Library version of MPU9250AHRS code.

Fork of MPU9250AHRS by Janek Mann

Files at this revision

API Documentation at this revision

Comitter:
janekm
Date:
Mon Sep 08 21:50:33 2014 +0000
Parent:
4:404c35f32ce3
Commit message:
N/A

Changed in this revision

AHRS.c Show annotated file Show diff for this revision Revisions of this file
AHRS.h Show annotated file Show diff for this revision Revisions of this file
MPU9250.h Show annotated file Show diff for this revision Revisions of this file
main.cpp Show diff for this revision Revisions of this file
diff -r 404c35f32ce3 -r ea541d293095 AHRS.c
--- a/AHRS.c	Thu Sep 04 21:19:05 2014 +0000
+++ b/AHRS.c	Mon Sep 08 21:50:33 2014 +0000
@@ -1,7 +1,7 @@
 #include "AHRS.h"
 #include "math.h"
 
-static float eInt[3] = {0.0f, 0.0f, 0.0f}; 
+static float eInt[3] = {0.0f, 0.0f, 0.0f};
 
 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
@@ -10,94 +10,95 @@
 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
 
-    void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q, float beta) {
-        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-        float norm;
-        float hx, hy, _2bx, _2bz;
-        float s1, s2, s3, s4;
-        float qDot1, qDot2, qDot3, qDot4;
+void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q, float beta)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, _2bx, _2bz;
+    float s1, s2, s3, s4;
+    float qDot1, qDot2, qDot3, qDot4;
 
-        // Auxiliary variables to avoid repeated arithmetic
-        float _2q1mx;
-        float _2q1my;
-        float _2q1mz;
-        float _2q2mx;
-        float _4bx;
-        float _4bz;
-        float _2q1 = 2.0f * q1;
-        float _2q2 = 2.0f * q2;
-        float _2q3 = 2.0f * q3;
-        float _2q4 = 2.0f * q4;
-        float _2q1q3 = 2.0f * q1 * q3;
-        float _2q3q4 = 2.0f * q3 * q4;
-        float q1q1 = q1 * q1;
-        float q1q2 = q1 * q2;
-        float q1q3 = q1 * q3;
-        float q1q4 = q1 * q4;
-        float q2q2 = q2 * q2;
-        float q2q3 = q2 * q3;
-        float q2q4 = q2 * q4;
-        float q3q3 = q3 * q3;
-        float q3q4 = q3 * q4;
-        float q4q4 = q4 * q4;
+    // Auxiliary variables to avoid repeated arithmetic
+    float _2q1mx;
+    float _2q1my;
+    float _2q1mz;
+    float _2q2mx;
+    float _4bx;
+    float _4bz;
+    float _2q1 = 2.0f * q1;
+    float _2q2 = 2.0f * q2;
+    float _2q3 = 2.0f * q3;
+    float _2q4 = 2.0f * q4;
+    float _2q1q3 = 2.0f * q1 * q3;
+    float _2q3q4 = 2.0f * q3 * q4;
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
 
-        // Normalise accelerometer measurement
-        norm = sqrt(ax * ax + ay * ay + az * az);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f/norm;
-        ax *= norm;
-        ay *= norm;
-        az *= norm;
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
 
-        // Normalise magnetometer measurement
-        norm = sqrt(mx * mx + my * my + mz * mz);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f/norm;
-        mx *= norm;
-        my *= norm;
-        mz *= norm;
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
 
-        // Reference direction of Earth's magnetic field
-        _2q1mx = 2.0f * q1 * mx;
-        _2q1my = 2.0f * q1 * my;
-        _2q1mz = 2.0f * q1 * mz;
-        _2q2mx = 2.0f * q2 * mx;
-        hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
-        hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
-        _2bx = sqrt(hx * hx + hy * hy);
-        _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
-        _4bx = 2.0f * _2bx;
-        _4bz = 2.0f * _2bz;
+    // Reference direction of Earth's magnetic field
+    _2q1mx = 2.0f * q1 * mx;
+    _2q1my = 2.0f * q1 * my;
+    _2q1mz = 2.0f * q1 * mz;
+    _2q2mx = 2.0f * q2 * mx;
+    hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+    hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+    _2bx = sqrt(hx * hx + hy * hy);
+    _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+    _4bx = 2.0f * _2bx;
+    _4bz = 2.0f * _2bz;
 
-        // Gradient decent algorithm corrective step
-        s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
-        norm = 1.0f/norm;
-        s1 *= norm;
-        s2 *= norm;
-        s3 *= norm;
-        s4 *= norm;
+    // Gradient decent algorithm corrective step
+    s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
+    norm = 1.0f/norm;
+    s1 *= norm;
+    s2 *= norm;
+    s3 *= norm;
+    s4 *= norm;
 
-        // Compute rate of change of quaternion
-        qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
-        qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
-        qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
-        qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+    // Compute rate of change of quaternion
+    qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+    qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+    qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+    qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
 
-        // Integrate to yield quaternion
-        q1 += qDot1 * deltat;
-        q2 += qDot2 * deltat;
-        q3 += qDot3 * deltat;
-        q4 += qDot4 * deltat;
-        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
-        norm = 1.0f/norm;
-        q[0] = q1 * norm;
-        q[1] = q2 * norm;
-        q[2] = q3 * norm;
-        q[3] = q4 * norm;
+    // Integrate to yield quaternion
+    q1 += qDot1 * deltat;
+    q2 += qDot2 * deltat;
+    q3 += qDot3 * deltat;
+    q4 += qDot4 * deltat;
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+    norm = 1.0f/norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
 
 }
 
@@ -105,90 +106,90 @@
 
 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
 // measured ones.
-    void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q) {
-        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-        float norm;
-        float hx, hy, bx, bz;
-        float vx, vy, vz, wx, wy, wz;
-        float ex, ey, ez;
-        float pa, pb, pc;
+void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, bx, bz;
+    float vx, vy, vz, wx, wy, wz;
+    float ex, ey, ez;
+    float pa, pb, pc;
 
-        // Auxiliary variables to avoid repeated arithmetic
-        float q1q1 = q1 * q1;
-        float q1q2 = q1 * q2;
-        float q1q3 = q1 * q3;
-        float q1q4 = q1 * q4;
-        float q2q2 = q2 * q2;
-        float q2q3 = q2 * q3;
-        float q2q4 = q2 * q4;
-        float q3q3 = q3 * q3;
-        float q3q4 = q3 * q4;
-        float q4q4 = q4 * q4;
+    // Auxiliary variables to avoid repeated arithmetic
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
 
-        // Normalise accelerometer measurement
-        norm = sqrt(ax * ax + ay * ay + az * az);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f / norm;        // use reciprocal for division
-        ax *= norm;
-        ay *= norm;
-        az *= norm;
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
 
-        // Normalise magnetometer measurement
-        norm = sqrt(mx * mx + my * my + mz * mz);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f / norm;        // use reciprocal for division
-        mx *= norm;
-        my *= norm;
-        mz *= norm;
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
 
-        // Reference direction of Earth's magnetic field
-        hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
-        hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
-        bx = sqrt((hx * hx) + (hy * hy));
-        bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
+    // Reference direction of Earth's magnetic field
+    hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
+    hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
+    bx = sqrt((hx * hx) + (hy * hy));
+    bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
 
-        // Estimated direction of gravity and magnetic field
-        vx = 2.0f * (q2q4 - q1q3);
-        vy = 2.0f * (q1q2 + q3q4);
-        vz = q1q1 - q2q2 - q3q3 + q4q4;
-        wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
-        wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
-        wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
+    // Estimated direction of gravity and magnetic field
+    vx = 2.0f * (q2q4 - q1q3);
+    vy = 2.0f * (q1q2 + q3q4);
+    vz = q1q1 - q2q2 - q3q3 + q4q4;
+    wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
+    wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
+    wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
 
-        // Error is cross product between estimated direction and measured direction of gravity
-        ex = (ay * vz - az * vy) + (my * wz - mz * wy);
-        ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
-        ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
-        if (Ki > 0.0f) {
-            eInt[0] += ex;      // accumulate integral error
-            eInt[1] += ey;
-            eInt[2] += ez;
-        } else {
-            eInt[0] = 0.0f;     // prevent integral wind up
-            eInt[1] = 0.0f;
-            eInt[2] = 0.0f;
-        }
+    // Error is cross product between estimated direction and measured direction of gravity
+    ex = (ay * vz - az * vy) + (my * wz - mz * wy);
+    ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
+    ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
+    if (Ki > 0.0f) {
+        eInt[0] += ex;      // accumulate integral error
+        eInt[1] += ey;
+        eInt[2] += ez;
+    } else {
+        eInt[0] = 0.0f;     // prevent integral wind up
+        eInt[1] = 0.0f;
+        eInt[2] = 0.0f;
+    }
 
-        // Apply feedback terms
-        gx = gx + Kp * ex + Ki * eInt[0];
-        gy = gy + Kp * ey + Ki * eInt[1];
-        gz = gz + Kp * ez + Ki * eInt[2];
+    // Apply feedback terms
+    gx = gx + Kp * ex + Ki * eInt[0];
+    gy = gy + Kp * ey + Ki * eInt[1];
+    gz = gz + Kp * ez + Ki * eInt[2];
 
-        // Integrate rate of change of quaternion
-        pa = q2;
-        pb = q3;
-        pc = q4;
-        q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
-        q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
-        q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
-        q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
+    // Integrate rate of change of quaternion
+    pa = q2;
+    pb = q3;
+    pc = q4;
+    q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
+    q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
+    q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
+    q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
 
-        // Normalise quaternion
-        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
-        norm = 1.0f / norm;
-        q[0] = q1 * norm;
-        q[1] = q2 * norm;
-        q[2] = q3 * norm;
-        q[3] = q4 * norm;
-
-    }
\ No newline at end of file
+    // Normalise quaternion
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
+    norm = 1.0f / norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+}
\ No newline at end of file
diff -r 404c35f32ce3 -r ea541d293095 AHRS.h
--- a/AHRS.h	Thu Sep 04 21:19:05 2014 +0000
+++ b/AHRS.h	Mon Sep 08 21:50:33 2014 +0000
@@ -1,10 +1,18 @@
 #ifndef __AHRS_H_
 #define __AHRS_H_
 
+#ifdef __cplusplus
+extern "C" {
+#endif // #ifdef __cplusplus
+
 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
 #define Ki 0.0f
 
 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q, float beta);
 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q);
 
+#ifdef __cplusplus
+}
+#endif // #ifdef __cplusplus
+
 #endif // __AHRS_H_
\ No newline at end of file
diff -r 404c35f32ce3 -r ea541d293095 MPU9250.h
--- a/MPU9250.h	Thu Sep 04 21:19:05 2014 +0000
+++ b/MPU9250.h	Mon Sep 08 21:50:33 2014 +0000
@@ -217,8 +217,6 @@
 float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
 
-float pitch, yaw, roll;
-float deltat = 0.0f;                             // integration interval for both filter schemes
 int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
 float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
 
@@ -616,7 +614,7 @@
 // Configure the accelerometer for self-test
         writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
         writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-        wait(25); // Delay a while to let the device stabilize
+        wait(2); // Delay a while to let the device stabilize
 
         for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
 
@@ -639,7 +637,7 @@
 // Configure the gyro and accelerometer for normal operation
         writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
         writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
-        wait(25); // Delay a while to let the device stabilize
+        wait(2); // Delay a while to let the device stabilize
 
         // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
         selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
diff -r 404c35f32ce3 -r ea541d293095 main.cpp
--- a/main.cpp	Thu Sep 04 21:19:05 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,239 +0,0 @@
-/* MPU9250 Basic Example Code
- by: Kris Winer
- date: April 1, 2014
- license: Beerware - Use this code however you'd like. If you 
- find it useful you can buy me a beer some time.
- 
- Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, 
- getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to 
- allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and 
- Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
- 
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors are on the EMSENSR-9250 breakout board.
- 
- Hardware setup:
- MPU9250 Breakout --------- Arduino
- VDD ---------------------- 3.3V
- VDDI --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
- 
- Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. 
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
- */
- 
-//#include "ST_F401_84MHZ.h" 
-//F401_init84 myinit(0);
-#include "mbed.h"
-#include "MPU9250.h"
-#include "AHRS.h"
-
-// Using NOKIA 5110 monochrome 84 x 48 pixel display
-// pin 9 - Serial clock out (SCLK)
-// pin 8 - Serial data out (DIN)
-// pin 7 - Data/Command select (D/C)
-// pin 5 - LCD chip select (CS)
-// pin 6 - LCD reset (RST)
-//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
-
-float sum = 0;
-float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
-
-uint32_t sumCount = 0;
-char buffer[14];
-I2C i2c(p7, p6);
-   MPU9250 mpu9250(&i2c);
-   
-   Timer t;
-
-   Serial pc(USBTX, USBRX); // tx, rx
-   
-
-        
-int main()
-{
-  pc.baud(9600);  
-
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C  
-  
-  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
-  
-  t.start();        
-  
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-  
-  if (whoami == 0x71) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-    pc.printf("MPU9250 is online...\n\r");
-    sprintf(buffer, "0x%x", whoami);
-    wait(1);
-    
-    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-    mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
-    pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
-    pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
-    pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
-    pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
-    pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
-    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-    pc.printf("x accel bias = %f\n\r", accelBias[0]);
-    pc.printf("y accel bias = %f\n\r", accelBias[1]);
-    pc.printf("z accel bias = %f\n\r", accelBias[2]);
-    wait(2);
-    mpu9250.initMPU9250(); 
-    pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-    mpu9250.initAK8963(magCalibration);
-    pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-    wait(1);
-   }
-   else
-   {
-    pc.printf("Could not connect to MPU9250: \n\r");
-    pc.printf("%#x \n",  whoami);
-  
-    while(1) ; // Loop forever if communication doesn't happen
-    }
-
-    mpu9250.getAres(); // Get accelerometer sensitivity
-    mpu9250.getGres(); // Get gyro sensitivity
-    mpu9250.getMres(); // Get magnetometer sensitivity
-    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
-    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-
- while(1) {
-  
-  // If intPin goes high, all data registers have new data
-  if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-
-    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
-  
-    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-    // Calculate the magnetometer values in milliGauss
-    // Include factory calibration per data sheet and user environmental corrections
-    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
-  }
-   
-    Now = t.read_us();
-    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-    lastUpdate = Now;
-    
-    sum += deltat;
-    sumCount++;
-    
-//    if(lastUpdate - firstUpdate > 10000000.0f) {
-//     beta = 0.04;  // decrease filter gain after stabilized
-//     zeta = 0.015; // increasey bias drift gain after stabilized
- //   }
-    
-   // Pass gyro rate as rad/s
-//  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-    MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz, deltat, q);
-
-    // Serial print and/or display at 0.5 s rate independent of data rates
-    delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
-
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf("gx = %f", mx); 
-    pc.printf(" gy = %f", my); 
-    pc.printf(" gz = %f  mG\n\r", mz); 
-    
-    tempCount = mpu9250.readTempData();  // Read the adc values
-    temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-    pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
-    
-/*    lcd.clear();
-    lcd.printString("MPU9250", 0, 0);
-    lcd.printString("x   y   z", 0, 1);
-    sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
-    lcd.printString(buffer, 0, 2);
-    sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
-    lcd.printString(buffer, 0, 3);
-    sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
-    lcd.printString(buffer, 0, 4); 
- */  
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-    roll  *= 180.0f / PI;
-
-    pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-//    sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
-//    lcd.printString(buffer, 0, 4);
-//    sprintf(buffer, "rate = %f", (float) sumCount/sum);
-//    lcd.printString(buffer, 0, 5);
-    
-    count = t.read_ms(); 
-
-    if(count > 1<<21) {
-        t.start(); // start the timer over again if ~30 minutes has passed
-        count = 0;
-        deltat= 0;
-        lastUpdate = t.read_us();
-    }
-    sum = 0;
-    sumCount = 0; 
-}
-}
- 
- }
\ No newline at end of file