Forked to make modifications to bring the USBHID into USB compliance and add additional features.

Dependents:   HW4_AudioControl

Fork of USBDevice by mbed official

As of Revision 18 everything in the USBHID specification is now implemented, except Multi-reports.

Revision comments for changelist 18

USBHID.cpp

  • Added SET_PROTOCOL support
  • Added GET_PROTOCOL support
  • protocolSate is set to 1 by default to match USB HID specification. This variable should be checked to determine which format theinput report should have. 1 - Use the user specified report format. 0 - Use the BOOT protocol report format.

Revision comments for changelist 16

  • HID_REPORT transformed from structure to class. This was done for several reasons.
  1. When multiple reports are used the 64 byte size for every report becomes a problem.
  2. The length value should always remain the same for a report, Make the constructor set the vale at the same time it allocates memory for the DATA area.
  • By default the data will be an array of MAX_HID_REPORT_SIZE like the structure,
  • When given a length argument, the hid_report.length will be set, and hid_report.data will be an array of the size given.
  • Length zero causes data to be NULL
  • Mostly backwards compatible. The definition of a destructor caused a compiler error in USBMouse::update and USBMousekeyboard::update. This error was caused by instatiation of HID_REPORT in the middle of an IF logic statement. These files have been modified. The error complained that the logic skipped object initialization. The HID_REPORT has been moved to the class definition. Since both ABSOLUTE and RELATIVE modes used the HID_REPORT, this seems to make more sense. Previously the hid_report would be instatiated in <class>::mousesend and <class>::update.

Revision comments for changelist 14

USBdevice.cpp

  • Modified USB device state to change from Configure when disconnect is called.
  • Modified the call back function for when the suspend state changes. This should be used to turn off peripherals to conserve power.

Revision comments for changelist 13

USBdevice.cpp

  • ) Changed DEBUG messages to be more descriptive for string descriptor
  • ) Bug fix: Control Transfers did not actually transfer the data from Buffer to transfer->ptr

USBHIDTypes.h

  • ) Added ALL CLASS request to KEYWORD list
  • ) Added KEYWORDS for report type

USBHID.h

  • ) Added a new constructor to specify size of feature report
  • ) Added HID_REPORT inputReport and featureReport
  • ) Added data structures to support IDLE rate
  • ) Added data structures to support callback functions

USBHID.cpp

  • ) Changed constructor to initialize new feature data structures
  • ) Implemented Set_IDLE/GET_IDLE and the periodic resend of non-changed data
  • ) Implemented HID specification required control transfer GET_REPORT
  • ) Fixed issue where Intreput transfers and control transfers did not access the same data structures.
  • ) Implemented Feature reports
  • ) Implemented Callback Hooks for get_report/set_report actions.
  • ) Added callback hooks for interupt actions in the new functions.
  • ) interupt transfer can now write to outputReport
  • ) Modified SET_REPORT code to function for multiple types.
  • ) Refactored some code in preperation to add multi report support
Test NumberTest DescriptionTest ResultNotes
1Use USBmouse to verify backward compatibility of constructor and methodsPass
2Test SET_REPORT can set a feature reportPass
3Test GET_REPORT can retrieve a feature reportPass
4Test SET_IDLE sets up a reoccuring triggerPassIOCTL_SET_POLL_FREQUENCY_MSEC does not function for the windows HID driver. A Special test program is used to rearm the IDLE rate after windows sets it to zero
5Test SET_IDLE disables a triggerPassWindows automatically sends this command to a HID device when it is inserted.
6Enabled DEBUG in USBDevice.cpp and generated str descriptor requests.Pass
7Test SET_REPORT can set an output reportPass
8Test GET_REPORT can retrieve an output reportPass
9ReadFile, accesses the input_reportPass
10WriteFile accesses the output_report, via interupt transfer when ep1_out is used.Pass
11WriteFile accesses the output_report, via control transfer when ep1_out is NOT used.Not Tested
12Callback hooks trigger independently for each type of set_report/get_reportPass
13New constructor sets feature_report sizePass
14Control transfer SET_REPORT and writeFile access the same data structureBUGThe same data structure is accessed, but the data transfer size is different. The writeFile strips the leading byte which is the report ID, The Control transfer keeps the byte.
15Control transfer GET_REPORT and readFile access the same data structureBUGThe same dtat structure is accessed, but the data transfer size is different. The readFile strips the leading byte which is the report ID, The Control transfer keeps the byte.
16Test GET_IDLE retrieves the IDLE rateUnknownWindows HID driver does not implement IOCTL_HID_GET_POLL_FREQUENCY_MSEC
Committer:
jakowisp
Date:
Thu Aug 08 08:02:46 2013 +0000
Revision:
18:cb3afa532fcd
Parent:
8:335f2506f422
Default ProtocolState was incorrectly being set to 0:Boot when the HID specification states that the default should be 1:Report

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:80ab0d068708 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
samux 1:80ab0d068708 2 *
samux 1:80ab0d068708 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
samux 1:80ab0d068708 4 * and associated documentation files (the "Software"), to deal in the Software without
samux 1:80ab0d068708 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
samux 1:80ab0d068708 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
samux 1:80ab0d068708 7 * Software is furnished to do so, subject to the following conditions:
samux 1:80ab0d068708 8 *
samux 1:80ab0d068708 9 * The above copyright notice and this permission notice shall be included in all copies or
samux 1:80ab0d068708 10 * substantial portions of the Software.
samux 1:80ab0d068708 11 *
samux 1:80ab0d068708 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
samux 1:80ab0d068708 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
samux 1:80ab0d068708 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
samux 1:80ab0d068708 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
samux 1:80ab0d068708 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
samux 1:80ab0d068708 17 */
samux 1:80ab0d068708 18
samux 1:80ab0d068708 19 #ifdef TARGET_LPC11U24
samux 1:80ab0d068708 20
samux 1:80ab0d068708 21 #include "USBHAL.h"
samux 1:80ab0d068708 22
samux 1:80ab0d068708 23 USBHAL * USBHAL::instance;
samux 1:80ab0d068708 24
samux 1:80ab0d068708 25 // Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 26 #define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 27
samux 1:80ab0d068708 28 // Convert physical endpoint number to register bit
samux 1:80ab0d068708 29 #define EP(endpoint) (1UL<<endpoint)
samux 1:80ab0d068708 30
samux 1:80ab0d068708 31 // Convert physical to logical
samux 1:80ab0d068708 32 #define PHY_TO_LOG(endpoint) ((endpoint)>>1)
samux 1:80ab0d068708 33
samux 1:80ab0d068708 34 // Get endpoint direction
samux 1:80ab0d068708 35 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
samux 1:80ab0d068708 36 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
samux 1:80ab0d068708 37
samux 1:80ab0d068708 38 // USB RAM
samux 1:80ab0d068708 39 #define USB_RAM_START (0x20004000)
samux 1:80ab0d068708 40 #define USB_RAM_SIZE (0x00000800)
samux 1:80ab0d068708 41
samux 1:80ab0d068708 42 // SYSAHBCLKCTRL
samux 1:80ab0d068708 43 #define CLK_USB (1UL<<14)
samux 1:80ab0d068708 44 #define CLK_USBRAM (1UL<<27)
samux 1:80ab0d068708 45
samux 1:80ab0d068708 46 // USB Information register
samux 1:80ab0d068708 47 #define FRAME_NR(a) ((a) & 0x7ff) // Frame number
samux 1:80ab0d068708 48
samux 1:80ab0d068708 49 // USB Device Command/Status register
samux 1:80ab0d068708 50 #define DEV_ADDR_MASK (0x7f) // Device address
samux 1:80ab0d068708 51 #define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
samux 1:80ab0d068708 52 #define DEV_EN (1UL<<7) // Device enable
samux 1:80ab0d068708 53 #define SETUP (1UL<<8) // SETUP token received
samux 1:80ab0d068708 54 #define PLL_ON (1UL<<9) // PLL enabled in suspend
samux 1:80ab0d068708 55 #define DCON (1UL<<16) // Device status - connect
samux 1:80ab0d068708 56 #define DSUS (1UL<<17) // Device status - suspend
samux 1:80ab0d068708 57 #define DCON_C (1UL<<24) // Connect change
samux 1:80ab0d068708 58 #define DSUS_C (1UL<<25) // Suspend change
samux 1:80ab0d068708 59 #define DRES_C (1UL<<26) // Reset change
samux 1:80ab0d068708 60 #define VBUSDEBOUNCED (1UL<<28) // Vbus detected
samux 1:80ab0d068708 61
samux 1:80ab0d068708 62 // Endpoint Command/Status list
samux 1:80ab0d068708 63 #define CMDSTS_A (1UL<<31) // Active
samux 1:80ab0d068708 64 #define CMDSTS_D (1UL<<30) // Disable
samux 1:80ab0d068708 65 #define CMDSTS_S (1UL<<29) // Stall
samux 1:80ab0d068708 66 #define CMDSTS_TR (1UL<<28) // Toggle Reset
samux 1:80ab0d068708 67 #define CMDSTS_RF (1UL<<27) // Rate Feedback mode
samux 1:80ab0d068708 68 #define CMDSTS_TV (1UL<<27) // Toggle Value
samux 1:80ab0d068708 69 #define CMDSTS_T (1UL<<26) // Endpoint Type
samux 1:80ab0d068708 70 #define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
samux 1:80ab0d068708 71 #define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
samux 1:80ab0d068708 72
samux 1:80ab0d068708 73 #define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
samux 1:80ab0d068708 74
samux 1:80ab0d068708 75 // USB Non-endpoint interrupt sources
samux 1:80ab0d068708 76 #define FRAME_INT (1UL<<30)
samux 1:80ab0d068708 77 #define DEV_INT (1UL<<31)
samux 1:80ab0d068708 78
samux 1:80ab0d068708 79 static volatile int epComplete = 0;
samux 1:80ab0d068708 80
samux 1:80ab0d068708 81 // One entry for a double-buffered logical endpoint in the endpoint
samux 1:80ab0d068708 82 // command/status list. Endpoint 0 is single buffered, out[1] is used
samux 1:80ab0d068708 83 // for the SETUP packet and in[1] is not used
samux 1:80ab0d068708 84 typedef __packed struct {
samux 1:80ab0d068708 85 uint32_t out[2];
samux 1:80ab0d068708 86 uint32_t in[2];
samux 1:80ab0d068708 87 } EP_COMMAND_STATUS;
samux 1:80ab0d068708 88
samux 1:80ab0d068708 89 typedef __packed struct {
samux 1:80ab0d068708 90 uint8_t out[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 91 uint8_t in[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 92 uint8_t setup[SETUP_PACKET_SIZE];
samux 1:80ab0d068708 93 } CONTROL_TRANSFER;
samux 1:80ab0d068708 94
samux 1:80ab0d068708 95 typedef __packed struct {
samux 1:80ab0d068708 96 uint32_t maxPacket;
samux 1:80ab0d068708 97 uint32_t buffer[2];
samux 1:80ab0d068708 98 uint32_t options;
samux 1:80ab0d068708 99 } EP_STATE;
samux 1:80ab0d068708 100
samux 1:80ab0d068708 101 static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
samux 1:80ab0d068708 102
samux 1:80ab0d068708 103 // Pointer to the endpoint command/status list
samux 1:80ab0d068708 104 static EP_COMMAND_STATUS *ep = NULL;
samux 1:80ab0d068708 105
samux 1:80ab0d068708 106 // Pointer to endpoint 0 data (IN/OUT and SETUP)
samux 1:80ab0d068708 107 static CONTROL_TRANSFER *ct = NULL;
samux 1:80ab0d068708 108
samux 1:80ab0d068708 109 // Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
samux 1:80ab0d068708 110 // initiating a remote wakeup event.
samux 1:80ab0d068708 111 static volatile uint32_t devCmdStat;
samux 1:80ab0d068708 112
samux 1:80ab0d068708 113 // Pointers used to allocate USB RAM
samux 1:80ab0d068708 114 static uint32_t usbRamPtr = USB_RAM_START;
samux 1:80ab0d068708 115 static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
samux 1:80ab0d068708 116
samux 1:80ab0d068708 117 #define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
samux 1:80ab0d068708 118
samux 1:80ab0d068708 119 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
samux 1:80ab0d068708 120 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
samux 1:80ab0d068708 121 if (size > 0) {
samux 1:80ab0d068708 122 do {
samux 1:80ab0d068708 123 *dst++ = *src++;
samux 1:80ab0d068708 124 } while (--size > 0);
samux 1:80ab0d068708 125 }
samux 1:80ab0d068708 126 }
samux 1:80ab0d068708 127
samux 1:80ab0d068708 128
samux 1:80ab0d068708 129 USBHAL::USBHAL(void) {
samux 1:80ab0d068708 130 NVIC_DisableIRQ(USB_IRQn);
samux 8:335f2506f422 131
samux 8:335f2506f422 132 // fill in callback array
samux 8:335f2506f422 133 epCallback[0] = &USBHAL::EP1_OUT_callback;
samux 8:335f2506f422 134 epCallback[1] = &USBHAL::EP1_IN_callback;
samux 8:335f2506f422 135 epCallback[2] = &USBHAL::EP2_OUT_callback;
samux 8:335f2506f422 136 epCallback[3] = &USBHAL::EP2_IN_callback;
samux 8:335f2506f422 137 epCallback[4] = &USBHAL::EP3_OUT_callback;
samux 8:335f2506f422 138 epCallback[5] = &USBHAL::EP3_IN_callback;
samux 8:335f2506f422 139 epCallback[6] = &USBHAL::EP4_OUT_callback;
samux 8:335f2506f422 140 epCallback[7] = &USBHAL::EP4_IN_callback;
samux 1:80ab0d068708 141
samux 1:80ab0d068708 142 // nUSB_CONNECT output
samux 1:80ab0d068708 143 LPC_IOCON->PIO0_6 = 0x00000001;
samux 1:80ab0d068708 144
samux 1:80ab0d068708 145 // Enable clocks (USB registers, USB RAM)
samux 1:80ab0d068708 146 LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
samux 1:80ab0d068708 147
samux 1:80ab0d068708 148 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 149 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 150
samux 1:80ab0d068708 151 // to ensure that the USB host sees the device as
samux 1:80ab0d068708 152 // disconnected if the target CPU is reset.
samux 1:80ab0d068708 153 wait(0.3);
samux 1:80ab0d068708 154
samux 1:80ab0d068708 155 // Reserve space in USB RAM for endpoint command/status list
samux 1:80ab0d068708 156 // Must be 256 byte aligned
samux 1:80ab0d068708 157 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
samux 1:80ab0d068708 158 ep = (EP_COMMAND_STATUS *)usbRamPtr;
samux 1:80ab0d068708 159 usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
samux 1:80ab0d068708 160 LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
samux 1:80ab0d068708 161
samux 1:80ab0d068708 162 // Reserve space in USB RAM for Endpoint 0
samux 1:80ab0d068708 163 // Must be 64 byte aligned
samux 1:80ab0d068708 164 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
samux 1:80ab0d068708 165 ct = (CONTROL_TRANSFER *)usbRamPtr;
samux 1:80ab0d068708 166 usbRamPtr += sizeof(CONTROL_TRANSFER);
samux 1:80ab0d068708 167 LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
samux 1:80ab0d068708 168
samux 1:80ab0d068708 169 // Setup command/status list for EP0
samux 1:80ab0d068708 170 ep[0].out[0] = 0;
samux 1:80ab0d068708 171 ep[0].in[0] = 0;
samux 1:80ab0d068708 172 ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
samux 1:80ab0d068708 173
samux 1:80ab0d068708 174 // Route all interrupts to IRQ, some can be routed to
samux 1:80ab0d068708 175 // USB_FIQ if you wish.
samux 1:80ab0d068708 176 LPC_USB->INTROUTING = 0;
samux 1:80ab0d068708 177
samux 1:80ab0d068708 178 // Set device address 0, enable USB device, no remote wakeup
samux 1:80ab0d068708 179 devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
samux 1:80ab0d068708 180 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 181
samux 1:80ab0d068708 182 // Enable interrupts for device events and EP0
samux 1:80ab0d068708 183 LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
samux 1:80ab0d068708 184 instance = this;
samux 1:80ab0d068708 185
samux 1:80ab0d068708 186 //attach IRQ handler and enable interrupts
samux 1:80ab0d068708 187 NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
samux 1:80ab0d068708 188 }
samux 1:80ab0d068708 189
samux 1:80ab0d068708 190 USBHAL::~USBHAL(void) {
samux 1:80ab0d068708 191 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 192 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 193 // Disable USB interrupts
samux 1:80ab0d068708 194 NVIC_DisableIRQ(USB_IRQn);
samux 1:80ab0d068708 195 }
samux 1:80ab0d068708 196
samux 1:80ab0d068708 197 void USBHAL::connect(void) {
samux 3:6d85e04fb59f 198 NVIC_EnableIRQ(USB_IRQn);
samux 1:80ab0d068708 199 devCmdStat |= DCON;
samux 1:80ab0d068708 200 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 201 }
samux 1:80ab0d068708 202
samux 1:80ab0d068708 203 void USBHAL::disconnect(void) {
samux 3:6d85e04fb59f 204 NVIC_DisableIRQ(USB_IRQn);
samux 1:80ab0d068708 205 devCmdStat &= ~DCON;
samux 1:80ab0d068708 206 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 207 }
samux 1:80ab0d068708 208
samux 1:80ab0d068708 209 void USBHAL::configureDevice(void) {
samux 8:335f2506f422 210 // Not required
samux 1:80ab0d068708 211 }
samux 1:80ab0d068708 212
samux 1:80ab0d068708 213 void USBHAL::unconfigureDevice(void) {
samux 8:335f2506f422 214 // Not required
samux 1:80ab0d068708 215 }
samux 1:80ab0d068708 216
samux 1:80ab0d068708 217 void USBHAL::EP0setup(uint8_t *buffer) {
samux 1:80ab0d068708 218 // Copy setup packet data
samux 1:80ab0d068708 219 USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
samux 1:80ab0d068708 220 }
samux 1:80ab0d068708 221
samux 1:80ab0d068708 222 void USBHAL::EP0read(void) {
samux 1:80ab0d068708 223 // Start an endpoint 0 read
samux 1:80ab0d068708 224
samux 1:80ab0d068708 225 // The USB ISR will call USBDevice_EP0out() when a packet has been read,
samux 1:80ab0d068708 226 // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
samux 1:80ab0d068708 227 // read the data.
samux 1:80ab0d068708 228
samux 1:80ab0d068708 229 ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
samux 1:80ab0d068708 230 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
samux 1:80ab0d068708 231 }
samux 1:80ab0d068708 232
samux 1:80ab0d068708 233 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
samux 1:80ab0d068708 234 // Complete an endpoint 0 read
samux 1:80ab0d068708 235 uint32_t bytesRead;
samux 1:80ab0d068708 236
samux 1:80ab0d068708 237 // Find how many bytes were read
samux 1:80ab0d068708 238 bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
samux 1:80ab0d068708 239
samux 1:80ab0d068708 240 // Copy data
samux 1:80ab0d068708 241 USBMemCopy(buffer, ct->out, bytesRead);
samux 1:80ab0d068708 242 return bytesRead;
samux 1:80ab0d068708 243 }
samux 1:80ab0d068708 244
samux 8:335f2506f422 245
samux 8:335f2506f422 246 void USBHAL::EP0readStage(void) {
samux 8:335f2506f422 247 // Not required
samux 8:335f2506f422 248 }
samux 8:335f2506f422 249
samux 1:80ab0d068708 250 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
samux 1:80ab0d068708 251 // Start and endpoint 0 write
samux 1:80ab0d068708 252
samux 1:80ab0d068708 253 // The USB ISR will call USBDevice_EP0in() when the data has
samux 1:80ab0d068708 254 // been written, the USBDevice layer then calls
samux 1:80ab0d068708 255 // USBBusInterface_EP0getWriteResult() to complete the transaction.
samux 1:80ab0d068708 256
samux 1:80ab0d068708 257 // Copy data
samux 1:80ab0d068708 258 USBMemCopy(ct->in, buffer, size);
samux 1:80ab0d068708 259
samux 1:80ab0d068708 260 // Start transfer
samux 1:80ab0d068708 261 ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
samux 1:80ab0d068708 262 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
samux 1:80ab0d068708 263 }
samux 1:80ab0d068708 264
samux 1:80ab0d068708 265
samux 1:80ab0d068708 266 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
samux 1:80ab0d068708 267 uint8_t bf = 0;
samux 1:80ab0d068708 268 uint32_t flags = 0;
samux 1:80ab0d068708 269
samux 1:80ab0d068708 270 //check which buffer must be filled
samux 1:80ab0d068708 271 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 272 // Double buffered
samux 1:80ab0d068708 273 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 274 bf = 1;
samux 1:80ab0d068708 275 } else {
samux 1:80ab0d068708 276 bf = 0;
samux 1:80ab0d068708 277 }
samux 1:80ab0d068708 278 }
samux 1:80ab0d068708 279
samux 1:80ab0d068708 280 // if isochronous endpoint, T = 1
samux 1:80ab0d068708 281 if(endpointState[endpoint].options & ISOCHRONOUS)
samux 1:80ab0d068708 282 {
samux 1:80ab0d068708 283 flags |= CMDSTS_T;
samux 1:80ab0d068708 284 }
samux 1:80ab0d068708 285
samux 1:80ab0d068708 286 //Active the endpoint for reading
samux 1:80ab0d068708 287 ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
samux 1:80ab0d068708 288 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
samux 1:80ab0d068708 289 return EP_PENDING;
samux 1:80ab0d068708 290 }
samux 1:80ab0d068708 291
samux 1:80ab0d068708 292 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
samux 1:80ab0d068708 293
samux 1:80ab0d068708 294 uint8_t bf = 0;
samux 1:80ab0d068708 295
samux 1:80ab0d068708 296 if (!(epComplete & EP(endpoint)))
samux 1:80ab0d068708 297 return EP_PENDING;
samux 1:80ab0d068708 298 else {
samux 1:80ab0d068708 299 epComplete &= ~EP(endpoint);
samux 1:80ab0d068708 300
samux 1:80ab0d068708 301 //check which buffer has been filled
samux 1:80ab0d068708 302 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 303 // Double buffered (here we read the previous buffer which was used)
samux 1:80ab0d068708 304 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 305 bf = 0;
samux 1:80ab0d068708 306 } else {
samux 1:80ab0d068708 307 bf = 1;
samux 1:80ab0d068708 308 }
samux 1:80ab0d068708 309 }
samux 1:80ab0d068708 310
samux 1:80ab0d068708 311 // Find how many bytes were read
samux 1:80ab0d068708 312 *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
samux 1:80ab0d068708 313
samux 1:80ab0d068708 314 // Copy data
samux 1:80ab0d068708 315 USBMemCopy(data, ct->out, *bytesRead);
samux 1:80ab0d068708 316 return EP_COMPLETED;
samux 1:80ab0d068708 317 }
samux 1:80ab0d068708 318 }
samux 1:80ab0d068708 319
samux 1:80ab0d068708 320 void USBHAL::EP0getWriteResult(void) {
samux 8:335f2506f422 321 // Not required
samux 1:80ab0d068708 322 }
samux 1:80ab0d068708 323
samux 1:80ab0d068708 324 void USBHAL::EP0stall(void) {
samux 1:80ab0d068708 325 ep[0].in[0] = CMDSTS_S;
samux 1:80ab0d068708 326 ep[0].out[0] = CMDSTS_S;
samux 1:80ab0d068708 327 }
samux 1:80ab0d068708 328
samux 1:80ab0d068708 329 void USBHAL::setAddress(uint8_t address) {
samux 1:80ab0d068708 330 devCmdStat &= ~DEV_ADDR_MASK;
samux 1:80ab0d068708 331 devCmdStat |= DEV_ADDR(address);
samux 1:80ab0d068708 332 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 333 }
samux 1:80ab0d068708 334
samux 1:80ab0d068708 335 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
samux 1:80ab0d068708 336 uint32_t flags = 0;
samux 1:80ab0d068708 337 uint32_t bf;
samux 1:80ab0d068708 338
samux 1:80ab0d068708 339 // Validate parameters
samux 1:80ab0d068708 340 if (data == NULL) {
samux 1:80ab0d068708 341 return EP_INVALID;
samux 1:80ab0d068708 342 }
samux 1:80ab0d068708 343
samux 1:80ab0d068708 344 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 345 return EP_INVALID;
samux 1:80ab0d068708 346 }
samux 1:80ab0d068708 347
samux 1:80ab0d068708 348 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 349 return EP_INVALID;
samux 1:80ab0d068708 350 }
samux 1:80ab0d068708 351
samux 1:80ab0d068708 352 if (size > endpointState[endpoint].maxPacket) {
samux 1:80ab0d068708 353 return EP_INVALID;
samux 1:80ab0d068708 354 }
samux 1:80ab0d068708 355
samux 1:80ab0d068708 356 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 357 // Double buffered
samux 1:80ab0d068708 358 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 359 bf = 1;
samux 1:80ab0d068708 360 } else {
samux 1:80ab0d068708 361 bf = 0;
samux 1:80ab0d068708 362 }
samux 1:80ab0d068708 363 } else {
samux 1:80ab0d068708 364 // Single buffered
samux 1:80ab0d068708 365 bf = 0;
samux 1:80ab0d068708 366 }
samux 1:80ab0d068708 367
samux 1:80ab0d068708 368 // Check if already active
samux 1:80ab0d068708 369 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 370 return EP_INVALID;
samux 1:80ab0d068708 371 }
samux 1:80ab0d068708 372
samux 1:80ab0d068708 373 // Check if stalled
samux 1:80ab0d068708 374 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 375 return EP_STALLED;
samux 1:80ab0d068708 376 }
samux 1:80ab0d068708 377
samux 1:80ab0d068708 378 // Copy data to USB RAM
samux 1:80ab0d068708 379 USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
samux 1:80ab0d068708 380
samux 1:80ab0d068708 381 // Add options
samux 1:80ab0d068708 382 if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
samux 1:80ab0d068708 383 flags |= CMDSTS_RF;
samux 1:80ab0d068708 384 }
samux 1:80ab0d068708 385
samux 1:80ab0d068708 386 if (endpointState[endpoint].options & ISOCHRONOUS) {
samux 1:80ab0d068708 387 flags |= CMDSTS_T;
samux 1:80ab0d068708 388 }
samux 1:80ab0d068708 389
samux 1:80ab0d068708 390 // Add transfer
samux 1:80ab0d068708 391 ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
samux 1:80ab0d068708 392 endpointState[endpoint].buffer[bf]) \
samux 1:80ab0d068708 393 | CMDSTS_NBYTES(size) | CMDSTS_A | flags;
samux 1:80ab0d068708 394
samux 1:80ab0d068708 395 return EP_PENDING;
samux 1:80ab0d068708 396 }
samux 1:80ab0d068708 397
samux 1:80ab0d068708 398 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
samux 1:80ab0d068708 399 uint32_t bf;
samux 8:335f2506f422 400
samux 1:80ab0d068708 401 // Validate parameters
samux 1:80ab0d068708 402 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 403 return EP_INVALID;
samux 1:80ab0d068708 404 }
samux 1:80ab0d068708 405
samux 1:80ab0d068708 406 if (OUT_EP(endpoint)) {
samux 1:80ab0d068708 407 return EP_INVALID;
samux 1:80ab0d068708 408 }
samux 1:80ab0d068708 409
samux 1:80ab0d068708 410 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 411 // Double buffered // TODO: FIX THIS
samux 1:80ab0d068708 412 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 413 bf = 1;
samux 1:80ab0d068708 414 } else {
samux 1:80ab0d068708 415 bf = 0;
samux 1:80ab0d068708 416 }
samux 1:80ab0d068708 417 } else {
samux 1:80ab0d068708 418 // Single buffered
samux 1:80ab0d068708 419 bf = 0;
samux 1:80ab0d068708 420 }
samux 1:80ab0d068708 421
samux 1:80ab0d068708 422 // Check if endpoint still active
samux 1:80ab0d068708 423 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 424 return EP_PENDING;
samux 1:80ab0d068708 425 }
samux 1:80ab0d068708 426
samux 1:80ab0d068708 427 // Check if stalled
samux 1:80ab0d068708 428 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 429 return EP_STALLED;
samux 1:80ab0d068708 430 }
samux 1:80ab0d068708 431
samux 1:80ab0d068708 432 return EP_COMPLETED;
samux 1:80ab0d068708 433 }
samux 1:80ab0d068708 434
samux 1:80ab0d068708 435 void USBHAL::stallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 436
samux 8:335f2506f422 437 // FIX: should this clear active bit?
samux 1:80ab0d068708 438 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 439 ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
samux 1:80ab0d068708 440 ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
samux 1:80ab0d068708 441 } else {
samux 1:80ab0d068708 442 ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
samux 1:80ab0d068708 443 ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
samux 1:80ab0d068708 444 }
samux 1:80ab0d068708 445 }
samux 1:80ab0d068708 446
samux 1:80ab0d068708 447 void USBHAL::unstallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 448 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 449 // Double buffered
samux 1:80ab0d068708 450 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 451 ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
samux 1:80ab0d068708 452 ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
samux 1:80ab0d068708 453
samux 1:80ab0d068708 454 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 455 ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 456 } else {
samux 8:335f2506f422 457 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 458 }
samux 1:80ab0d068708 459 } else {
samux 1:80ab0d068708 460 ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
samux 1:80ab0d068708 461 ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
samux 1:80ab0d068708 462
samux 1:80ab0d068708 463 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 464 ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 465 } else {
samux 8:335f2506f422 466 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 467 }
samux 1:80ab0d068708 468 }
samux 1:80ab0d068708 469 } else {
samux 1:80ab0d068708 470 // Single buffered
samux 1:80ab0d068708 471 if (IN_EP(endpoint)) {
samux 8:335f2506f422 472 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 473 } else {
samux 8:335f2506f422 474 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 475 }
samux 1:80ab0d068708 476 }
samux 1:80ab0d068708 477 }
samux 1:80ab0d068708 478
samux 1:80ab0d068708 479 bool USBHAL::getEndpointStallState(unsigned char endpoint) {
samux 1:80ab0d068708 480 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 481 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 482 if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
samux 1:80ab0d068708 483 return true;
samux 1:80ab0d068708 484 }
samux 1:80ab0d068708 485 } else {
samux 1:80ab0d068708 486 if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
samux 1:80ab0d068708 487 return true;
samux 1:80ab0d068708 488 }
samux 1:80ab0d068708 489 }
samux 1:80ab0d068708 490 } else {
samux 1:80ab0d068708 491 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 492 if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
samux 1:80ab0d068708 493 return true;
samux 1:80ab0d068708 494 }
samux 1:80ab0d068708 495 } else {
samux 1:80ab0d068708 496 if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
samux 1:80ab0d068708 497 return true;
samux 1:80ab0d068708 498 }
samux 1:80ab0d068708 499 }
samux 1:80ab0d068708 500 }
samux 1:80ab0d068708 501
samux 1:80ab0d068708 502 return false;
samux 1:80ab0d068708 503 }
samux 1:80ab0d068708 504
samux 1:80ab0d068708 505 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
samux 1:80ab0d068708 506 uint32_t tmpEpRamPtr;
samux 1:80ab0d068708 507
samux 1:80ab0d068708 508 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 509 return false;
samux 1:80ab0d068708 510 }
samux 1:80ab0d068708 511
samux 1:80ab0d068708 512 // Not applicable to the control endpoints
samux 1:80ab0d068708 513 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 514 return false;
samux 1:80ab0d068708 515 }
samux 1:80ab0d068708 516
samux 1:80ab0d068708 517 // Allocate buffers in USB RAM
samux 1:80ab0d068708 518 tmpEpRamPtr = epRamPtr;
samux 1:80ab0d068708 519
samux 1:80ab0d068708 520 // Must be 64 byte aligned
samux 1:80ab0d068708 521 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 522
samux 1:80ab0d068708 523 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 524 // Out of memory
samux 1:80ab0d068708 525 return false;
samux 1:80ab0d068708 526 }
samux 1:80ab0d068708 527
samux 1:80ab0d068708 528 // Allocate first buffer
samux 1:80ab0d068708 529 endpointState[endpoint].buffer[0] = tmpEpRamPtr;
samux 1:80ab0d068708 530 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 531
samux 1:80ab0d068708 532 if (!(options & SINGLE_BUFFERED)) {
samux 1:80ab0d068708 533 // Must be 64 byte aligned
samux 1:80ab0d068708 534 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 535
samux 1:80ab0d068708 536 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 537 // Out of memory
samux 1:80ab0d068708 538 return false;
samux 1:80ab0d068708 539 }
samux 1:80ab0d068708 540
samux 1:80ab0d068708 541 // Allocate second buffer
samux 1:80ab0d068708 542 endpointState[endpoint].buffer[1] = tmpEpRamPtr;
samux 1:80ab0d068708 543 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 544 }
samux 1:80ab0d068708 545
samux 1:80ab0d068708 546 // Commit to this USB RAM allocation
samux 1:80ab0d068708 547 epRamPtr = tmpEpRamPtr;
samux 1:80ab0d068708 548
samux 1:80ab0d068708 549 // Remaining endpoint state values
samux 1:80ab0d068708 550 endpointState[endpoint].maxPacket = maxPacket;
samux 1:80ab0d068708 551 endpointState[endpoint].options = options;
samux 1:80ab0d068708 552
samux 1:80ab0d068708 553 // Enable double buffering if required
samux 1:80ab0d068708 554 if (options & SINGLE_BUFFERED) {
samux 1:80ab0d068708 555 LPC_USB->EPBUFCFG &= ~EP(endpoint);
samux 1:80ab0d068708 556 } else {
samux 1:80ab0d068708 557 // Double buffered
samux 1:80ab0d068708 558 LPC_USB->EPBUFCFG |= EP(endpoint);
samux 1:80ab0d068708 559 }
samux 1:80ab0d068708 560
samux 1:80ab0d068708 561 // Enable interrupt
samux 1:80ab0d068708 562 LPC_USB->INTEN |= EP(endpoint);
samux 1:80ab0d068708 563
samux 1:80ab0d068708 564 // Enable endpoint
samux 1:80ab0d068708 565 unstallEndpoint(endpoint);
samux 1:80ab0d068708 566 return true;
samux 1:80ab0d068708 567 }
samux 1:80ab0d068708 568
samux 1:80ab0d068708 569 void USBHAL::remoteWakeup(void) {
samux 1:80ab0d068708 570 // Clearing DSUS bit initiates a remote wakeup if the
samux 1:80ab0d068708 571 // device is currently enabled and suspended - otherwise
samux 1:80ab0d068708 572 // it has no effect.
samux 1:80ab0d068708 573 LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
samux 1:80ab0d068708 574 }
samux 1:80ab0d068708 575
samux 1:80ab0d068708 576
samux 1:80ab0d068708 577 static void disableEndpoints(void) {
samux 1:80ab0d068708 578 uint32_t logEp;
samux 1:80ab0d068708 579
samux 1:80ab0d068708 580 // Ref. Table 158 "When a bus reset is received, software
samux 1:80ab0d068708 581 // must set the disable bit of all endpoints to 1".
samux 1:80ab0d068708 582
samux 1:80ab0d068708 583 for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
samux 1:80ab0d068708 584 ep[logEp].out[0] = CMDSTS_D;
samux 1:80ab0d068708 585 ep[logEp].out[1] = CMDSTS_D;
samux 1:80ab0d068708 586 ep[logEp].in[0] = CMDSTS_D;
samux 1:80ab0d068708 587 ep[logEp].in[1] = CMDSTS_D;
samux 1:80ab0d068708 588 }
samux 1:80ab0d068708 589
samux 1:80ab0d068708 590 // Start of USB RAM for endpoints > 0
samux 1:80ab0d068708 591 epRamPtr = usbRamPtr;
samux 1:80ab0d068708 592 }
samux 1:80ab0d068708 593
samux 1:80ab0d068708 594
samux 1:80ab0d068708 595
samux 1:80ab0d068708 596 void USBHAL::_usbisr(void) {
samux 1:80ab0d068708 597 instance->usbisr();
samux 1:80ab0d068708 598 }
samux 1:80ab0d068708 599
samux 1:80ab0d068708 600 void USBHAL::usbisr(void) {
samux 1:80ab0d068708 601 // Start of frame
samux 1:80ab0d068708 602 if (LPC_USB->INTSTAT & FRAME_INT) {
samux 1:80ab0d068708 603 // Clear SOF interrupt
samux 1:80ab0d068708 604 LPC_USB->INTSTAT = FRAME_INT;
samux 1:80ab0d068708 605
samux 1:80ab0d068708 606 // SOF event, read frame number
samux 1:80ab0d068708 607 SOF(FRAME_NR(LPC_USB->INFO));
samux 1:80ab0d068708 608 }
samux 1:80ab0d068708 609
samux 1:80ab0d068708 610 // Device state
samux 1:80ab0d068708 611 if (LPC_USB->INTSTAT & DEV_INT) {
samux 1:80ab0d068708 612 LPC_USB->INTSTAT = DEV_INT;
samux 1:80ab0d068708 613
samux 1:80ab0d068708 614 if (LPC_USB->DEVCMDSTAT & DSUS_C) {
samux 1:80ab0d068708 615 // Suspend status changed
samux 1:80ab0d068708 616 LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
samux 1:80ab0d068708 617 if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
samux 1:80ab0d068708 618 suspendStateChanged(1);
samux 1:80ab0d068708 619 }
samux 1:80ab0d068708 620 }
samux 1:80ab0d068708 621
samux 1:80ab0d068708 622 if (LPC_USB->DEVCMDSTAT & DRES_C) {
samux 1:80ab0d068708 623 // Bus reset
samux 1:80ab0d068708 624 LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
samux 1:80ab0d068708 625
samux 1:80ab0d068708 626 suspendStateChanged(0);
samux 1:80ab0d068708 627
samux 1:80ab0d068708 628 // Disable endpoints > 0
samux 1:80ab0d068708 629 disableEndpoints();
samux 1:80ab0d068708 630
samux 1:80ab0d068708 631 // Bus reset event
samux 1:80ab0d068708 632 busReset();
samux 1:80ab0d068708 633 }
samux 1:80ab0d068708 634 }
samux 1:80ab0d068708 635
samux 1:80ab0d068708 636 // Endpoint 0
samux 1:80ab0d068708 637 if (LPC_USB->INTSTAT & EP(EP0OUT)) {
samux 1:80ab0d068708 638 // Clear EP0OUT/SETUP interrupt
samux 1:80ab0d068708 639 LPC_USB->INTSTAT = EP(EP0OUT);
samux 1:80ab0d068708 640
samux 1:80ab0d068708 641 // Check if SETUP
samux 1:80ab0d068708 642 if (LPC_USB->DEVCMDSTAT & SETUP) {
samux 1:80ab0d068708 643 // Clear Active and Stall bits for EP0
samux 1:80ab0d068708 644 // Documentation does not make it clear if we must use the
samux 1:80ab0d068708 645 // EPSKIP register to achieve this, Fig. 16 and NXP reference
samux 1:80ab0d068708 646 // code suggests we can just clear the Active bits - check with
samux 1:80ab0d068708 647 // NXP to be sure.
samux 1:80ab0d068708 648 ep[0].in[0] = 0;
samux 1:80ab0d068708 649 ep[0].out[0] = 0;
samux 1:80ab0d068708 650
samux 1:80ab0d068708 651 // Clear EP0IN interrupt
samux 1:80ab0d068708 652 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 653
samux 1:80ab0d068708 654 // Clear SETUP (and INTONNAK_CI/O) in device status register
samux 1:80ab0d068708 655 LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
samux 1:80ab0d068708 656
samux 1:80ab0d068708 657 // EP0 SETUP event (SETUP data received)
samux 1:80ab0d068708 658 EP0setupCallback();
samux 1:80ab0d068708 659 } else {
samux 1:80ab0d068708 660 // EP0OUT ACK event (OUT data received)
samux 1:80ab0d068708 661 EP0out();
samux 1:80ab0d068708 662 }
samux 1:80ab0d068708 663 }
samux 1:80ab0d068708 664
samux 1:80ab0d068708 665 if (LPC_USB->INTSTAT & EP(EP0IN)) {
samux 1:80ab0d068708 666 // Clear EP0IN interrupt
samux 1:80ab0d068708 667 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 668
samux 1:80ab0d068708 669 // EP0IN ACK event (IN data sent)
samux 1:80ab0d068708 670 EP0in();
samux 1:80ab0d068708 671 }
samux 8:335f2506f422 672
samux 8:335f2506f422 673 for (uint8_t num = 2; num < 5*2; num++) {
samux 8:335f2506f422 674 if (LPC_USB->INTSTAT & EP(num)) {
samux 8:335f2506f422 675 LPC_USB->INTSTAT = EP(num);
samux 8:335f2506f422 676 epComplete |= EP(num);
samux 8:335f2506f422 677 if ((instance->*(epCallback[num - 2]))()) {
samux 8:335f2506f422 678 epComplete &= ~EP(num);
samux 8:335f2506f422 679 }
samux 8:335f2506f422 680 }
samux 1:80ab0d068708 681 }
samux 1:80ab0d068708 682 }
samux 1:80ab0d068708 683
samux 1:80ab0d068708 684 #endif