Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- janusboandersen
- Date:
- 2018-12-03
- Revision:
- 18:8b3efa4d4a36
- Parent:
- 17:c2e21d347ca5
- Child:
- 19:c0d59019de53
File content as of revision 18:8b3efa4d4a36:
#include "mbed.h" #include "m3pi.h" m3pi m3pi; //File name #define FILESYS "robot" #define FILENAME "/robot/data.txt" // Minimum and maximum motor speeds #define MAX 0.3 #define MIN 0 // PID terms #define P_TERM 1 #define I_TERM 0 #define D_TERM 8 //typedef -> definer som type i C++ //uden typedef - det er ikke en type, så du skal skrive struct performance_data typedef struct performance_data { //<- navn på structen float wh; int pitstops; } performance_data; //<- navn på typen void write_to_file(performance_data data) { //Define file system LocalFileSystem local(FILESYS); //Make a pointer to the file FILE *fp = fopen(FILENAME, "w"); //"w" "r" "a" fprintf(fp, "%0.2f %d", data.wh, data.pitstops); //write to the file fclose(fp); //close when done. } performance_data read_from_file() { performance_data data; //Define file system LocalFileSystem local(FILESYS); //Make a pointer to the file FILE *fp = fopen(FILENAME, "r"); //"w" "r" "a" //Make some error prevention later fscanf(fp, "%f %d", &(data.wh), &(data.pitstops) ); //write to the file fclose(fp); //close when done. return data; } void sensor_all(int arr[]) //lav en funktion? ved ikke hvad jeg skal her { m3pi.putc(0x87); // send noget sensor data for(int n=0; n < 5; n++) // forloop så sensor for data { char lowbyte = m3pi.getc(); char hibyte = m3pi.getc(); arr[n] = ((lowbyte + (hibyte << 8))); // sensor value } m3pi.cls(); m3pi.locate(0,1); m3pi.printf("%d", arr[0]); m3pi.locate(0,0); m3pi.printf("%d", arr[4]); } int maze (void) { return 1; } void turn_left (void) { m3pi.left(0.3); wait (0.22); } void turn_right (void) { m3pi.right (0.3); wait (0.22); } int main() { //test the function to write to a local file performance_data robot_stats; robot_stats.wh = 120.5; robot_stats.pitstops = 200; write_to_file(robot_stats); performance_data new_data; new_data = read_from_file(); //might get an error here due to timing new_data.wh = new_data.wh * 2; new_data.pitstops = new_data.pitstops * 2; write_to_file(new_data); //should get 247... and 246 m3pi.locate(0,1); m3pi.printf("Line PID"); wait(1.0); m3pi.sensor_auto_calibrate(); float right; float left; float current_pos_of_line = 0.0; float previous_pos_of_line = 0.0; float derivative,proportional,integral = 0; float power; float speed = MAX; int sensor_val[5]; /* if restartedFromOff: Load values from file, recalibrate and start. */ while (1) { /* switch if nothing else: line following if low_batt: slow down and continue if atPitIntersection: increment internal lap counter if low_batt && atPitIntersection: Stop && execute pit navigation program if all_sensors == 1000 (lifted from track): show Wh and pitstops on display stop motors, reset PID errors, wait 20 secs, recalibrate sensors if all_sensors < 90 (driven off track): stop and ask for help? Flash LEDs? turn back and continue? Reset PID errors Periodically (not necessarily every lap - maybe every 2-5th lap): Save to file -> possibly only after pit Check battery voltage -> every couple of minutes Check light sensors for drift -> recalibrate (optional) */ /* Separate functions pit_navigation (entering pit from T-intersection all the way to the charger) pit_execution (only when connected to charger - voltage > V_CHARGER_MIN add 1 to number of pitstops charge and wait for signal from the external charging circuit during charging: integrate v(t) dt, add to cumulative sum when fully charged (or signal goes high): Calculate delta_Wh ( integrate{ v(t) dt} * u * 1/3600 ) Calculate total_Wh save progress data to file leave the charger -> pass control to pit_exit pit_exit reverse out of the pit back to T-intersection continue line following away from T-intersection, recal sensors after a few seconds AfterPitAdmin: Calibrate sensors, save state to file, show_results_on_display: check_sensors_for_errors: check_battery_voltage -> return true false compare m3pi.battery() < V_CRITICAL HUSK FOR POKKER KOLLES KODESTANDARD! */ // Get the position of the line. current_pos_of_line = m3pi.line_position(); proportional = current_pos_of_line; // Compute the derivative derivative = current_pos_of_line - previous_pos_of_line; // Compute the integral integral += proportional; // Remember the last position. previous_pos_of_line = current_pos_of_line; // Compute the power power = (proportional * (P_TERM) ) + (integral*(I_TERM)) + (derivative*(D_TERM)) ; // Compute new speeds right = speed+power; left = speed-power; // limit checks if (right < MIN) right = MIN; else if (right > MAX) right = MAX; if (left < MIN) left = MIN; else if (left > MAX) left = MAX; // set speed m3pi.left_motor(left); m3pi.right_motor(right); //Marc's sensor test sensor_all(sensor_val); // sensor_value gets fkt value if (sensor_val[0] > 350 && sensor_val[4] > 350) { m3pi.stop(); turn_right(); m3pi.stop(); m3pi.forward(0.2); wait (1.1); m3pi.stop(); wait (5); m3pi.backward(0.2); wait (1); m3pi.stop(); turn_left(); m3pi.stop(); } /* sensor_value4 = sensor_all(4); // sensor_value gets fkt value */ /* m3pi.printf("%d", sensor_value0); // prints one of sidesensors value m3pi.locate(0,1); m3pi.printf("%d", sensor_value4); // prints the other sidesensor value */ } }