Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: BME280.cpp
- Revision:
- 0:6b0de3ad5900
- Child:
- 1:d766e0ac711f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/BME280.cpp Sat Nov 07 12:04:40 2015 +0000
@@ -0,0 +1,318 @@
+/*****************************************************************************
+ * *
+ * BOSCH BME208 Temperature Pressure Humidity Sensor Driver *
+ * *
+ * (c) 2015 Jens Schneider *
+ * mailto:jens.schneider@kaust.edu.sa *
+ * Visual Computing Center (VCC) *
+ * King Abdullah University of Science and Technology (KAUST) *
+ * 4700 Thuwal, Kingdom of Saudi Arabia *
+ * *
+ * PERMISSION GRANTED TO USE IN NON-COMMERCIAL AND EDUCATIONAL PROJECTS *
+ * NO RESPONSIBILITY ASSUMED FOR DAMAGE OR LOSS OF ANY HARDWARE OR SOFTWARE *
+ * *
+ * version 0.1 *
+ * last change 07.Nov.2015 *
+ * *
+ *****************************************************************************/
+#include"BME280.h"
+
+const uint8_t BME280::REG_HUM_LSB = 0xFE;
+const uint8_t BME280::REG_HUM_MSB = 0xFD;
+const uint8_t BME280::REG_TEMP_XLSB = 0xFC;
+const uint8_t BME280::REG_TEMP_LSB = 0xFB;
+const uint8_t BME280::REG_TEMP_MSB = 0xFA;
+const uint8_t BME280::REG_PRESS_XLSB = 0xF9;
+const uint8_t BME280::REG_PRESS_LSB = 0xF8;
+const uint8_t BME280::REG_PRESS_MSB = 0xF7;
+
+const uint8_t BME280::REG_CONFIG = 0xF5;
+const uint8_t BME280::REG_CTRL_MEAS = 0xF4;
+const uint8_t BME280::REG_STATUS = 0xF4;
+const uint8_t BME280::REG_CTRL_HUM = 0xF3;
+const uint8_t BME280::REG_CALIB26_41_BASE = 0xE1;
+const uint8_t BME280::REG_RESET = 0xE0;
+const uint8_t BME280::REG_ID = 0xD0;
+const uint8_t BME280::REG_CALIB00_25_BASE = 0x88;
+
+const uint8_t BME280::VAL_CALIB26_41_SIZE = 0x10;
+const uint8_t BME280::VAL_CALIB00_25_SIZE = 0x1A;
+const uint8_t BME280::VAL_CHIP_ID = 0x60;
+const uint8_t BME280::VAL_RESET = 0xB6;
+
+const uint8_t BME280::STATUS_IDLE = 0x00;
+const uint8_t BME280::STATUS_MEASURING = 0x08;
+const uint8_t BME280::STATUS_UPDATING = 0x01;
+const uint8_t BME280::STATUS_ERROR = 0xFF;
+
+extern Serial ser;
+
+BME280::BME280(void) : m_pI2C(NULL), m_address(0x00), m_fine_temp(0x1F3E6), m_mode(MODE_SLEEP) {
+ // initialized m_fine_temp to 25C
+}
+
+BME280::~BME280(void) {
+ done();
+}
+
+bool BME280::init(I2C& i2c, uint8_t address) {
+ m_pI2C = &i2c;
+ m_address = address<<1;
+ m_fine_temp = 0x1F3E6;
+ if (!reset()) return false;
+ if (read_chip_id()!=0x60) return false;
+ if (!read_calibration()) return false;
+ return true;
+}
+
+bool BME280::done(void) {
+ stop();
+ m_pI2C = NULL;
+ m_address = 0x00;
+ m_mode = MODE_SLEEP;
+ return true;
+}
+
+
+bool BME280::start( BME280::sampling_t hum,
+ BME280::sampling_t temp,
+ BME280::sampling_t press,
+ BME280::standby_t standby,
+ BME280::filter_t filter,
+ BME280::mode_t mode) {
+ // 1. Reset
+ if (!reset()) return false;
+
+ // 2. Write CONFIG
+ uint8_t val_cfg = uint8_t(standby)<<5;
+ val_cfg|=uint8_t(filter)<<2;
+ if (!write8(REG_CONFIG,val_cfg)) return false;
+
+ // 3. Write CTRL_HUM
+ if (!write8(REG_CTRL_HUM,uint8_t(hum))) return false;
+
+ // 4. Write CTRL_MEAS
+ uint8_t val_meas = uint8_t(temp)<<5;
+ val_meas |= uint8_t(press)<<2;
+ val_meas |= uint8_t(mode);
+ if (!write8(REG_CTRL_MEAS,val_meas)) return false;
+
+ m_mode = mode;
+
+ return true;
+}
+
+bool BME280::stop(void) {
+ return reset();
+}
+
+bool BME280::get(float& temperature, float& pressure, float& humidity) {
+ int32_t T;
+ uint32_t P, H;
+ if (!get(T,P,H)) return false;
+ temperature = float(T)*0.01f; // in degree C
+ pressure = 0.01f*(float(P)/256.0f); // in hPa / mbar
+ humidity = float(H)/1024.0f; // in %
+ return true;
+}
+
+bool BME280::get(int32_t& temperature, uint32_t& pressure, uint32_t& humidity) {
+ if (m_mode!=MODE_AUTO) {
+ // Trigger forced conversion by updating CTRL_MEAS register
+ uint8_t val = 0x00;
+ if (!read8(REG_CTRL_MEAS,val)) return false;
+ val = (val&0xFC)|uint8_t(MODE_FORCED);
+ if (!write8(REG_CTRL_MEAS,val)) return false;
+ // Wait for measurement to finish
+ do {
+ val = read_status();
+ if ((val&STATUS_MEASURING)!=0) wait_ms(1);
+ } while(val&STATUS_MEASURING);
+ }
+ int32_t rawT, rawP, rawH;
+ if (!raw_data(rawT,rawP,rawH)) return false;
+ temperature = compensate_T(rawT);
+ pressure = compensate_P(rawP);
+ humidity = compensate_H(rawH);
+ return true;
+}
+
+bool BME280::raw_data(int32_t& rawT, int32_t& rawP, int32_t& rawH) {
+ if (m_pI2C==NULL) return false;
+ uint8_t data[8];
+ uint8_t ok = 0x00;
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address);
+ ok = (ok<<1)|m_pI2C->write(REG_PRESS_MSB);
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address|1);
+ for (int i=0; i<7; i++) data[i] = m_pI2C->read(1);
+ data[7] = m_pI2C->read(0);
+ m_pI2C->stop();
+ if (ok!=0x7) {
+ rawT = rawP = rawH = 0x00;
+ return false;
+ }
+ rawP = (int32_t(data[0])<<12)|(int32_t(data[1])<<4)|(int32_t(data[2])>>4);
+ rawT = (int32_t(data[3])<<12)|(int32_t(data[4])<<4)|(int32_t(data[5])>>4);
+ rawH = (int32_t(data[6])<<8)|int32_t(data[7]);
+ return true;
+}
+
+
+int16_t BME280::conv_s16(const uint8_t* data, int lo, int hi) const {
+ return int16_t(uint16_t(data[lo])|(uint16_t(data[hi])<<8));
+}
+
+uint16_t BME280::conv_u16(const uint8_t* data, int lo, int hi) const {
+ return uint16_t(data[lo])|(uint16_t(data[hi])<<8);
+}
+
+bool BME280::read_calibration(void) {
+ if (m_pI2C==NULL) return false;
+ return read_calibration_lo() && read_calibration_hi();
+}
+
+bool BME280::read_calibration_lo(void) {
+ uint8_t data[VAL_CALIB00_25_SIZE];
+ if (m_pI2C==NULL) return false;
+ uint8_t ok = 0x00;
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address);
+ ok = (ok<<1)|m_pI2C->write(REG_CALIB00_25_BASE);
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address|1);
+ for (int n=0; n<VAL_CALIB00_25_SIZE-1; n++) data[n] = m_pI2C->read(1);
+ data[VAL_CALIB00_25_SIZE-1] = m_pI2C->read(0);
+ m_pI2C->stop();
+ if (ok!=0x7) return false;
+
+ m_calib.dig_T1 = conv_u16(data,0,1); // 0x88:89
+ m_calib.dig_T2 = conv_s16(data,2,3); // 0x8A:8B
+ m_calib.dig_T3 = conv_s16(data,4,5); // 0x8C:8D
+ m_calib.dig_P1 = conv_u16(data,6,7); // 0x8E:8F
+ m_calib.dig_P2 = conv_s16(data,8,9); // 0x90:91
+ m_calib.dig_P3 = conv_s16(data,10,11); // 0x92:93
+ m_calib.dig_P4 = conv_s16(data,12,13); // 0x94:95
+ m_calib.dig_P5 = conv_s16(data,14,15); // 0x96:97
+ m_calib.dig_P6 = conv_s16(data,16,17); // 0x98:99
+ m_calib.dig_P7 = conv_s16(data,18,19); // 0x9A:9B
+ m_calib.dig_P8 = conv_s16(data,20,21); // 0x9C:9D
+ m_calib.dig_P9 = conv_s16(data,22,23); // 0x9E:9F
+ // 0xA0
+ m_calib.dig_H1 = data[25]; // 0xA1
+ return true;
+}
+
+bool BME280::read_calibration_hi(void) {
+ uint8_t data[VAL_CALIB26_41_SIZE];
+ if (m_pI2C==NULL) return false;
+ uint8_t ok = 0x00;
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address);
+ ok = (ok<<1)|m_pI2C->write(REG_CALIB26_41_BASE);
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address|1);
+ for (int n=0; n<VAL_CALIB26_41_SIZE-1; n++) data[n] = m_pI2C->read(1);
+ data[VAL_CALIB26_41_SIZE-1] = m_pI2C->read(0);
+ m_pI2C->stop();
+ if (ok!=0x7) return false;
+
+ m_calib.dig_H2 = conv_s16(data,0,1); // 0xE1:E2
+ m_calib.dig_H3 = data[2]; // 0xE3
+ m_calib.dig_H4 = int16_t((uint16_t(data[3])<<8)|uint16_t((data[4]&0xF)<<4))>>4; // 0xE4:E5[3:0]
+ m_calib.dig_H5 = int16_t((uint16_t(data[5])<<8)|uint16_t((data[4]&0xF0))>>4); // 0xE5[7:4]:E6
+ m_calib.dig_H6 = int8_t(data[6]); // 0xE7
+ return true;
+}
+
+int32_t BME280::compensate_T(int32_t raw_T) {
+ int32_t var1, var2, T;
+ var1 = ((((raw_T>>3) - ((int32_t)m_calib.dig_T1<<1))) * ((int32_t)m_calib.dig_T2)) >> 11;
+ var2 = (((((raw_T>>4) - ((int32_t)m_calib.dig_T1)) * ((raw_T>>4) - ((int32_t)m_calib.dig_T1))) >> 12) * ((int32_t)m_calib.dig_T3)) >> 14;
+ m_fine_temp = var1 + var2;
+ T = (m_fine_temp * 5 + 128) >> 8;
+ return T;
+}
+
+uint32_t BME280::compensate_P(int32_t raw_P) {
+ int64_t var1, var2, p;
+ var1 = ((int64_t)m_fine_temp) - 128000;
+ var2 = var1 * var1 * (int64_t)m_calib.dig_P6;
+ var2 = var2 + ((var1*(int64_t)m_calib.dig_P5)<<17);
+ var2 = var2 + (((int64_t)m_calib.dig_P4)<<35);
+ var1 = ((var1 * var1 * (int64_t)m_calib.dig_P3)>>8) + ((var1 * (int64_t)m_calib.dig_P2)<<12);
+ var1 = (((((int64_t)1)<<47)+var1))*((int64_t)m_calib.dig_P1)>>33;
+ if (var1 == 0) return false; // avoid division by zero
+ p = 1048576-raw_P;
+ p = (((p<<31)-var2)*3125)/var1;
+ var1 = (((int64_t)m_calib.dig_P9) * (p>>13) * (p>>13)) >> 25;
+ var2 = (((int64_t)m_calib.dig_P8) * p) >> 19;
+ p = ((p + var1 + var2) >> 8) + (((int64_t)m_calib.dig_P7)<<4);
+ return (uint32_t)p;
+}
+
+uint32_t BME280::compensate_H(int32_t raw_H) {
+ int32_t v_x1_u32r;
+ v_x1_u32r = (m_fine_temp - ((int32_t)76800));
+ v_x1_u32r = (((((raw_H << 14) - (((int32_t)m_calib.dig_H4) << 20) - (((int32_t)m_calib.dig_H5) * v_x1_u32r)) +
+ ((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)m_calib.dig_H6)) >> 10) * (((v_x1_u32r *
+ ((int32_t)m_calib.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) *
+ ((int32_t)m_calib.dig_H2) + 8192) >> 14));
+ v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)m_calib.dig_H1)) >> 4));
+ v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
+ v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
+ return (uint32_t)(v_x1_u32r>>12);
+}
+
+// ======================================== LOW LEVEL API ========================================
+bool BME280::reset(void) {
+ if (write8(REG_RESET,VAL_RESET)) {
+ wait_ms(2);
+ m_mode = MODE_SLEEP;
+ return true;
+ }
+ return false;
+}
+
+uint8_t BME280::read_chip_id(void) {
+ uint8_t result;
+ if (read8(REG_ID,result)) return result;
+ else return 0x00;
+}
+
+uint8_t BME280::read_status(void) {
+ uint8_t result;
+ if (read8(REG_STATUS,result)) return result&0x9;
+ else return STATUS_ERROR;
+}
+
+bool BME280::read8(uint8_t reg, uint8_t& val) {
+ if (m_pI2C==NULL) return false;
+ uint8_t ok = 0x00;
+ val = 0x00;
+ m_pI2C->start();
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address);
+ ok = (ok<<1)|m_pI2C->write(reg);
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address|1);
+ val = m_pI2C->read(0);
+ m_pI2C->stop();
+ return ok==0x7;
+}
+
+bool BME280::write8(uint8_t reg, uint8_t val) {
+ if (m_pI2C==NULL) return false;
+ uint8_t ok = 0x00;
+ m_pI2C->start();
+ ok = (ok<<1)|m_pI2C->write(m_address);
+ ok = (ok<<1)|m_pI2C->write(reg);
+ ok = (ok<<1)|m_pI2C->write(val);
+ m_pI2C->stop();
+ return ok==0x7;
+}
+
+const BME280::calib_t& BME280::calib(void) const {
+ return m_calib;
+}
\ No newline at end of file