Library version of MPU9250AHRS code.

Fork of MPU9250AHRS by Janek Mann

Revision:
5:ea541d293095
Parent:
4:404c35f32ce3
diff -r 404c35f32ce3 -r ea541d293095 AHRS.c
--- a/AHRS.c	Thu Sep 04 21:19:05 2014 +0000
+++ b/AHRS.c	Mon Sep 08 21:50:33 2014 +0000
@@ -1,7 +1,7 @@
 #include "AHRS.h"
 #include "math.h"
 
-static float eInt[3] = {0.0f, 0.0f, 0.0f}; 
+static float eInt[3] = {0.0f, 0.0f, 0.0f};
 
 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
@@ -10,94 +10,95 @@
 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
 
-    void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q, float beta) {
-        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-        float norm;
-        float hx, hy, _2bx, _2bz;
-        float s1, s2, s3, s4;
-        float qDot1, qDot2, qDot3, qDot4;
+void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q, float beta)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, _2bx, _2bz;
+    float s1, s2, s3, s4;
+    float qDot1, qDot2, qDot3, qDot4;
 
-        // Auxiliary variables to avoid repeated arithmetic
-        float _2q1mx;
-        float _2q1my;
-        float _2q1mz;
-        float _2q2mx;
-        float _4bx;
-        float _4bz;
-        float _2q1 = 2.0f * q1;
-        float _2q2 = 2.0f * q2;
-        float _2q3 = 2.0f * q3;
-        float _2q4 = 2.0f * q4;
-        float _2q1q3 = 2.0f * q1 * q3;
-        float _2q3q4 = 2.0f * q3 * q4;
-        float q1q1 = q1 * q1;
-        float q1q2 = q1 * q2;
-        float q1q3 = q1 * q3;
-        float q1q4 = q1 * q4;
-        float q2q2 = q2 * q2;
-        float q2q3 = q2 * q3;
-        float q2q4 = q2 * q4;
-        float q3q3 = q3 * q3;
-        float q3q4 = q3 * q4;
-        float q4q4 = q4 * q4;
+    // Auxiliary variables to avoid repeated arithmetic
+    float _2q1mx;
+    float _2q1my;
+    float _2q1mz;
+    float _2q2mx;
+    float _4bx;
+    float _4bz;
+    float _2q1 = 2.0f * q1;
+    float _2q2 = 2.0f * q2;
+    float _2q3 = 2.0f * q3;
+    float _2q4 = 2.0f * q4;
+    float _2q1q3 = 2.0f * q1 * q3;
+    float _2q3q4 = 2.0f * q3 * q4;
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
 
-        // Normalise accelerometer measurement
-        norm = sqrt(ax * ax + ay * ay + az * az);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f/norm;
-        ax *= norm;
-        ay *= norm;
-        az *= norm;
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
 
-        // Normalise magnetometer measurement
-        norm = sqrt(mx * mx + my * my + mz * mz);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f/norm;
-        mx *= norm;
-        my *= norm;
-        mz *= norm;
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f/norm;
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
 
-        // Reference direction of Earth's magnetic field
-        _2q1mx = 2.0f * q1 * mx;
-        _2q1my = 2.0f * q1 * my;
-        _2q1mz = 2.0f * q1 * mz;
-        _2q2mx = 2.0f * q2 * mx;
-        hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
-        hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
-        _2bx = sqrt(hx * hx + hy * hy);
-        _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
-        _4bx = 2.0f * _2bx;
-        _4bz = 2.0f * _2bz;
+    // Reference direction of Earth's magnetic field
+    _2q1mx = 2.0f * q1 * mx;
+    _2q1my = 2.0f * q1 * my;
+    _2q1mz = 2.0f * q1 * mz;
+    _2q2mx = 2.0f * q2 * mx;
+    hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+    hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+    _2bx = sqrt(hx * hx + hy * hy);
+    _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+    _4bx = 2.0f * _2bx;
+    _4bz = 2.0f * _2bz;
 
-        // Gradient decent algorithm corrective step
-        s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-        norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
-        norm = 1.0f/norm;
-        s1 *= norm;
-        s2 *= norm;
-        s3 *= norm;
-        s4 *= norm;
+    // Gradient decent algorithm corrective step
+    s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+    norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
+    norm = 1.0f/norm;
+    s1 *= norm;
+    s2 *= norm;
+    s3 *= norm;
+    s4 *= norm;
 
-        // Compute rate of change of quaternion
-        qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
-        qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
-        qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
-        qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+    // Compute rate of change of quaternion
+    qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+    qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+    qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+    qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
 
-        // Integrate to yield quaternion
-        q1 += qDot1 * deltat;
-        q2 += qDot2 * deltat;
-        q3 += qDot3 * deltat;
-        q4 += qDot4 * deltat;
-        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
-        norm = 1.0f/norm;
-        q[0] = q1 * norm;
-        q[1] = q2 * norm;
-        q[2] = q3 * norm;
-        q[3] = q4 * norm;
+    // Integrate to yield quaternion
+    q1 += qDot1 * deltat;
+    q2 += qDot2 * deltat;
+    q3 += qDot3 * deltat;
+    q4 += qDot4 * deltat;
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+    norm = 1.0f/norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
 
 }
 
@@ -105,90 +106,90 @@
 
 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
 // measured ones.
-    void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q) {
-        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-        float norm;
-        float hx, hy, bx, bz;
-        float vx, vy, vz, wx, wy, wz;
-        float ex, ey, ez;
-        float pa, pb, pc;
+void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat, float *q)
+{
+    float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+    float norm;
+    float hx, hy, bx, bz;
+    float vx, vy, vz, wx, wy, wz;
+    float ex, ey, ez;
+    float pa, pb, pc;
 
-        // Auxiliary variables to avoid repeated arithmetic
-        float q1q1 = q1 * q1;
-        float q1q2 = q1 * q2;
-        float q1q3 = q1 * q3;
-        float q1q4 = q1 * q4;
-        float q2q2 = q2 * q2;
-        float q2q3 = q2 * q3;
-        float q2q4 = q2 * q4;
-        float q3q3 = q3 * q3;
-        float q3q4 = q3 * q4;
-        float q4q4 = q4 * q4;
+    // Auxiliary variables to avoid repeated arithmetic
+    float q1q1 = q1 * q1;
+    float q1q2 = q1 * q2;
+    float q1q3 = q1 * q3;
+    float q1q4 = q1 * q4;
+    float q2q2 = q2 * q2;
+    float q2q3 = q2 * q3;
+    float q2q4 = q2 * q4;
+    float q3q3 = q3 * q3;
+    float q3q4 = q3 * q4;
+    float q4q4 = q4 * q4;
 
-        // Normalise accelerometer measurement
-        norm = sqrt(ax * ax + ay * ay + az * az);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f / norm;        // use reciprocal for division
-        ax *= norm;
-        ay *= norm;
-        az *= norm;
+    // Normalise accelerometer measurement
+    norm = sqrt(ax * ax + ay * ay + az * az);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    ax *= norm;
+    ay *= norm;
+    az *= norm;
 
-        // Normalise magnetometer measurement
-        norm = sqrt(mx * mx + my * my + mz * mz);
-        if (norm == 0.0f) return; // handle NaN
-        norm = 1.0f / norm;        // use reciprocal for division
-        mx *= norm;
-        my *= norm;
-        mz *= norm;
+    // Normalise magnetometer measurement
+    norm = sqrt(mx * mx + my * my + mz * mz);
+    if (norm == 0.0f) return; // handle NaN
+    norm = 1.0f / norm;        // use reciprocal for division
+    mx *= norm;
+    my *= norm;
+    mz *= norm;
 
-        // Reference direction of Earth's magnetic field
-        hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
-        hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
-        bx = sqrt((hx * hx) + (hy * hy));
-        bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
+    // Reference direction of Earth's magnetic field
+    hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
+    hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
+    bx = sqrt((hx * hx) + (hy * hy));
+    bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
 
-        // Estimated direction of gravity and magnetic field
-        vx = 2.0f * (q2q4 - q1q3);
-        vy = 2.0f * (q1q2 + q3q4);
-        vz = q1q1 - q2q2 - q3q3 + q4q4;
-        wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
-        wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
-        wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
+    // Estimated direction of gravity and magnetic field
+    vx = 2.0f * (q2q4 - q1q3);
+    vy = 2.0f * (q1q2 + q3q4);
+    vz = q1q1 - q2q2 - q3q3 + q4q4;
+    wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
+    wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
+    wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
 
-        // Error is cross product between estimated direction and measured direction of gravity
-        ex = (ay * vz - az * vy) + (my * wz - mz * wy);
-        ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
-        ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
-        if (Ki > 0.0f) {
-            eInt[0] += ex;      // accumulate integral error
-            eInt[1] += ey;
-            eInt[2] += ez;
-        } else {
-            eInt[0] = 0.0f;     // prevent integral wind up
-            eInt[1] = 0.0f;
-            eInt[2] = 0.0f;
-        }
+    // Error is cross product between estimated direction and measured direction of gravity
+    ex = (ay * vz - az * vy) + (my * wz - mz * wy);
+    ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
+    ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
+    if (Ki > 0.0f) {
+        eInt[0] += ex;      // accumulate integral error
+        eInt[1] += ey;
+        eInt[2] += ez;
+    } else {
+        eInt[0] = 0.0f;     // prevent integral wind up
+        eInt[1] = 0.0f;
+        eInt[2] = 0.0f;
+    }
 
-        // Apply feedback terms
-        gx = gx + Kp * ex + Ki * eInt[0];
-        gy = gy + Kp * ey + Ki * eInt[1];
-        gz = gz + Kp * ez + Ki * eInt[2];
+    // Apply feedback terms
+    gx = gx + Kp * ex + Ki * eInt[0];
+    gy = gy + Kp * ey + Ki * eInt[1];
+    gz = gz + Kp * ez + Ki * eInt[2];
 
-        // Integrate rate of change of quaternion
-        pa = q2;
-        pb = q3;
-        pc = q4;
-        q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
-        q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
-        q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
-        q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
+    // Integrate rate of change of quaternion
+    pa = q2;
+    pb = q3;
+    pc = q4;
+    q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
+    q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
+    q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
+    q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
 
-        // Normalise quaternion
-        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
-        norm = 1.0f / norm;
-        q[0] = q1 * norm;
-        q[1] = q2 * norm;
-        q[2] = q3 * norm;
-        q[3] = q4 * norm;
-
-    }
\ No newline at end of file
+    // Normalise quaternion
+    norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
+    norm = 1.0f / norm;
+    q[0] = q1 * norm;
+    q[1] = q2 * norm;
+    q[2] = q3 * norm;
+    q[3] = q4 * norm;
+}
\ No newline at end of file