned QoS type - the MQTT QoS value * @param retained returned uint8_t - the MQTT retained flag * @param pPacketId returned uint16_t - the MQTT packet identifier * @param pTopicName returned String - the MQTT topic in the publish * @param topicNameLen returned uint16_t - the length of the MQTT topic in the publish * @param payload returned byte buffer - the MQTT publish payload * @param payloadlen returned size_t - the length of the MQTT payload * @param pRxBuf the raw buffer data, of the correct length determined by the remaining length field * @param rxBufLen the length in bytes of the data in the supplied buffer * * @return An IoT Error Type defining successful/failed call */ IoT_Error_t aws_iot_mqtt_internal_deserialize_publish(uint8_t *dup, QoS *qos, uint8_t *retained, uint16_t *pPacketId, char **pTopicName, uint16_t *topicNameLen, unsigned char **payload, size_t *payloadLen, unsigned char *pRxBuf, size_t rxBufLen) { unsigned char *curData = pRxBuf; unsigned char *endData = NULL; IoT_Error_t rc = IOT_FAILURE; uint32_t decodedLen = 0; uint32_t readBytesLen = 0; MQTTHeader header = {0}; FUNC_ENTRY; if(NULL == dup || NULL == qos || NULL == retained || NULL == pPacketId) { FUNC_EXIT_RC(IOT_FAILURE); } /* Publish header size is at least four bytes. * Fixed header is two bytes. * Variable header size depends on QoS And Topic Name. * QoS level 0 doesn't have a message identifier (0 - 2 bytes) * Topic Name length fields decide size of topic name field (at least 2 bytes) * MQTT v3.1.1 Specification 3.3.1 */ if(4 > rxBufLen) { FUNC_EXIT_RC(MQTT_RX_BUFFER_TOO_SHORT_ERROR); } header.byte = aws_iot_mqtt_internal_read_char(&curData); if(PUBLISH != header.bits.type) { FUNC_EXIT_RC(IOT_FAILURE); } *dup = header.bits.dup; *qos = (QoS) header.bits.qos; *retained = header.bits.retain; /* read remaining length */ rc = aws_iot_mqtt_internal_decode_remaining_length_from_buffer(curData, &decodedLen, &readBytesLen); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); return rc; } curData += (readBytesLen); endData = curData + decodedLen; /* do we have enough data to read the protocol version byte? */ if(IOT_SUCCESS != _aws_iot_mqtt_read_string_with_len(pTopicName, topicNameLen, &curData, endData) || (0 > (endData - curData))) { FUNC_EXIT_RC(IOT_FAILURE); } if(QOS0 != *qos) { *pPacketId = aws_iot_mqtt_internal_read_uint16_t(&curData); } *payloadLen = (size_t) (endData - curData); *payload = curData; FUNC_EXIT_RC(IOT_SUCCESS); } /** * Deserializes the supplied (wire) buffer into an ack * @param pPacketType returned integer - the MQTT packet type * @param dup returned integer - the MQTT dup flag * @param pPacketId returned integer - the MQTT packet identifier * @param pRxBuf the raw buffer data, of the correct length determined by the remaining length field * @param rxBuflen the length in bytes of the data in the supplied buffer * * @return An IoT Error Type defining successful/failed call */ IoT_Error_t aws_iot_mqtt_internal_deserialize_ack(unsigned char *pPacketType, unsigned char *dup, uint16_t *pPacketId, unsigned char *pRxBuf, size_t rxBuflen) { IoT_Error_t rc = IOT_FAILURE; unsigned char *curdata = pRxBuf; unsigned char *enddata = NULL; uint32_t decodedLen = 0; uint32_t readBytesLen = 0; MQTTHeader header = {0}; FUNC_ENTRY; if(NULL == pPacketType || NULL == dup || NULL == pPacketId || NULL == pRxBuf) { FUNC_EXIT_RC(NULL_VALUE_ERROR); } /* PUBACK fixed header size is two bytes, variable header is 2 bytes, MQTT v3.1.1 Specification 3.4.1 */ if(4 > rxBuflen) { FUNC_EXIT_RC(MQTT_RX_BUFFER_TOO_SHORT_ERROR); } header.byte = aws_iot_mqtt_internal_read_char(&curdata); *dup = header.bits.dup; *pPacketType = header.bits.type; /* read remaining length */ rc = aws_iot_mqtt_internal_decode_remaining_length_from_buffer(curdata, &decodedLen, &readBytesLen); if(IOT_SUCCESS != rc) { FUNC_EXIT_RC(rc); } curdata += (readBytesLen); enddata = curdata + decodedLen; if(enddata - curdata < 2) { FUNC_EXIT_RC(IOT_FAILURE); } *pPacketId = aws_iot_mqtt_internal_read_uint16_t(&curdata); FUNC_EXIT_RC(IOT_SUCCESS); } #ifdef __cplusplus } #endif