Delta Robot example

Dependencies:   BufferedSerial Eigen

Fork of TCPSocket_Example by mbed_example

main.cpp

Committer:
je310
Date:
2018-10-15
Revision:
5:01e1e68309ae
Parent:
4:778bc352c47f

File content as of revision 5:01e1e68309ae:

#include "mbed.h"
#include "odrive.h"
#include "lwip-interface/EthernetInterface.h"
#include "comms.h"
#include <string>
#include "calibration.h"
#include "Axis.h"
#include "servoAxis.h"
#include "kinematics.h"
#include "BufferedSerial.h"
#include    "syncTime.h"
#include "MPU6050.h"
#include "ESKF.h"
#define EXTPIN1 PB_5  //pwm spi1_mosii
#define EXTPIN2 PB_15 // PWM spi2 mosi
#define EXTPIN3 PB_13   //PWM spi2sclk
#define EXTPIN4 PB_12   //
#define EXTPIN5 PA_15   //pwm
#define EXTPIN6 PC_7    //RX6 PWM
DigitalOut led1(LED1);
DigitalOut homeGND(PF_5);
DigitalIn homeSwitchA(PA_3);
DigitalIn homeSwitchB(PC_0);
DigitalIn homeSwitchC(PC_3);
DigitalOut accelPower(PA_6);
DigitalIn trigger(PF_3);
BufferedSerial buffered_pc(SERIAL_TX, SERIAL_RX,1024);
calVals calibration;
MPU6050 mpu;
I2C i2c(PB_9, PB_8);



using std::string;
const int BROADCAST_PORT_T = 58080;
const int BROADCAST_PORT_R = 58081;
EthernetInterface eth;

SyncTime timeTracker(0,0);
float batteryV = -1;
UDPSocket socket;
int isCon = 0;
void transmit()
{
    while(isCon != 0) {
        Thread::yield();
    }
    string out_buffer = "very important data";
    SocketAddress transmit("10.0.0.160", BROADCAST_PORT_T);
    fromRobot msg;
    msg.motor1.busVoltage = 69;
    buffered_pc.printf("starting send loop");
    while (true) {
        msg.motor1.busVoltage += 1;
        //int ret = socket.sendto(transmit, &msg, sizeof(msg));
        //printf("sendto return: %d\n", ret);

        Thread::wait(100);
    }
}
fromRobot pingMsg;
void receive()
{
    eth.connect();

    socket.open(&eth);
    
    socket.set_blocking(false);
    

 
    buffered_pc.printf("Ethernet returned %d \n\r", isCon);
    Thread::wait(100);
    if(isCon !=0) eth.disconnect();
    while(isCon != 0) {
        Thread::yield();
    }
    socket.open(&eth);
    buffered_pc.printf("Ethernet is connected at %s \n\r", eth.get_ip_address());
    Thread::wait(100);
    SocketAddress receive;
    //UDPSocket socket(&eth);
    int bind = socket.bind(BROADCAST_PORT_R);
    SocketAddress transmit("10.0.0.160", BROADCAST_PORT_T);
    //printf("bind return: %d", bind);

    char buffer[256];
    
    
        buffered_pc.printf("starting receive loop");
        rosTime now;
        Timer debugTimer;
        
    while (true) {
        //printf("\nWait for packet...\n");
        int n = socket.recvfrom(&receive, buffer, sizeof(buffer));
        if(n != NSAPI_ERROR_WOULD_BLOCK){
        //debugTimer.start();
        toRobot inmsg;
        memcpy(&inmsg, buffer, n);
        if(inmsg.isPing ==1) {
            now = timeTracker.getTime();
            if(now.seconds < 10000){
                buffered_pc.printf("Hard resetting time to  %ds and %dns \n\r",inmsg.time.seconds,inmsg.time.nSeconds);
                timeTracker.hardReset(inmsg.time.seconds,inmsg.time.nSeconds);
            }

            pingMsg.isPing = 1;
            pingMsg.pingTime.seconds = inmsg.time.seconds;
            pingMsg.pingTime.nSeconds = inmsg.time.nSeconds;
            pingMsg.time.seconds = now.seconds;
            pingMsg.time.nSeconds = now.nSeconds;
            int ret = socket.sendto(transmit, &pingMsg, sizeof(pingMsg));
            //debugTimer.stop();
            
            //buffered_pc.printf("sectionTime %d \r\n", debugTimer.read_high_resolution_us());
            
            //buffered_pc.printf("current time is %ds and %dns \r\n", now.seconds, now.nSeconds);
        }
            if(inmsg.timeOffset !=0.0f){
                //buffered_pc.printf("Applying offset %fs \n\r",inmsg.timeOffset); 
                timeTracker.updateTime(inmsg.timeOffset);            
            }
        //buffer[n] = '\0';
        //buffered_pc.printf("Count:%i, Motor1Vel:%f, Motor1Tor: %f \r\n",inmsg.count, inmsg.motor1.velocity,inmsg.motor1.torque);
        }
        //debugTimer.reset();
        Thread::yield();
        //Thread::wait(1);
    }
}

int getCountPos(BufferedSerial ser, int axis)
{

}

void runOdrive()
{
    //start servos on endEffector
    ServoAxis pitch(EXTPIN1,30, -30, 1500, 1200.0/120.0);
    ServoAxis yaw(EXTPIN2,30, -30, 1500, 1200.0/120.0);
//    while(1) {
//        pitch.setAngle(30);
//        yaw.setAngle(30);
//        Thread::wait(300);
//        pitch.setAngle(-30);
//        yaw.setAngle(-30);
//        Thread::wait(300);
//        }
        
    
    BufferedSerial ODSerial0(PC_12,PD_2);
    ODSerial0.baud(921600);
    BufferedSerial ODSerial1(PD_5,PD_6);
    ODSerial1.baud(921600);
    ODrive OD0(ODSerial0);
    ODrive OD1(ODSerial1);
    Axis A(&OD1, 1, &homeSwitchA,calibration,AX_A);
    Axis B(&OD1, 0, &homeSwitchB,calibration,AX_B);
    Axis C(&OD0, 0, &homeSwitchC,calibration,AX_C);
    int error = 0;
    error += A.test();
    error +=B.test();
    error +=C.test();
    buffered_pc.printf("there were %d errors in the read/write\r\n",error);
    Kinematics kin(&A, &B, &C, calibration); // the Kinematics class contains everything
    buffered_pc.printf("setting motors to idle\r\n");
    kin.goIdle();
    kin.goIdle();
    error += kin.setSafeParams();
    while(error) {}
//    kin.goIdle();//for some reason we need to do it multiple times!
    while(*A.homeSwitch_||*B.homeSwitch_ || *C.homeSwitch_) {
       Thread::wait(5); 
       batteryV = OD1.readBattery();
       } // wait till user
    buffered_pc.printf("finding index\r\n");
    kin.findIndex();
    buffered_pc.printf("activating motors\r\n");
    kin.activateMotors();
    buffered_pc.printf("homing motors\r\n");
    kin.homeMotors();
    //int error = kin.goToPos(0,0,-10);

    kin.goToAngles(pi/4,pi/4,pi/4);
    Thread::wait(500);
    error += kin.setFastParams();
    while(error) {}
    Thread::wait(1000);

    Thread::wait(100);
    float inc = pi /150;
    float i = 0;
    float k = -100;
    int up = 0;
    float min = 80;
    float max =220;
    float mid = min+max;
    mid/= 2;
    float span = mid - min;
    float radius = 40;
    int loopCounter = 0;
    while(true) {
        loopCounter++;
        int count = 0;
        for(int j = 0 ; j < 100; j++) {

            if(trigger == false) {
                count++;
            }
        }
        if(count>90) {
            i += inc;
            if(up == 1)k+=0.2;
            else k-=0.2;
            if(k >= -min) up = 0;
            if(k <= -max) up = 1;
            radius =0.6* (span - abs(abs(k) - mid));
            //buffered_pc.printf("x,y,z = %f %f %f",radius*sin(i),radius*cos(i),k);
            int error = kin.goToPos(40.0*sin(i),40.0*cos(i),k);
            pitch.setAngle(25.0*sin(i));
            yaw.setAngle(25.0*cos(i));
            //int error = kin.goToPos(0,0,k);
            if(i > 2*pi) i = 0;

//            buffered_pc.printf("bus voltage %f\r\n",OD1.readBattery());
//            buffered_pc.printf("k= %f\r\n",k);
        }
        Thread::wait(1);
        if(loopCounter % 2000 == 0) {
            batteryV = OD1.readBattery();
        }
    }

}

void accelThread()
{
    //mpu.initMPU6050();
    accelPower = 1;
    uint8_t whoami = mpu.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
    buffered_pc.printf("I AM 0x%x\n\r", whoami);
    buffered_pc.printf("I SHOULD BE 0x68\n\r");
    mpu.resetMPU6050(); // Reset registers to default in preparation for device calibration
    mpu.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
    mpu.initMPU6050();
    buffered_pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
    Timer t;
    t.start();
    float sum = 0;
    uint32_t sumCount = 0;
    while(1) {
        Thread::wait(1);

        if(mpu.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
            mpu.readAccelData(accelCount);  // Read the x/y/z adc values
            mpu.getAres();

            // Now we'll calculate the accleration value into actual g's
            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
            ay = (float)accelCount[1]*aRes - accelBias[1];
            az = (float)accelCount[2]*aRes - accelBias[2];

            mpu.readGyroData(gyroCount);  // Read the x/y/z adc values
            mpu.getGres();

            // Calculate the gyro value into actual degrees per second
            gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
            gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
            gz = (float)gyroCount[2]*gRes; // - gyroBias[2];

            tempCount = mpu.readTempData();  // Read the x/y/z adc values
            temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade

//            buffered_pc.printf("ax = %f", 1000*ax);
//            buffered_pc.printf(" ay = %f", 1000*ay);
//            buffered_pc.printf(" az = %f  mg\n\r", 1000*az);
            Now = t.read_us();
            deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
            lastUpdate = Now;

            sum += deltat;
            sumCount++;

            if(lastUpdate - firstUpdate > 10000000.0f) {
                beta = 0.04;  // decrease filter gain after stabilized
                zeta = 0.015; // increasey bias drift gain after stabilized
            }

            // Pass gyro rate as rad/s
            mpu.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);

            // Serial print and/or display at 0.5 s rate independent of data rates
            //delt_t = t.read_ms() - count;

            mpu.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);

            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]  );
            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
            pitch *= 180.0f / PI;
            yaw   *= 180.0f / PI;
            roll  *= 180.0f / PI;
//            roll += 90;
//            if(roll > 180) roll = -(roll - 180);
//            if(roll < -180)roll = -(roll + 180);
            buffered_pc.printf("roll= %f   pitch = %f     yaw = %f  \n\r", roll,pitch,yaw);



        }

    }
}

void batteryThread()
{
    while(1) {
        Thread::wait(5000);
        buffered_pc.printf("batteryVoltage = %f\n\r", batteryV);
    }


}




int main()
{
    
    // testing eigen run time. 
    
    ESKF ourESKF;
    Vector3f acc, gyro,pos;
    Quaternionf quat(0.25,0.25,0.25,0.25);
    acc = Vector3f::Random();
    gyro = Vector3f::Random();
    pos = Vector3f::Random();
    Timer eigenTimer;
    eigenTimer.reset();
    eigenTimer.start();
    for(int i = 0; i < 1000; i ++){
        ourESKF.predictionUpdate(acc,gyro, 0.001);
    }
    for(int i = 0; i < 100; i ++){
        ourESKF.observeErrorState(pos,quat);
    }
    eigenTimer.stop();
    buffered_pc.printf("the eigen took %f seconds",eigenTimer.read());


    calibration.e = 58.095;
    calibration.f = 60.722;
    calibration.re = 150;
    calibration.rf = 143.0;
    calibration.Aoffset = 0.43 - 0.111701;
    calibration.Boffset = 0.43 - 0.111701;
    calibration.Coffset = 0.43 - 0.111701;
    calibration.gearRatio = 89.0/24.0;
    buffered_pc.baud(115200);
    buffered_pc.printf("hello\r\n");
    i2c.frequency(400000);
    Thread transmitter;
    Thread receiver;
    Thread odriveThread;
    Thread accel;
    Thread timeUpdate;
    Thread printBattery;


    //set switches up
    homeGND = false;
    homeSwitchA.mode(PullUp);
    homeSwitchB.mode(PullUp);
    homeSwitchC.mode(PullUp);
    trigger.mode(PullUp);



    //buffered_pc.printf("Controller IP Address is %s\r\n", eth.get_ip_address());
    Thread::wait(5000);

    transmitter.start(transmit);
    receiver.start(receive);
    //timeUpdate.start(timeUpdateLoop);
    odriveThread.start(runOdrive);
    accel.start(accelThread);
    printBattery.start(batteryThread);

    while (true) {
        //led1 = !led1;
        Thread::wait(500);
    }
}