Library version of MPU9250AHRS code.

Fork of MPU9250AHRS by Janek Mann

Revision:
3:c05fbe0aef1f
Parent:
2:4e59a37182df
Child:
4:404c35f32ce3
diff -r 4e59a37182df -r c05fbe0aef1f MPU9250.h
--- a/MPU9250.h	Tue Aug 05 01:37:23 2014 +0000
+++ b/MPU9250.h	Thu Sep 04 20:16:36 2014 +0000
@@ -1,10 +1,10 @@
 #ifndef MPU9250_H
 #define MPU9250_H
- 
+
 #include "mbed.h"
 #include "math.h"
- 
-// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
+
+// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
 //
 //Magnetometer Registers
@@ -26,8 +26,8 @@
 #define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value
 #define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value
 
-#define SELF_TEST_X_GYRO 0x00                  
-#define SELF_TEST_Y_GYRO 0x01                                                                          
+#define SELF_TEST_X_GYRO 0x00
+#define SELF_TEST_Y_GYRO 0x01
 #define SELF_TEST_Z_GYRO 0x02
 
 /*#define X_FINE_GAIN      0x03 // [7:0] fine gain
@@ -41,7 +41,7 @@
 #define ZA_OFFSET_L_TC   0x0B */
 
 #define SELF_TEST_X_ACCEL 0x0D
-#define SELF_TEST_Y_ACCEL 0x0E    
+#define SELF_TEST_Y_ACCEL 0x0E
 #define SELF_TEST_Z_ACCEL 0x0F
 
 #define SELF_TEST_A      0x10
@@ -57,15 +57,15 @@
 #define GYRO_CONFIG      0x1B
 #define ACCEL_CONFIG     0x1C
 #define ACCEL_CONFIG2    0x1D
-#define LP_ACCEL_ODR     0x1E   
-#define WOM_THR          0x1F   
+#define LP_ACCEL_ODR     0x1E
+#define WOM_THR          0x1F
 
 #define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
 #define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
 #define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
 
 #define FIFO_EN          0x23
-#define I2C_MST_CTRL     0x24   
+#define I2C_MST_CTRL     0x24
 #define I2C_SLV0_ADDR    0x25
 #define I2C_SLV0_REG     0x26
 #define I2C_SLV0_CTRL    0x27
@@ -141,7 +141,7 @@
 #define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
 #define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
 #define DMP_REG_1        0x70
-#define DMP_REG_2        0x71 
+#define DMP_REG_2        0x71
 #define FIFO_COUNTH      0x72
 #define FIFO_COUNTL      0x73
 #define FIFO_R_W         0x74
@@ -153,7 +153,7 @@
 #define ZA_OFFSET_H      0x7D
 #define ZA_OFFSET_L      0x7E
 
-// Using the MSENSR-9250 breakout board, ADO is set to 0 
+// Using the MSENSR-9250 breakout board, ADO is set to 0
 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
 #define ADO 0
@@ -161,39 +161,39 @@
 #define MPU9250_ADDRESS 0x69<<1  // Device address when ADO = 1
 #else
 #define MPU9250_ADDRESS 0x68<<1  // Device address when ADO = 0
-#endif  
+#endif
 
 // Set initial input parameters
 enum Ascale {
-  AFS_2G = 0,
-  AFS_4G,
-  AFS_8G,
-  AFS_16G
+    AFS_2G = 0,
+    AFS_4G,
+    AFS_8G,
+    AFS_16G
 };
 
 enum Gscale {
-  GFS_250DPS = 0,
-  GFS_500DPS,
-  GFS_1000DPS,
-  GFS_2000DPS
+    GFS_250DPS = 0,
+    GFS_500DPS,
+    GFS_1000DPS,
+    GFS_2000DPS
 };
 
 enum Mscale {
-  MFS_14BITS = 0, // 0.6 mG per LSB
-  MFS_16BITS      // 0.15 mG per LSB
+    MFS_14BITS = 0, // 0.6 mG per LSB
+    MFS_16BITS      // 0.15 mG per LSB
 };
 
 uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
-uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR  
+uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
 float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
 
 //Set up I2C, (SDA,SCL)
 I2C i2c(I2C_SDA, I2C_SCL);
 
 DigitalOut myled(LED1);
-    
+
 // Pin definitions
 int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
 
@@ -202,7 +202,7 @@
 int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
-float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
+float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
 float temperature;
 float SelfTest[6];
@@ -225,316 +225,311 @@
 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
 float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
 
-class MPU9250 {
- 
-    protected:
- 
-    public:
-  //===================================================================================================================
+class MPU9250
+{
+
+protected:
+    I2C* _i2c;
+
+public:
+    //===================================================================================================================
 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
 //===================================================================================================================
-
-    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
-{
-   char data_write[2];
-   data_write[0] = subAddress;
-   data_write[1] = data;
-   i2c.write(address, data_write, 2, 0);
-}
-
-    char readByte(uint8_t address, uint8_t subAddress)
-{
-    char data[1]; // `data` will store the register data     
-    char data_write[1];
-    data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, 1, 0); 
-    return data[0]; 
-}
+    MPU9250(I2C *i2c)  _i2c( i2c ) {
+        break;
+    }
+    
+    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
+        char data_write[2];
+        data_write[0] = subAddress;
+        data_write[1] = data;
+        _i2c->write(address, data_write, 2, 0);
+    }
 
-    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
-{     
-    char data[14];
-    char data_write[1];
-    data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, count, 0); 
-    for(int ii = 0; ii < count; ii++) {
-     dest[ii] = data[ii];
+    char readByte(uint8_t address, uint8_t subAddress) {
+        char data[1]; // `data` will store the register data
+        char data_write[1];
+        data_write[0] = subAddress;
+        _i2c->write(address, data_write, 1, 1); // no stop
+        _i2c->read(address, data, 1, 0);
+        return data[0];
     }
-} 
- 
 
-void getMres() {
-  switch (Mscale)
-  {
-    // Possible magnetometer scales (and their register bit settings) are:
-    // 14 bit resolution (0) and 16 bit resolution (1)
-    case MFS_14BITS:
-          mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
-          break;
-    case MFS_16BITS:
-          mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
-          break;
-  }
-}
+    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
+        char data[14];
+        char data_write[1];
+        data_write[0] = subAddress;
+        _i2c->write(address, data_write, 1, 1); // no stop
+        _i2c->read(address, data, count, 0);
+        for(int ii = 0; ii < count; ii++) {
+            dest[ii] = data[ii];
+        }
+    }
 
 
-void getGres() {
-  switch (Gscale)
-  {
-    // Possible gyro scales (and their register bit settings) are:
-    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case GFS_250DPS:
-          gRes = 250.0/32768.0;
-          break;
-    case GFS_500DPS:
-          gRes = 500.0/32768.0;
-          break;
-    case GFS_1000DPS:
-          gRes = 1000.0/32768.0;
-          break;
-    case GFS_2000DPS:
-          gRes = 2000.0/32768.0;
-          break;
-  }
-}
+    void getMres() {
+        switch (Mscale) {
+                // Possible magnetometer scales (and their register bit settings) are:
+                // 14 bit resolution (0) and 16 bit resolution (1)
+            case MFS_14BITS:
+                mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
+                break;
+            case MFS_16BITS:
+                mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
+                break;
+        }
+    }
 
 
-void getAres() {
-  switch (Ascale)
-  {
-    // Possible accelerometer scales (and their register bit settings) are:
-    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case AFS_2G:
-          aRes = 2.0/32768.0;
-          break;
-    case AFS_4G:
-          aRes = 4.0/32768.0;
-          break;
-    case AFS_8G:
-          aRes = 8.0/32768.0;
-          break;
-    case AFS_16G:
-          aRes = 16.0/32768.0;
-          break;
-  }
-}
+    void getGres() {
+        switch (Gscale) {
+                // Possible gyro scales (and their register bit settings) are:
+                // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11).
+                // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+            case GFS_250DPS:
+                gRes = 250.0/32768.0;
+                break;
+            case GFS_500DPS:
+                gRes = 500.0/32768.0;
+                break;
+            case GFS_1000DPS:
+                gRes = 1000.0/32768.0;
+                break;
+            case GFS_2000DPS:
+                gRes = 2000.0/32768.0;
+                break;
+        }
+    }
+
+
+    void getAres() {
+        switch (Ascale) {
+                // Possible accelerometer scales (and their register bit settings) are:
+                // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11).
+                // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+            case AFS_2G:
+                aRes = 2.0/32768.0;
+                break;
+            case AFS_4G:
+                aRes = 4.0/32768.0;
+                break;
+            case AFS_8G:
+                aRes = 8.0/32768.0;
+                break;
+            case AFS_16G:
+                aRes = 16.0/32768.0;
+                break;
+        }
+    }
 
 
-void readAccelData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z accel register data stored here
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
+    void readAccelData(int16_t * destination) {
+        uint8_t rawData[6];  // x/y/z accel register data stored here
+        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+    }
 
-void readGyroData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z gyro register data stored here
-  readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
+    void readGyroData(int16_t * destination) {
+        uint8_t rawData[6];  // x/y/z gyro register data stored here
+        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+    }
 
-void readMagData(int16_t * destination)
-{
-  uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
-  if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
-  readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
-  uint8_t c = rawData[6]; // End data read by reading ST2 register
-    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
-    destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
-    destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
-    destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
-   }
-  }
-}
+    void readMagData(int16_t * destination) {
+        uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
+        if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
+            readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
+            uint8_t c = rawData[6]; // End data read by reading ST2 register
+            if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+                destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
+                destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
+                destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
+            }
+        }
+    }
 
-int16_t readTempData()
-{
-  uint8_t rawData[2];  // x/y/z gyro register data stored here
-  readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
-  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
-}
+    int16_t readTempData() {
+        uint8_t rawData[2];  // x/y/z gyro register data stored here
+        readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array
+        return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+    }
 
 
-void resetMPU9250() {
-  // reset device
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);
-  }
-  
-  void initAK8963(float * destination)
-{
-  // First extract the factory calibration for each magnetometer axis
-  uint8_t rawData[3];  // x/y/z gyro calibration data stored here
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
-  wait(0.01);
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
-  wait(0.01);
-  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
-  destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
-  destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
-  destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
-  wait(0.01);
-  // Configure the magnetometer for continuous read and highest resolution
-  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
-  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
-  wait(0.01);
-}
+    void resetMPU9250() {
+        // reset device
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);
+    }
+
+    void initAK8963(float * destination) {
+        // First extract the factory calibration for each magnetometer axis
+        uint8_t rawData[3];  // x/y/z gyro calibration data stored here
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+        wait(0.01);
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
+        wait(0.01);
+        readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
+        destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
+        destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;
+        destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f;
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
+        wait(0.01);
+        // Configure the magnetometer for continuous read and highest resolution
+        // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
+        // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
+        wait(0.01);
+    }
 
 
-void initMPU9250()
-{  
- // Initialize MPU9250 device
- // wake up device
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
-  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+    void initMPU9250() {
+// Initialize MPU9250 device
+// wake up device
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
+        wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
+
+// get stable time source
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
 
- // get stable time source
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+// Configure Gyro and Accelerometer
+// Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
+// DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+// Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
+
+// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
 
- // Configure Gyro and Accelerometer
- // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
- // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
- // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
- 
- // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
- 
- // Set gyroscope full scale range
- // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
-  uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
-   
- // Set accelerometer configuration
-  c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+// Set gyroscope full scale range
+// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+        uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+
+// Set accelerometer configuration
+        c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
 
- // Set accelerometer sample rate configuration
- // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
- // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
-  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
+// Set accelerometer sample rate configuration
+// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
+// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
+        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
 
- // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
- // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
+// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
+// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
 
-  // Configure Interrupts and Bypass Enable
-  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
-  // can join the I2C bus and all can be controlled by the Arduino as master
-   writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
-   writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
-}
+        // Configure Interrupts and Bypass Enable
+        // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
+        // can join the I2C bus and all can be controlled by the Arduino as master
+        writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+    }
 
 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
-void calibrateMPU9250(float * dest1, float * dest2)
-{  
-  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
-  uint16_t ii, packet_count, fifo_count;
-  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
-  
+    void calibrateMPU9250(float * dest1, float * dest2) {
+        uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+        uint16_t ii, packet_count, fifo_count;
+        int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+
 // reset device, reset all registers, clear gyro and accelerometer bias registers
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);  
-   
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);
+
 // get stable time source
 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
-  wait(0.2);
-  
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
+        wait(0.2);
+
 // Configure device for bias calculation
-  writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
-  writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
-  wait(0.015);
-  
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+        writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+        wait(0.015);
+
 // Configure MPU9250 gyro and accelerometer for bias calculation
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
- 
-  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
-  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+
+        uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+        uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
 
 // Configure FIFO to capture accelerometer and gyro data for bias calculation
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
-  wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
+        wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
 
 // At end of sample accumulation, turn off FIFO sensor read
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
-  readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
-  fifo_count = ((uint16_t)data[0] << 8) | data[1];
-  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+        readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+        fifo_count = ((uint16_t)data[0] << 8) | data[1];
+        packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+
+        for (ii = 0; ii < packet_count; ii++) {
+            int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+            readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+            accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+            accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+            accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;
+            gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+            gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+            gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+
+            accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+            accel_bias[1] += (int32_t) accel_temp[1];
+            accel_bias[2] += (int32_t) accel_temp[2];
+            gyro_bias[0]  += (int32_t) gyro_temp[0];
+            gyro_bias[1]  += (int32_t) gyro_temp[1];
+            gyro_bias[2]  += (int32_t) gyro_temp[2];
 
-  for (ii = 0; ii < packet_count; ii++) {
-    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
-    readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
-    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
-    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
-    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
-    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
-    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
-    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
-    
-    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
-    accel_bias[1] += (int32_t) accel_temp[1];
-    accel_bias[2] += (int32_t) accel_temp[2];
-    gyro_bias[0]  += (int32_t) gyro_temp[0];
-    gyro_bias[1]  += (int32_t) gyro_temp[1];
-    gyro_bias[2]  += (int32_t) gyro_temp[2];
-            
-}
-    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
-    accel_bias[1] /= (int32_t) packet_count;
-    accel_bias[2] /= (int32_t) packet_count;
-    gyro_bias[0]  /= (int32_t) packet_count;
-    gyro_bias[1]  /= (int32_t) packet_count;
-    gyro_bias[2]  /= (int32_t) packet_count;
-    
-  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
-  else {accel_bias[2] += (int32_t) accelsensitivity;}
- 
+        }
+        accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+        accel_bias[1] /= (int32_t) packet_count;
+        accel_bias[2] /= (int32_t) packet_count;
+        gyro_bias[0]  /= (int32_t) packet_count;
+        gyro_bias[1]  /= (int32_t) packet_count;
+        gyro_bias[2]  /= (int32_t) packet_count;
+
+        if(accel_bias[2] > 0L) {
+            accel_bias[2] -= (int32_t) accelsensitivity;   // Remove gravity from the z-axis accelerometer bias calculation
+        } else {
+            accel_bias[2] += (int32_t) accelsensitivity;
+        }
+
 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
-  data[3] = (-gyro_bias[1]/4)       & 0xFF;
-  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
-  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+        data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+        data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+        data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+        data[3] = (-gyro_bias[1]/4)       & 0xFF;
+        data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+        data[5] = (-gyro_bias[2]/4)       & 0xFF;
 
 /// Push gyro biases to hardware registers
-/*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
-  writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
-  writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
-  writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
-  writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
-  writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
-*/
-  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
-  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
-  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+        /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
+          writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
+          writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
+          writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
+          writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
+          writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
+        */
+        dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+        dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+        dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
 
 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
@@ -542,138 +537,137 @@
 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
 // the accelerometer biases calculated above must be divided by 8.
 
-  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-  readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  
-  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
-  
-  for(ii = 0; ii < 3; ii++) {
-    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
-  }
+        int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+        readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+        accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+
+        uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+        uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+
+        for(ii = 0; ii < 3; ii++) {
+            if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+        }
 
-  // Construct total accelerometer bias, including calculated average accelerometer bias from above
-  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-  accel_bias_reg[1] -= (accel_bias[1]/8);
-  accel_bias_reg[2] -= (accel_bias[2]/8);
- 
-  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-  data[1] = (accel_bias_reg[0])      & 0xFF;
-  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-  data[3] = (accel_bias_reg[1])      & 0xFF;
-  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-  data[5] = (accel_bias_reg[2])      & 0xFF;
-  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        // Construct total accelerometer bias, including calculated average accelerometer bias from above
+        accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+        accel_bias_reg[1] -= (accel_bias[1]/8);
+        accel_bias_reg[2] -= (accel_bias[2]/8);
+
+        data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+        data[1] = (accel_bias_reg[0])      & 0xFF;
+        data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+        data[3] = (accel_bias_reg[1])      & 0xFF;
+        data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+        data[5] = (accel_bias_reg[2])      & 0xFF;
+        data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
 
 // Apparently this is not working for the acceleration biases in the MPU-9250
 // Are we handling the temperature correction bit properly?
 // Push accelerometer biases to hardware registers
-/*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
-  writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
-  writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
-  writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
-  writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
-  writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
-*/
+        /*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
+          writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
+          writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
+          writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
+          writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
+          writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
+        */
 // Output scaled accelerometer biases for manual subtraction in the main program
-   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
-   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
-   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
-}
+        dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
+        dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+        dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+    }
 
 
 // Accelerometer and gyroscope self test; check calibration wrt factory settings
-void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
-{
-   uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
-   uint8_t selfTest[6];
-   int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
-   float factoryTrim[6];
-   uint8_t FS = 0;
-   
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
+    void MPU9250SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+        uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
+        uint8_t selfTest[6];
+        int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
+        float factoryTrim[6];
+        uint8_t FS = 0;
+
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
+
+        for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
 
-  for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
-  
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-  aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  
-    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-  gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  }
-  
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
-  aAvg[ii] /= 200;
-  gAvg[ii] /= 200;
-  }
-  
+            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+            aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+            gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+        }
+
+        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
+            aAvg[ii] /= 200;
+            gAvg[ii] /= 200;
+        }
+
 // Configure the accelerometer for self-test
-   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
-   writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-   delay(25); // Delay a while to let the device stabilize
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+        delay(25); // Delay a while to let the device stabilize
+
+        for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
 
-  for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
-  
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-  aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  
-    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-  gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  }
-  
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
-  aSTAvg[ii] /= 200;
-  gSTAvg[ii] /= 200;
-  }
-  
- // Configure the gyro and accelerometer for normal operation
-   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
-   writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
-   delay(25); // Delay a while to let the device stabilize
-   
-   // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
-   selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
-   selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
-   selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
-   selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
-   selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
-   selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
+            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+            aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+
+            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+            gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+        }
+
+        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
+            aSTAvg[ii] /= 200;
+            gSTAvg[ii] /= 200;
+        }
+
+// Configure the gyro and accelerometer for normal operation
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
+        delay(25); // Delay a while to let the device stabilize
 
-  // Retrieve factory self-test value from self-test code reads
-   factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
-   factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
-   factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
-   factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
-   factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
-   factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
- 
- // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
- // To get percent, must multiply by 100
-   for (int i = 0; i < 3; i++) {
-     destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
-     destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
-   }
-   
-}
+        // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
+        selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
+        selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
+        selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
+        selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
+        selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
+        selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
+
+        // Retrieve factory self-test value from self-test code reads
+        factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
+        factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
+        factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
+        factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
+        factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
+        factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
+
+// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+// To get percent, must multiply by 100
+        for (int i = 0; i < 3; i++) {
+            destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
+            destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
+        }
+
+    }
 
 
 
@@ -683,192 +677,188 @@
 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
-        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
-        {
-            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-            float norm;
-            float hx, hy, _2bx, _2bz;
-            float s1, s2, s3, s4;
-            float qDot1, qDot2, qDot3, qDot4;
+
+    void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) {
+        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+        float norm;
+        float hx, hy, _2bx, _2bz;
+        float s1, s2, s3, s4;
+        float qDot1, qDot2, qDot3, qDot4;
+
+        // Auxiliary variables to avoid repeated arithmetic
+        float _2q1mx;
+        float _2q1my;
+        float _2q1mz;
+        float _2q2mx;
+        float _4bx;
+        float _4bz;
+        float _2q1 = 2.0f * q1;
+        float _2q2 = 2.0f * q2;
+        float _2q3 = 2.0f * q3;
+        float _2q4 = 2.0f * q4;
+        float _2q1q3 = 2.0f * q1 * q3;
+        float _2q3q4 = 2.0f * q3 * q4;
+        float q1q1 = q1 * q1;
+        float q1q2 = q1 * q2;
+        float q1q3 = q1 * q3;
+        float q1q4 = q1 * q4;
+        float q2q2 = q2 * q2;
+        float q2q3 = q2 * q3;
+        float q2q4 = q2 * q4;
+        float q3q3 = q3 * q3;
+        float q3q4 = q3 * q4;
+        float q4q4 = q4 * q4;
 
-            // Auxiliary variables to avoid repeated arithmetic
-            float _2q1mx;
-            float _2q1my;
-            float _2q1mz;
-            float _2q2mx;
-            float _4bx;
-            float _4bz;
-            float _2q1 = 2.0f * q1;
-            float _2q2 = 2.0f * q2;
-            float _2q3 = 2.0f * q3;
-            float _2q4 = 2.0f * q4;
-            float _2q1q3 = 2.0f * q1 * q3;
-            float _2q3q4 = 2.0f * q3 * q4;
-            float q1q1 = q1 * q1;
-            float q1q2 = q1 * q2;
-            float q1q3 = q1 * q3;
-            float q1q4 = q1 * q4;
-            float q2q2 = q2 * q2;
-            float q2q3 = q2 * q3;
-            float q2q4 = q2 * q4;
-            float q3q3 = q3 * q3;
-            float q3q4 = q3 * q4;
-            float q4q4 = q4 * q4;
+        // Normalise accelerometer measurement
+        norm = sqrt(ax * ax + ay * ay + az * az);
+        if (norm == 0.0f) return; // handle NaN
+        norm = 1.0f/norm;
+        ax *= norm;
+        ay *= norm;
+        az *= norm;
+
+        // Normalise magnetometer measurement
+        norm = sqrt(mx * mx + my * my + mz * mz);
+        if (norm == 0.0f) return; // handle NaN
+        norm = 1.0f/norm;
+        mx *= norm;
+        my *= norm;
+        mz *= norm;
 
-            // Normalise accelerometer measurement
-            norm = sqrt(ax * ax + ay * ay + az * az);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f/norm;
-            ax *= norm;
-            ay *= norm;
-            az *= norm;
+        // Reference direction of Earth's magnetic field
+        _2q1mx = 2.0f * q1 * mx;
+        _2q1my = 2.0f * q1 * my;
+        _2q1mz = 2.0f * q1 * mz;
+        _2q2mx = 2.0f * q2 * mx;
+        hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
+        hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
+        _2bx = sqrt(hx * hx + hy * hy);
+        _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
+        _4bx = 2.0f * _2bx;
+        _4bz = 2.0f * _2bz;
+
+        // Gradient decent algorithm corrective step
+        s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
+        norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
+        norm = 1.0f/norm;
+        s1 *= norm;
+        s2 *= norm;
+        s3 *= norm;
+        s4 *= norm;
+
+        // Compute rate of change of quaternion
+        qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
+        qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
+        qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
+        qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
 
-            // Normalise magnetometer measurement
-            norm = sqrt(mx * mx + my * my + mz * mz);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f/norm;
-            mx *= norm;
-            my *= norm;
-            mz *= norm;
+        // Integrate to yield quaternion
+        q1 += qDot1 * deltat;
+        q2 += qDot2 * deltat;
+        q3 += qDot3 * deltat;
+        q4 += qDot4 * deltat;
+        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+        norm = 1.0f/norm;
+        q[0] = q1 * norm;
+        q[1] = q2 * norm;
+        q[2] = q3 * norm;
+        q[3] = q4 * norm;
+
+}
+
+
 
-            // Reference direction of Earth's magnetic field
-            _2q1mx = 2.0f * q1 * mx;
-            _2q1my = 2.0f * q1 * my;
-            _2q1mz = 2.0f * q1 * mz;
-            _2q2mx = 2.0f * q2 * mx;
-            hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
-            hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
-            _2bx = sqrt(hx * hx + hy * hy);
-            _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
-            _4bx = 2.0f * _2bx;
-            _4bz = 2.0f * _2bz;
+// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
+// measured ones.
+    void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) {
+        float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
+        float norm;
+        float hx, hy, bx, bz;
+        float vx, vy, vz, wx, wy, wz;
+        float ex, ey, ez;
+        float pa, pb, pc;
+
+        // Auxiliary variables to avoid repeated arithmetic
+        float q1q1 = q1 * q1;
+        float q1q2 = q1 * q2;
+        float q1q3 = q1 * q3;
+        float q1q4 = q1 * q4;
+        float q2q2 = q2 * q2;
+        float q2q3 = q2 * q3;
+        float q2q4 = q2 * q4;
+        float q3q3 = q3 * q3;
+        float q3q4 = q3 * q4;
+        float q4q4 = q4 * q4;
 
-            // Gradient decent algorithm corrective step
-            s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-            s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-            s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-            s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
-            norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
-            norm = 1.0f/norm;
-            s1 *= norm;
-            s2 *= norm;
-            s3 *= norm;
-            s4 *= norm;
+        // Normalise accelerometer measurement
+        norm = sqrt(ax * ax + ay * ay + az * az);
+        if (norm == 0.0f) return; // handle NaN
+        norm = 1.0f / norm;        // use reciprocal for division
+        ax *= norm;
+        ay *= norm;
+        az *= norm;
+
+        // Normalise magnetometer measurement
+        norm = sqrt(mx * mx + my * my + mz * mz);
+        if (norm == 0.0f) return; // handle NaN
+        norm = 1.0f / norm;        // use reciprocal for division
+        mx *= norm;
+        my *= norm;
+        mz *= norm;
 
-            // Compute rate of change of quaternion
-            qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
-            qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
-            qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
-            qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
+        // Reference direction of Earth's magnetic field
+        hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
+        hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
+        bx = sqrt((hx * hx) + (hy * hy));
+        bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
 
-            // Integrate to yield quaternion
-            q1 += qDot1 * deltat;
-            q2 += qDot2 * deltat;
-            q3 += qDot3 * deltat;
-            q4 += qDot4 * deltat;
-            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
-            norm = 1.0f/norm;
-            q[0] = q1 * norm;
-            q[1] = q2 * norm;
-            q[2] = q3 * norm;
-            q[3] = q4 * norm;
+        // Estimated direction of gravity and magnetic field
+        vx = 2.0f * (q2q4 - q1q3);
+        vy = 2.0f * (q1q2 + q3q4);
+        vz = q1q1 - q2q2 - q3q3 + q4q4;
+        wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
+        wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
+        wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
 
+        // Error is cross product between estimated direction and measured direction of gravity
+        ex = (ay * vz - az * vy) + (my * wz - mz * wy);
+        ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
+        ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
+        if (Ki > 0.0f) {
+            eInt[0] += ex;      // accumulate integral error
+            eInt[1] += ey;
+            eInt[2] += ez;
+        } else {
+            eInt[0] = 0.0f;     // prevent integral wind up
+            eInt[1] = 0.0f;
+            eInt[2] = 0.0f;
         }
-  
-  
-  
- // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
- // measured ones. 
-            void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
-        {
-            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
-            float norm;
-            float hx, hy, bx, bz;
-            float vx, vy, vz, wx, wy, wz;
-            float ex, ey, ez;
-            float pa, pb, pc;
 
-            // Auxiliary variables to avoid repeated arithmetic
-            float q1q1 = q1 * q1;
-            float q1q2 = q1 * q2;
-            float q1q3 = q1 * q3;
-            float q1q4 = q1 * q4;
-            float q2q2 = q2 * q2;
-            float q2q3 = q2 * q3;
-            float q2q4 = q2 * q4;
-            float q3q3 = q3 * q3;
-            float q3q4 = q3 * q4;
-            float q4q4 = q4 * q4;   
-
-            // Normalise accelerometer measurement
-            norm = sqrt(ax * ax + ay * ay + az * az);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f / norm;        // use reciprocal for division
-            ax *= norm;
-            ay *= norm;
-            az *= norm;
-
-            // Normalise magnetometer measurement
-            norm = sqrt(mx * mx + my * my + mz * mz);
-            if (norm == 0.0f) return; // handle NaN
-            norm = 1.0f / norm;        // use reciprocal for division
-            mx *= norm;
-            my *= norm;
-            mz *= norm;
-
-            // Reference direction of Earth's magnetic field
-            hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
-            hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
-            bx = sqrt((hx * hx) + (hy * hy));
-            bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
+        // Apply feedback terms
+        gx = gx + Kp * ex + Ki * eInt[0];
+        gy = gy + Kp * ey + Ki * eInt[1];
+        gz = gz + Kp * ez + Ki * eInt[2];
 
-            // Estimated direction of gravity and magnetic field
-            vx = 2.0f * (q2q4 - q1q3);
-            vy = 2.0f * (q1q2 + q3q4);
-            vz = q1q1 - q2q2 - q3q3 + q4q4;
-            wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
-            wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
-            wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  
-
-            // Error is cross product between estimated direction and measured direction of gravity
-            ex = (ay * vz - az * vy) + (my * wz - mz * wy);
-            ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
-            ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
-            if (Ki > 0.0f)
-            {
-                eInt[0] += ex;      // accumulate integral error
-                eInt[1] += ey;
-                eInt[2] += ez;
-            }
-            else
-            {
-                eInt[0] = 0.0f;     // prevent integral wind up
-                eInt[1] = 0.0f;
-                eInt[2] = 0.0f;
-            }
+        // Integrate rate of change of quaternion
+        pa = q2;
+        pb = q3;
+        pc = q4;
+        q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
+        q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
+        q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
+        q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
 
-            // Apply feedback terms
-            gx = gx + Kp * ex + Ki * eInt[0];
-            gy = gy + Kp * ey + Ki * eInt[1];
-            gz = gz + Kp * ez + Ki * eInt[2];
+        // Normalise quaternion
+        norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
+        norm = 1.0f / norm;
+        q[0] = q1 * norm;
+        q[1] = q2 * norm;
+        q[2] = q3 * norm;
+        q[3] = q4 * norm;
 
-            // Integrate rate of change of quaternion
-            pa = q2;
-            pb = q3;
-            pc = q4;
-            q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
-            q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
-            q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
-            q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
-
-            // Normalise quaternion
-            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
-            norm = 1.0f / norm;
-            q[0] = q1 * norm;
-            q[1] = q2 * norm;
-            q[2] = q3 * norm;
-            q[3] = q4 * norm;
- 
-        }
-  };
+    }
+};
 #endif
\ No newline at end of file