Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ExperimentServer QEI_pmw MotorShield
main.cpp
- Committer:
- sridevikaza
- Date:
- 2020-11-18
- Revision:
- 24:bf92a281beb8
- Parent:
- 23:80e05d939f8c
- Child:
- 25:906ee0226ebf
File content as of revision 24:bf92a281beb8:
#include "mbed.h"
#include "rtos.h"
#include "EthernetInterface.h"
#include "ExperimentServer.h"
#include "QEI.h"
#include "BezierCurve.h"
#include "MotorShield.h"
#include "HardwareSetup.h"
#define BEZIER_ORDER_FOOT 7
#define NUM_INPUTS (12 + 2*(BEZIER_ORDER_FOOT+1))
#define NUM_OUTPUTS 19
#define PULSE_TO_RAD (2.0f*3.14159f / 1200.0f)
// Initializations
Serial pc(USBTX, USBRX); // USB Serial Terminal
ExperimentServer server; // Object that lets us communicate with MATLAB
Timer t; // Timer to measure elapsed time of experiment
QEI encoderA(PE_9,PE_11, NC, 1200, QEI::X4_ENCODING); // MOTOR A ENCODER (no index, 1200 counts/rev, Quadrature encoding)
QEI encoderB(PA_5, PB_3, NC, 1200, QEI::X4_ENCODING); // MOTOR B ENCODER (no index, 1200 counts/rev, Quadrature encoding)
QEI encoderC(PC_6, PC_7, NC, 1200, QEI::X4_ENCODING); // MOTOR C ENCODER (no index, 1200 counts/rev, Quadrature encoding)
QEI encoderD(PD_12, PD_13, NC, 1200, QEI::X4_ENCODING);// MOTOR D ENCODER (no index, 1200 counts/rev, Quadrature encoding)
MotorShield motorShield(12000); //initialize the motor shield with a period of 12000 ticks or ~20kHZ
Ticker currentLoop;
// Variables for q1
float current1;
float current_des1 = 0;
float prev_current_des1 = 0;
float current_int1 = 0;
float angle1;
float velocity1;
float duty_cycle1;
float angle1_init;
// Variables for q2
float current2;
float current_des2 = 0;
float prev_current_des2 = 0;
float current_int2 = 0;
float angle2;
float velocity2;
float duty_cycle2;
float angle2_init;
// Fixed kinematic parameters
const float l_OA=.011;
const float l_OB=.042;
const float l_AC=.096;
const float l_DE=.091;
// Timing parameters
float current_control_period_us = 200.0f; // 5kHz current control loop
float impedance_control_period_us = 1000.0f; // 1kHz impedance control loop
float start_period, traj_period, end_period;
// Control parameters
float current_Kp = 4.0f;
float current_Ki = 0.4f;
float current_int_max = 3.0f;
float duty_max;
float K_xx;
float K_yy;
float K_xy;
float D_xx;
float D_xy;
float D_yy;
// Model parameters
float supply_voltage = 12; // motor supply voltage
float R = 2.0f; // motor resistance
float k_t = 0.18f; // motor torque constant
float nu = 0.0005; // motor viscous friction
// Current control interrupt function
void CurrentLoop()
{
// This loop sets the motor voltage commands using PI current controllers with feedforward terms.
//use the motor shield as follows:
//motorShield.motorAWrite(DUTY CYCLE, DIRECTION), DIRECTION = 0 is forward, DIRECTION =1 is backwards.
current1 = -(((float(motorShield.readCurrentA())/65536.0f)*30.0f)-15.0f); // measure current
velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; // measure velocity
float err_c1 = current_des1 - current1; // current errror
current_int1 += err_c1; // integrate error
current_int1 = fmaxf( fminf(current_int1, current_int_max), -current_int_max); // anti-windup
float ff1 = R*current_des1 + k_t*velocity1; // feedforward terms
duty_cycle1 = (ff1 + current_Kp*err_c1 + current_Ki*current_int1)/supply_voltage; // PI current controller
float absDuty1 = abs(duty_cycle1);
if (absDuty1 > duty_max) {
duty_cycle1 *= duty_max / absDuty1;
absDuty1 = duty_max;
}
if (duty_cycle1 < 0) { // backwards
motorShield.motorAWrite(absDuty1, 1);
} else { // forwards
motorShield.motorAWrite(absDuty1, 0);
}
prev_current_des1 = current_des1;
current2 = -(((float(motorShield.readCurrentB())/65536.0f)*30.0f)-15.0f); // measure current
velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; // measure velocity
float err_c2 = current_des2 - current2; // current error
current_int2 += err_c2; // integrate error
current_int2 = fmaxf( fminf(current_int2, current_int_max), -current_int_max); // anti-windup
float ff2 = R*current_des2 + k_t*velocity2; // feedforward terms
duty_cycle2 = (ff2 + current_Kp*err_c2 + current_Ki*current_int2)/supply_voltage; // PI current controller
float absDuty2 = abs(duty_cycle2);
if (absDuty2 > duty_max) {
duty_cycle2 *= duty_max / absDuty2;
absDuty2 = duty_max;
}
if (duty_cycle2 < 0) { // backwards
motorShield.motorBWrite(absDuty2, 1);
} else { // forwards
motorShield.motorBWrite(absDuty2, 0);
}
prev_current_des2 = current_des2;
}
int main (void)
{
// Object for 7th order Cartesian foot trajectory
BezierCurve rDesFoot_bez(2,BEZIER_ORDER_FOOT);
// Link the terminal with our server and start it up
server.attachTerminal(pc);
server.init();
// Continually get input from MATLAB and run experiments
float input_params[NUM_INPUTS];
pc.printf("%f",input_params[0]);
while(1) {
// If there are new inputs, this code will run
if (server.getParams(input_params,NUM_INPUTS)) {
// Get inputs from MATLAB
start_period = input_params[0]; // First buffer time, before trajectory
traj_period = input_params[1]; // Trajectory time/length
end_period = input_params[2]; // Second buffer time, after trajectory
angle1_init = input_params[3]; // Initial angle for q1 (rad)
angle2_init = input_params[4]; // Initial angle for q2 (rad)
K_xx = input_params[5]; // Foot stiffness N/m
K_yy = input_params[6]; // Foot stiffness N/m
K_xy = input_params[7]; // Foot stiffness N/m
D_xx = input_params[8]; // Foot damping N/(m/s)
D_yy = input_params[9]; // Foot damping N/(m/s)
D_xy = input_params[10]; // Foot damping N/(m/s)
duty_max = input_params[11]; // Maximum duty factor
// Get foot trajectory points
float foot_pts[2*(BEZIER_ORDER_FOOT+1)];
//float foot_pts2[2*(BEZIER_ORDER_FOOT+1)];
for(int i = 0; i<2*(BEZIER_ORDER_FOOT+1);i++) {
foot_pts[i] = input_params[12+i];
//pc.printf("foot_pts");
//pc.printf(foot_pts);
//foot_pts2[i] = input_params[13];
}
rDesFoot_bez.setPoints(foot_pts);
// Attach current loop interrupt
currentLoop.attach_us(CurrentLoop,current_control_period_us);
// Setup experiment
t.reset();
t.start();
encoderA.reset();
encoderB.reset();
encoderC.reset();
encoderD.reset();
motorShield.motorAWrite(0, 0); //turn motor A off
motorShield.motorBWrite(0, 0); //turn motor B off
// Run experiment
while( t.read() < start_period + traj_period + end_period) {
// Read encoders to get motor states
angle1 = encoderA.getPulses() *PULSE_TO_RAD + angle1_init;
velocity1 = encoderA.getVelocity() * PULSE_TO_RAD;
angle2 = encoderB.getPulses() * PULSE_TO_RAD + angle2_init;
velocity2 = encoderB.getVelocity() * PULSE_TO_RAD;
const float th1 = angle1;
const float th2 = angle2;
const float dth1= velocity1;
const float dth2= velocity2;
// Calculate the Jacobian
float Jx_th1 = l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1);
float Jx_th2 = l_AC*cos(th1 + th2);
float Jy_th1 = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1);
float Jy_th2 = l_AC*sin(th1 + th2);
// Calculate the forward kinematics (position and velocity)
float xFoot = l_AC*sin(th1+th2)+l_DE*sin(th1)+l_OB*sin(th1);
float yFoot = -l_AC*cos(th1+th2)-l_DE*cos(th1)-l_OB*cos(th1);
float dxFoot = dth1*(l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1)) + dth2*l_AC*cos(th1 + th2);
float dyFoot = dth1*(l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1)) + dth2*l_AC*sin(th1 + th2);
// Set gains based on buffer and traj times, then calculate desired x,y from Bezier trajectory at current time if necessary
float teff = 0;
float vMult = 0;
if( t < start_period) {
if (K_xx > 0 || K_yy > 0) {
K_xx = 50; // for joint space control, set this to 1
K_yy = 50; // for joint space control, set this to 1
D_xx = 2; // for joint space control, set this to 0.1
D_yy = 2; // for joint space control, set this to 0.1
K_xy = 0;
D_xy = 0;
//rDesFoot_bez.setPoints(foot_pts);
}
teff = 0;
}
else if (t < start_period + traj_period)
{
K_xx = input_params[5]; // Foot stiffness N/m
K_yy = input_params[6]; // Foot stiffness N/m
K_xy = input_params[7]; // Foot stiffness N/m
D_xx = input_params[8]; // Foot damping N/(m/s)
D_yy = input_params[9]; // Foot damping N/(m/s)
D_xy = input_params[10]; // Foot damping N/(m/s)
teff = (t-start_period);
vMult = 1;
foot_pts[0] = -0.15;
foot_pts[1] = -0.15;
foot_pts[2] = -0.15;
foot_pts[3] = -0.15;
foot_pts[4] = -0.15;
foot_pts[5] = -0.15;
foot_pts[6] = -0.15;
foot_pts[7] = -0.15;
foot_pts[8] = -0.15;
foot_pts[9] = -0.15;
foot_pts[10] = -0.15;
foot_pts[11] = -0.15;
foot_pts[12] = -0.15;
foot_pts[13] = -0.15;
foot_pts[14] = -0.15;
foot_pts[15] = -0.15;
rDesFoot_bez.setPoints(foot_pts);
}
else
{
teff = traj_period;
vMult = 0;
}
float rDesFoot[2] , vDesFoot[2];
rDesFoot_bez.evaluate(teff/traj_period,rDesFoot);
rDesFoot_bez.evaluateDerivative(teff/traj_period,vDesFoot);
//vDesFoot[0]/=traj_period;
//vDesFoot[1]/=traj_period;
// vDesFoot[0]*=vMult;
// vDesFoot[1]*=vMult;
vDesFoot[0] = 0;
vDesFoot[1] = 0;
// Calculate the inverse kinematics (joint positions and velocities) for desired joint angles
// float xFootd = -rDesFoot[0];
float xFootd = foot_pts[0];
float yFootd = foot_pts[1];
//float yFootd = rDesFoot[1];
float l_OE = sqrt( (pow(xFootd,2) + pow(yFootd,2)) );
float alpha = abs(acos( (pow(l_OE,2) - pow(l_AC,2) - pow((l_OB+l_DE),2))/(-2.0f*l_AC*(l_OB+l_DE)) ));
float th2_des = -(3.14159f - alpha);
float th1_des = -((3.14159f/2.0f) + atan2(yFootd,xFootd) - abs(asin( (l_AC/l_OE)*sin(alpha) )));
float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1);
float dth1_des = (1.0f/dd) * ( Jy_th2*vDesFoot[0] - Jx_th2*vDesFoot[1] );
float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] );
// Calculate error variables
float e_x = rDesFoot[0]-xFoot;
float e_y = rDesFoot[1]-yFoot;
float de_x = vDesFoot[0]-dxFoot;
float de_y = vDesFoot[1]-dyFoot;
// Calculate virtual force on foot
float fx = K_xx*(rDesFoot[0]-xFoot)+K_xy*(rDesFoot[1]-yFoot)+D_xx*(vDesFoot[0]-dxFoot)+D_xy*(vDesFoot[1]-dyFoot);
float fy = K_xy*(rDesFoot[0]-xFoot)+K_yy*(rDesFoot[1]-yFoot)+D_xy*(vDesFoot[0]-dxFoot)+D_yy*(vDesFoot[1]-dyFoot);
// torque
float T1 = Jx_th1*fx+Jy_th1*fy;
float T2 = Jx_th2*fx+Jy_th2*fy;
// Set desired currents
//current_des1 = 0;
//current_des2 = 0;
// Joint impedance
// sub Kxx for K1, Dxx for D1, Kyy for K2, Dyy for D2
// Note: Be careful with signs now that you have non-zero desired angles!
// Your equations should be of the form i_d = K1*(q1_d - q1) + D1*(dq1_d - dq1)
//current_des1 = (K_xx*(th1_des-th1)+D_xx*(dth1_des-dth1))/k_t;
//current_des2 = (K_yy*(th2_des-th2)+D_yy*(dth2_des-dth2))/k_t;
// Cartesian impedance
// Note: As with the joint space laws, be careful with signs!
current_des1 = T1/k_t;
current_des2 = T2/k_t;
// Form output to send to MATLAB
float output_data[NUM_OUTPUTS];
// current time
output_data[0] = t.read();
// motor 1 state
output_data[1] = angle1;
output_data[2] = velocity1;
output_data[3] = current1;
output_data[4] = current_des1;
output_data[5] = duty_cycle1;
// motor 2 state
output_data[6] = angle2;
output_data[7] = velocity2;
output_data[8] = current2;
output_data[9] = current_des2;
output_data[10]= duty_cycle2;
// foot state
output_data[11] = xFoot;
output_data[12] = yFoot;
output_data[13] = dxFoot;
output_data[14] = dyFoot;
output_data[15] = rDesFoot[0];
output_data[16] = rDesFoot[1];
output_data[17] = vDesFoot[0];
output_data[18] = vDesFoot[1];
// Send data to MATLAB
server.sendData(output_data,NUM_OUTPUTS);
wait_us(impedance_control_period_us);
}
// Cleanup after experiment
server.setExperimentComplete();
currentLoop.detach();
motorShield.motorAWrite(0, 0); //turn motor A off
motorShield.motorBWrite(0, 0); //turn motor B off
} // end if
} // end while
} // end main