A web server for monitoring and controlling a MakerBot Replicator over the USB host and ethernet.

Dependencies:   IAP NTPClient RTC mbed-rtos mbed Socket lwip-sys lwip BurstSPI

Fork of LPC1768_Mini-DK by Frank Vannieuwkerke

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHost.cpp Source File

USBHost.cpp

00001 /* mbed USBHost Library
00002  * Copyright (c) 2006-2013 ARM Limited
00003  *
00004  * Licensed under the Apache License, Version 2.0 (the "License");
00005  * you may not use this file except in compliance with the License.
00006  * You may obtain a copy of the License at
00007  *
00008  *     http://www.apache.org/licenses/LICENSE-2.0
00009  *
00010  * Unless required by applicable law or agreed to in writing, software
00011  * distributed under the License is distributed on an "AS IS" BASIS,
00012  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00013  * See the License for the specific language governing permissions and
00014  * limitations under the License.
00015  */
00016 
00017 
00018 #include "USBHost.h"
00019 #include "USBHostHub.h"
00020 
00021 USBHost * USBHost::instHost = NULL;
00022 
00023 #define DEVICE_CONNECTED_EVENT      (1 << 0)
00024 #define DEVICE_DISCONNECTED_EVENT   (1 << 1)
00025 #define TD_PROCESSED_EVENT          (1 << 2)
00026 
00027 #define MAX_TRY_ENUMERATE_HUB       3
00028 
00029 #define MIN(a, b) ((a > b) ? b : a)
00030 
00031 DigitalOut l4(LED4);
00032 
00033 /**
00034 * How interrupts are processed:
00035 *    - new device connected:
00036 *       - a message is queued in queue_usb_event with the id DEVICE_CONNECTED_EVENT
00037 *       - when the usb_thread receives the event, it:
00038 *           - resets the device
00039 *           - reads the device descriptor
00040 *           - sets the address of the device
00041 *           - if it is a hub, enumerates it
00042 *   - device disconnected:
00043 *       - a message is queued in queue_usb_event with the id DEVICE_DISCONNECTED_EVENT
00044 *       - when the usb_thread receives the event, it:
00045 *           - free the device and all its children (hub)
00046 *   - td processed
00047 *       - a message is queued in queue_usb_event with the id TD_PROCESSED_EVENT
00048 *       - when the usb_thread receives the event, it:
00049 *           - call the callback attached to the endpoint where the td is attached
00050 */
00051 void USBHost::usb_process() {
00052     
00053     bool controlListState;
00054     bool bulkListState;
00055     bool interruptListState;
00056     USBEndpoint * ep;
00057     uint8_t i, j, res, timeout_set_addr = 10;
00058     uint8_t buf[8];
00059     bool too_many_hub;
00060     int idx;
00061 
00062 #if DEBUG_TRANSFER
00063     uint8_t * buf_transfer;
00064 #endif
00065         
00066 #if MAX_HUB_NB
00067     uint8_t k;
00068 #endif
00069     
00070     while(1) {
00071         osEvent evt = mail_usb_event.get();
00072         
00073         if (evt.status == osEventMail) {
00074             
00075             l4 = !l4;
00076             message_t * usb_msg = (message_t*)evt.value.p;
00077             
00078             switch (usb_msg->event_id) {
00079                 
00080                 // a new device has been connected
00081                 case DEVICE_CONNECTED_EVENT:
00082                     too_many_hub = false;
00083                     buf[4] = 0;
00084                 
00085                     usb_mutex.lock();
00086                     
00087                     for (i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00088                         if (!deviceInUse[i]) {
00089                             USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]);
00090                             devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed);
00091                             deviceReset[i] = false;
00092                             deviceInited[i] = true;
00093                             break;
00094                         }
00095                     }
00096                     
00097                     if (i == MAX_DEVICE_CONNECTED) {
00098                         USB_ERR("Too many device connected!!\r\n");
00099                         deviceInited[i] = false;
00100                         usb_mutex.unlock();
00101                         continue;
00102                     }
00103                     
00104                     if (!controlEndpointAllocated) {
00105                         control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00);
00106                         addEndpoint(NULL, 0, (USBEndpoint*)control);
00107                         controlEndpointAllocated = true;
00108                     }
00109                     
00110 #if MAX_HUB_NB
00111                     if (usb_msg->hub_parent)
00112                         devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent));
00113 #endif
00114                     
00115                     for (j = 0; j < timeout_set_addr; j++) {
00116                         
00117                         resetDevice(&devices[i]);
00118                         
00119                         // set size of control endpoint
00120                         devices[i].setSizeControlEndpoint(8);
00121                         
00122                         devices[i].activeAddress(false);
00123                         
00124                         // get first 8 bit of device descriptor
00125                         // and check if we deal with a hub
00126                         USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]);
00127                         res = getDeviceDescriptor(&devices[i], buf, 8);
00128                     
00129                         if (res != USB_TYPE_OK) {
00130                             USB_ERR("usb_thread could not read dev descr");
00131                             continue;
00132                         }
00133                     
00134                         // set size of control endpoint
00135                         devices[i].setSizeControlEndpoint(buf[7]);
00136                         
00137                         // second step: set an address to the device
00138                         res = setAddress(&devices[i], devices[i].getAddress());
00139                     
00140                         if (res != USB_TYPE_OK) {
00141                             USB_ERR("SET ADDR FAILED");
00142                             continue;
00143                         }
00144                         devices[i].activeAddress(true);
00145                         USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress());
00146                         
00147                         // try to read again the device descriptor to check if the device
00148                         // answers to its new address
00149                         res = getDeviceDescriptor(&devices[i], buf, 8);
00150                     
00151                         if (res == USB_TYPE_OK) {
00152                             break;
00153                         }
00154                         
00155                         Thread::wait(100);
00156                     }
00157                     
00158                     USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port);
00159                     
00160 #if MAX_HUB_NB
00161                     if (buf[4] == HUB_CLASS) {
00162                         for (k = 0; k < MAX_HUB_NB; k++) {
00163                             if (hub_in_use[k] == false) {
00164                                 for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) {
00165                                     if (hubs[k].connect(&devices[i])) {
00166                                         devices[i].hub = &hubs[k];
00167                                         hub_in_use[k] = true;
00168                                         break;
00169                                     }
00170                                 }
00171                                 if (hub_in_use[k] == true)
00172                                     break;
00173                             }
00174                         }
00175                         
00176                         if (k == MAX_HUB_NB) {
00177                             USB_ERR("Too many hubs connected!!\r\n");
00178                             too_many_hub = true;
00179                         }
00180                     }
00181                     
00182                     if (usb_msg->hub_parent)
00183                         ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]);
00184 #endif
00185                     
00186                     if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) {
00187                         deviceInUse[i] = true;
00188                     }
00189                     
00190                     usb_mutex.unlock();
00191                     
00192                     break;
00193                     
00194                 // a device has been disconnected
00195                 case DEVICE_DISCONNECTED_EVENT:
00196                     
00197                     usb_mutex.lock();
00198                 
00199                     controlListState = disableList(CONTROL_ENDPOINT);
00200                     bulkListState = disableList(BULK_ENDPOINT);
00201                     interruptListState = disableList(INTERRUPT_ENDPOINT);
00202                 
00203                     idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent));
00204                     if (idx != -1) {
00205                         freeDevice((USBDeviceConnected*)&devices[idx]);
00206                     }
00207                     
00208                     if (controlListState) enableList(CONTROL_ENDPOINT);
00209                     if (bulkListState) enableList(BULK_ENDPOINT);
00210                     if (interruptListState) enableList(INTERRUPT_ENDPOINT);
00211                     
00212                     usb_mutex.unlock();
00213                     
00214                     break;
00215                     
00216                 // a td has been processed
00217                 // call callback on the ed associated to the td
00218                 // we are not in ISR -> users can use printf in their callback method
00219                 case TD_PROCESSED_EVENT:
00220                     ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep;
00221                     if (usb_msg->td_state == USB_TYPE_IDLE) {
00222                         USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName(ep->getIntfNb()));
00223 
00224 #if DEBUG_TRANSFER
00225                         if (ep->getDir() == IN) {
00226                             buf_transfer = ep->getBufStart();
00227                             printf("READ SUCCESS [%d bytes transferred - td: 0x%08X] on ep: [%p - addr: %02X]: ",  ep->getLengthTransferred(), usb_msg->td_addr, ep, ep->getAddress());
00228                             for (int i = 0; i < ep->getLengthTransferred(); i++)
00229                                 printf("%02X ", buf_transfer[i]);
00230                             printf("\r\n\r\n");
00231                         }
00232 #endif
00233                         ep->call();
00234                     } else {
00235                         idx = findDevice(ep->dev);
00236                         if (idx != -1) {
00237                             if (deviceInUse[idx]) {
00238                                 USB_WARN("td %p processed but not in idle state: %s [ep: %p - dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep, ep->dev, ep->dev->getName(ep->getIntfNb()));
00239                                 ep->setState(USB_TYPE_IDLE);
00240                             }
00241                         }
00242                     }
00243                     break;
00244             }
00245             
00246             mail_usb_event.free(usb_msg);
00247         }
00248     }
00249 }
00250 
00251 /* static */void USBHost::usb_process_static(void const * arg) {
00252     ((USBHost *)arg)->usb_process();
00253 }
00254 
00255 USBHost::USBHost() : usbThread(USBHost::usb_process_static, (void *)this, osPriorityNormal, USB_THREAD_STACK)
00256 {
00257     headControlEndpoint = NULL;
00258     headBulkEndpoint = NULL;
00259     headInterruptEndpoint = NULL;
00260     tailControlEndpoint = NULL;
00261     tailBulkEndpoint = NULL;
00262     tailInterruptEndpoint = NULL;
00263 
00264     lenReportDescr = 0;
00265 
00266     controlEndpointAllocated = false;
00267 
00268     for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00269         deviceInUse[i] = false;
00270         devices[i].setAddress(i + 1);
00271         deviceReset[i] = false;
00272         deviceInited[i] = false;
00273         for (uint8_t j = 0; j < MAX_INTF; j++)
00274             deviceAttachedDriver[i][j] = false;
00275     }
00276     
00277 #if MAX_HUB_NB
00278     for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
00279         hubs[i].setHost(this);
00280         hub_in_use[i] = false;
00281     }
00282 #endif
00283 }
00284 
00285 
00286 void USBHost::transferCompleted(volatile uint32_t addr)
00287 {
00288     uint8_t state;
00289 
00290     if(addr == NULL)
00291         return;
00292 
00293     volatile HCTD* tdList = NULL;
00294 
00295     //First we must reverse the list order and dequeue each TD
00296     do {
00297         volatile HCTD* td = (volatile HCTD*)addr;
00298         addr = (uint32_t)td->nextTD; //Dequeue from physical list
00299         td->nextTD = tdList; //Enqueue into reversed list
00300         tdList = td;
00301     } while(addr);
00302 
00303     while(tdList != NULL) {
00304         volatile HCTD* td = tdList;
00305         tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below
00306         if (td->ep != NULL) {
00307             USBEndpoint * ep = (USBEndpoint *)(td->ep);
00308             
00309             if (((HCTD *)td)->control >> 28) {
00310                 state = ((HCTD *)td)->control >> 28;
00311             } else {
00312                 if (td->currBufPtr)
00313                     ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart());
00314                 state = 16 /*USB_TYPE_IDLE*/;
00315             }
00316             
00317             ep->unqueueTransfer(td);
00318             
00319             if (ep->getType() != CONTROL_ENDPOINT) {
00320                 // callback on the processed td will be called from the usb_thread (not in ISR)
00321                 message_t * usb_msg = mail_usb_event.alloc();
00322                 usb_msg->event_id = TD_PROCESSED_EVENT;
00323                 usb_msg->td_addr = (void *)td;
00324                 usb_msg->td_state = state;
00325                 mail_usb_event.put(usb_msg);
00326             }
00327             ep->setState(state);
00328             ep->ep_queue.put((uint8_t*)1);
00329         }
00330     }
00331 }
00332 
00333 USBHost * USBHost::getHostInst()
00334 {
00335     if (instHost == NULL) {
00336         instHost = new USBHost();
00337         instHost->init();
00338     }
00339     return instHost;
00340 }
00341 
00342 
00343 /*
00344  * Called when a device has been connected
00345  * Called in ISR!!!! (no printf)
00346  */
00347 /* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent)
00348 {
00349     // be sure that the new device connected is not already connected...
00350     int idx = findDevice(hub, port, hub_parent);
00351     if (idx != -1) {
00352         if (deviceInited[idx])
00353             return;
00354     }
00355     
00356     message_t * usb_msg = mail_usb_event.alloc();
00357     usb_msg->event_id = DEVICE_CONNECTED_EVENT;
00358     usb_msg->hub = hub;
00359     usb_msg->port = port;
00360     usb_msg->lowSpeed = lowSpeed;
00361     usb_msg->hub_parent = hub_parent;
00362     mail_usb_event.put(usb_msg);
00363 }
00364 
00365 /*
00366  * Called when a device has been disconnected
00367  * Called in ISR!!!! (no printf)
00368  */
00369 /* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr)
00370 {
00371     // be sure that the device disconnected is connected...
00372     int idx = findDevice(hub, port, hub_parent);
00373     if (idx != -1) {
00374         if (!deviceInUse[idx])
00375             return;
00376     } else {
00377         return;
00378     }
00379     
00380     message_t * usb_msg = mail_usb_event.alloc();
00381     usb_msg->event_id = DEVICE_DISCONNECTED_EVENT;
00382     usb_msg->hub = hub;
00383     usb_msg->port = port;
00384     usb_msg->hub_parent = hub_parent;
00385     mail_usb_event.put(usb_msg);
00386 }
00387 
00388 void USBHost::freeDevice(USBDeviceConnected * dev)
00389 {
00390     USBEndpoint * ep = NULL;
00391     HCED * ed = NULL;
00392     
00393 #if MAX_HUB_NB
00394     if (dev->getClass() == HUB_CLASS) {
00395         if (dev->hub == NULL) {
00396             USB_ERR("HUB NULL!!!!!\r\n");
00397         } else {
00398             dev->hub->hubDisconnected();
00399             for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
00400                 if (dev->hub == &hubs[i]) {
00401                     hub_in_use[i] = false;
00402                     break;
00403                 }
00404             }
00405         }
00406     }
00407     
00408     // notify hub parent that this device has been disconnected
00409     if (dev->getHubParent())
00410         dev->getHubParent()->deviceDisconnected(dev);
00411     
00412 #endif
00413     
00414     int idx = findDevice(dev);
00415     if (idx != -1) {
00416         deviceInUse[idx] = false;
00417         deviceReset[idx] = false;
00418 
00419         for (uint8_t j = 0; j < MAX_INTF; j++) {
00420             deviceAttachedDriver[idx][j] = false;
00421             if (dev->getInterface(j) != NULL) {
00422                 USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName(j));
00423                 for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) {
00424                     if ((ep = dev->getEndpoint(j, i)) != NULL) {
00425                         ed = (HCED *)ep->getHCED();
00426                         ed->control |= (1 << 14); //sKip bit
00427                         unqueueEndpoint(ep);
00428 
00429                         freeTD((volatile uint8_t*)ep->getTDList()[0]);
00430                         freeTD((volatile uint8_t*)ep->getTDList()[1]);
00431 
00432                         freeED((uint8_t *)ep->getHCED());
00433                     }
00434                     printList(BULK_ENDPOINT);
00435                     printList(INTERRUPT_ENDPOINT);
00436                 }
00437                 USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(j), dev->getHub(), dev->getPort());
00438             }
00439         }
00440         dev->disconnect();
00441     }
00442 }
00443 
00444 
00445 void USBHost::unqueueEndpoint(USBEndpoint * ep)
00446 {
00447     USBEndpoint * prec = NULL;
00448     USBEndpoint * current = NULL;
00449 
00450     for (int i = 0; i < 2; i++) {
00451         current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint;
00452         prec = current;
00453         while (current != NULL) {
00454             if (current == ep) {
00455                 if (current->nextEndpoint() != NULL) {
00456                     prec->queueEndpoint(current->nextEndpoint());
00457                     if (current == headBulkEndpoint) {
00458                         updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED());
00459                         headBulkEndpoint = current->nextEndpoint();
00460                     } else if (current == headInterruptEndpoint) {
00461                         updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED());
00462                         headInterruptEndpoint = current->nextEndpoint();
00463                     }
00464                 }
00465                 // here we are dequeuing the queue of ed
00466                 // we need to update the tail pointer
00467                 else {
00468                     prec->queueEndpoint(NULL);
00469                     if (current == headBulkEndpoint) {
00470                         updateBulkHeadED(0);
00471                         headBulkEndpoint = current->nextEndpoint();
00472                     } else if (current == headInterruptEndpoint) {
00473                         updateInterruptHeadED(0);
00474                         headInterruptEndpoint = current->nextEndpoint();
00475                     }
00476                     
00477                     // modify tail
00478                     switch (current->getType()) {
00479                         case BULK_ENDPOINT:
00480                             tailBulkEndpoint = prec;
00481                             break;
00482                         case INTERRUPT_ENDPOINT:
00483                             tailInterruptEndpoint = prec;
00484                             break;
00485                     }
00486                 }
00487                 current->setState(USB_TYPE_FREE);
00488                 return;
00489             }
00490             prec = current;
00491             current = current->nextEndpoint();
00492         }
00493     }
00494 }
00495 
00496 
00497 USBDeviceConnected * USBHost::getDevice(uint8_t index)
00498 {
00499     if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index])) {
00500         return NULL;
00501     }
00502     return (USBDeviceConnected*)&devices[index];
00503 }
00504 
00505 // create an USBEndpoint descriptor. the USBEndpoint is not linked
00506 USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr)
00507 {
00508     int i = 0;
00509     HCED * ed = (HCED *)getED();
00510     HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() };
00511 
00512     memset((void *)td_list[0], 0x00, sizeof(HCTD));
00513     memset((void *)td_list[1], 0x00, sizeof(HCTD));
00514 
00515     // search a free USBEndpoint
00516     for (i = 0; i < MAX_ENDPOINT; i++) {
00517         if (endpoints[i].getState() == USB_TYPE_FREE) {
00518             endpoints[i].init(ed, type, dir, size, addr, td_list);
00519             USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d, state: %s", &endpoints[i], type, dir, size, addr, endpoints[i].getStateString());
00520             return &endpoints[i];
00521         }
00522     }
00523     USB_ERR("could not allocate more endpoints!!!!");
00524     return NULL;
00525 }
00526 
00527 
00528 USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev)
00529 {
00530     int index = findDevice(dev);
00531     if (index != -1) {
00532         USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort());
00533         Thread::wait(100);
00534         if (dev->getHub() == 0) {
00535             resetRootHub();
00536         }
00537 #if MAX_HUB_NB
00538         else {
00539             dev->getHubParent()->portReset(dev->getPort());
00540         }
00541 #endif
00542         Thread::wait(100);
00543         deviceReset[index] = true;
00544         return USB_TYPE_OK;
00545     }
00546     
00547     return USB_TYPE_ERROR;
00548 }
00549 
00550 // link the USBEndpoint to the linked list and attach an USBEndpoint to a device
00551 bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep)
00552 {
00553 
00554     if (ep == NULL) {
00555         return false;
00556     }
00557 
00558     HCED * prevEd;
00559 
00560     // set device address in the USBEndpoint descriptor
00561     if (dev == NULL) {
00562         ep->setDeviceAddress(0);
00563     } else {
00564         ep->setDeviceAddress(dev->getAddress());
00565     }
00566 
00567     if ((dev != NULL) && dev->getSpeed()) {
00568         ep->setSpeed(dev->getSpeed());
00569     }
00570     
00571     ep->setIntfNb(intf_nb);
00572 
00573     // queue the new USBEndpoint on the ED list
00574     switch (ep->getType()) {
00575 
00576         case CONTROL_ENDPOINT:
00577             prevEd = ( HCED*) controlHeadED();
00578             if (!prevEd) {
00579                 updateControlHeadED((uint32_t) ep->getHCED());
00580                 USB_DBG_TRANSFER("First control USBEndpoint: %08X", (uint32_t) ep->getHCED());
00581                 headControlEndpoint = ep;
00582                 tailControlEndpoint = ep;
00583                 return true;
00584             }
00585             tailControlEndpoint->queueEndpoint(ep);
00586             tailControlEndpoint = ep;
00587             return true;
00588 
00589         case BULK_ENDPOINT:
00590             prevEd = ( HCED*) bulkHeadED();
00591             if (!prevEd) {
00592                 updateBulkHeadED((uint32_t) ep->getHCED());
00593                 USB_DBG_TRANSFER("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
00594                 headBulkEndpoint = ep;
00595                 tailBulkEndpoint = ep;
00596                 break;
00597             }
00598             USB_DBG_TRANSFER("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd);
00599             tailBulkEndpoint->queueEndpoint(ep);
00600             tailBulkEndpoint = ep;
00601             break;
00602 
00603         case INTERRUPT_ENDPOINT:
00604             prevEd = ( HCED*) interruptHeadED();
00605             if (!prevEd) {
00606                 updateInterruptHeadED((uint32_t) ep->getHCED());
00607                 USB_DBG_TRANSFER("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
00608                 headInterruptEndpoint = ep;
00609                 tailInterruptEndpoint = ep;
00610                 break;
00611             }
00612             USB_DBG_TRANSFER("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd);
00613             tailInterruptEndpoint->queueEndpoint(ep);
00614             tailInterruptEndpoint = ep;
00615             break;
00616         default:
00617             return false;
00618     }
00619     
00620     ep->dev = dev;
00621     dev->addEndpoint(intf_nb, ep);
00622 
00623     return true;
00624 }
00625 
00626 
00627 int USBHost::findDevice(USBDeviceConnected * dev)
00628 {
00629     for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00630         if (dev == &devices[i]) {
00631             return i;
00632         }
00633     }
00634     return -1;
00635 }
00636 
00637 int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent)
00638 {
00639     for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
00640         if (devices[i].getHub() == hub && devices[i].getPort() == port) {
00641             if (hub_parent != NULL) {
00642                 if (hub_parent == devices[i].getHubParent())
00643                     return i;
00644             } else {
00645                 return i;
00646             }
00647         }
00648     }
00649     return -1;
00650 }
00651 
00652 void USBHost::printList(ENDPOINT_TYPE type)
00653 {
00654 #if DEBUG_EP_STATE
00655     volatile HCED * hced;
00656     switch(type) {
00657         case CONTROL_ENDPOINT:
00658             hced = (HCED *)controlHeadED();
00659             break;
00660         case BULK_ENDPOINT:
00661             hced = (HCED *)bulkHeadED();
00662             break;
00663         case INTERRUPT_ENDPOINT:
00664             hced = (HCED *)interruptHeadED();
00665             break;
00666     }
00667     volatile HCTD * hctd = NULL;
00668     const char * type_str = (type == BULK_ENDPOINT) ? "BULK" :
00669                             ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" :
00670                             ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS"));
00671     printf("State of %s:\r\n", type_str);
00672     while (hced != NULL) {
00673         uint8_t dir = ((hced->control & (3 << 11)) >> 11);
00674         printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced,
00675                                                    hced->control & 0x7f,
00676                                                    (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"),
00677                                                     (hced->control & (0xf << 7)) >> 7);
00678         hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf));
00679         while (hctd != hced->tailTD) {
00680             printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN");
00681             hctd = hctd->nextTD;
00682         }
00683         printf("\thctd: %p\r\n", hctd);
00684         hced = hced->nextED;
00685     }
00686     printf("\r\n\r\n");
00687 #endif
00688 }
00689 
00690 
00691 // add a transfer on the TD linked list
00692 USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len)
00693 {
00694     td_mutex.lock();
00695 
00696     // allocate a TD which will be freed in TDcompletion
00697     volatile HCTD * td = ed->getNextTD();
00698     if (td == NULL) {
00699         return USB_TYPE_ERROR;
00700     }
00701 
00702     uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT ));
00703 
00704     uint32_t td_toggle;
00705 
00706     if (ed->getType() == CONTROL_ENDPOINT) {
00707         if (ed->isSetup()) {
00708             td_toggle = TD_TOGGLE_0;
00709         } else {
00710             td_toggle = TD_TOGGLE_1;
00711         }
00712     } else {
00713         td_toggle = 0;
00714     }
00715 
00716     td->control      = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC);
00717     td->currBufPtr   = buf;
00718     td->bufEnd       = (buf + (len - 1));
00719 
00720     ENDPOINT_TYPE type = ed->getType();
00721 
00722     disableList(type);
00723     ed->queueTransfer();
00724     printList(type);
00725     enableList(type);
00726     
00727     td_mutex.unlock();
00728 
00729     return USB_TYPE_PROCESSING;
00730 }
00731 
00732 
00733 
00734 USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr)
00735 {
00736     USB_TYPE t = controlRead(  dev,
00737                          USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00738                          GET_DESCRIPTOR,
00739                          (DEVICE_DESCRIPTOR << 8) | (0),
00740                          0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf));
00741     if (len_dev_descr)
00742         *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf);
00743     
00744     return t;
00745 }
00746 
00747 USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr)
00748 {
00749     USB_TYPE res;
00750     uint16_t total_conf_descr_length = 0;
00751 
00752     // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr
00753     res = controlRead(  dev,
00754                         USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00755                         GET_DESCRIPTOR,
00756                         (CONFIGURATION_DESCRIPTOR << 8) | (0),
00757                         0, buf, CONFIGURATION_DESCRIPTOR_LENGTH);
00758 
00759     if (res != USB_TYPE_OK) {
00760         USB_ERR("GET CONF 1 DESCR FAILED");
00761         return res;
00762     }
00763     total_conf_descr_length = buf[2] | (buf[3] << 8);
00764     total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length);
00765     
00766     if (len_conf_descr)
00767         *len_conf_descr = total_conf_descr_length;
00768     
00769     USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]);
00770 
00771     return controlRead(  dev,
00772                          USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
00773                          GET_DESCRIPTOR,
00774                          (CONFIGURATION_DESCRIPTOR << 8) | (0),
00775                          0, buf, total_conf_descr_length);
00776 }
00777 
00778 
00779 USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address) {
00780     return controlWrite(    dev,
00781                             USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
00782                             SET_ADDRESS,
00783                             address,
00784                             0, NULL, 0);
00785     
00786 }
00787 
00788 USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf)
00789 {
00790     return controlWrite( dev,
00791                          USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
00792                          SET_CONFIGURATION,
00793                          conf,
00794                          0, NULL, 0);
00795 }
00796 
00797 uint8_t USBHost::numberDriverAttached(USBDeviceConnected * dev) {
00798     int index = findDevice(dev);
00799     uint8_t cnt = 0;
00800     if (index == -1)
00801         return 0;
00802     for (uint8_t i = 0; i < MAX_INTF; i++) {
00803         if (deviceAttachedDriver[index][i])
00804             cnt++;
00805     }
00806     return cnt;
00807 }
00808 
00809 // enumerate a device with the control USBEndpoint
00810 USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator)
00811 {
00812     uint16_t total_conf_descr_length = 0;
00813     USB_TYPE res;
00814     
00815     usb_mutex.lock();
00816     
00817     // don't enumerate a device which all interfaces are registered to a specific driver
00818     int index = findDevice(dev);
00819     
00820     if (index == -1) {
00821         usb_mutex.unlock();
00822         return USB_TYPE_ERROR;
00823     }
00824     
00825     uint8_t nb_intf_attached = numberDriverAttached(dev);
00826     USB_DBG("dev: %p nb_intf: %d", dev, dev->getNbIntf());
00827     USB_DBG("dev: %p nb_intf_attached: %d", dev, nb_intf_attached);
00828     if ((nb_intf_attached != 0) && (dev->getNbIntf() == nb_intf_attached)) {
00829         USB_DBG("Don't enumerate dev: %p because all intf are registered with a driver", dev);
00830         usb_mutex.unlock();
00831         return USB_TYPE_OK;
00832     }
00833     
00834     USB_DBG("Enumerate dev: %p", dev);
00835     
00836     // third step: get the whole device descriptor to see vid, pid
00837     res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH);
00838 
00839     if (res != USB_TYPE_OK) {
00840         USB_DBG("GET DEV DESCR FAILED");
00841         usb_mutex.unlock();
00842         return res;
00843     }
00844     
00845     dev->setClass(data[4]);
00846     dev->setSubClass(data[5]);
00847     dev->setProtocol(data[6]);
00848     dev->setVid(data[8] | (data[9] << 8));
00849     dev->setPid(data[10] | (data[11] << 8));
00850     USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8));
00851 
00852     pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) );
00853 
00854     res = getConfigurationDescriptor(dev, data, 300, &total_conf_descr_length);
00855     if (res != USB_TYPE_OK) {
00856         usb_mutex.unlock();
00857         return res;
00858     }
00859 
00860 #if DEBUG
00861     USB_DBG("CONFIGURATION DESCRIPTOR:\r\n");
00862     for (int i = 0; i < total_conf_descr_length; i++)
00863         printf("%02X ", data[i]);
00864     printf("\r\n\r\n");
00865 #endif
00866 
00867     // Parse the configuration descriptor
00868     parseConfDescr(dev, data, total_conf_descr_length, pEnumerator);
00869 
00870     // only set configuration if not enumerated before
00871     if (!dev->isEnumerated()) {
00872         
00873         USB_DBG("Set configuration 1 on dev: %p", dev);
00874         // sixth step: set configuration (only 1 supported)
00875         res = setConfiguration(dev, 1);
00876 
00877         if (res != USB_TYPE_OK) {
00878             USB_DBG("SET CONF FAILED");
00879             usb_mutex.unlock();
00880             return res;
00881         }
00882     }
00883     
00884     dev->setEnumerated();
00885 
00886     // Now the device is enumerated!
00887     USB_DBG("dev %p is enumerated\r\n", dev);
00888     usb_mutex.unlock();
00889 
00890     // Some devices may require this delay
00891     wait_ms(100);
00892 
00893     return USB_TYPE_OK;
00894 }
00895 // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor.
00896 void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator)
00897 {
00898     uint32_t index = 0;
00899     uint32_t len_desc = 0;
00900     uint8_t id = 0;
00901     int nb_endpoints_used = 0;
00902     USBEndpoint * ep = NULL;
00903     uint8_t intf_nb = 0;
00904     bool parsing_intf = false;
00905     uint8_t current_intf = 0;
00906 
00907     while (index < len) {
00908         len_desc = conf_descr[index];
00909         id = conf_descr[index+1];
00910         switch (id) {
00911             case CONFIGURATION_DESCRIPTOR:
00912                 USB_DBG("dev: %p has %d intf", dev, conf_descr[4]);
00913                 dev->setNbIntf(conf_descr[4]);
00914                 break;
00915             case INTERFACE_DESCRIPTOR:
00916                 if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) {
00917                     if (intf_nb++ <= MAX_INTF) {
00918                         current_intf = conf_descr[index + 2];
00919                         dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]);
00920                         nb_endpoints_used = 0;
00921                         USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]);
00922                     } else {
00923                         USB_DBG("Drop intf...");
00924                     }
00925                     parsing_intf = true;
00926                 } else {
00927                     parsing_intf = false;
00928                 }
00929                 break;
00930             case ENDPOINT_DESCRIPTOR:
00931                 if (parsing_intf && (intf_nb <= MAX_INTF) ) {
00932                     if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) {
00933                         if( pEnumerator->useEndpoint(current_intf, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) {
00934                             // if the USBEndpoint is isochronous -> skip it (TODO: fix this)
00935                             if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) {
00936                                 ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03),
00937                                                  (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1),
00938                                                  conf_descr[index + 4] | (conf_descr[index + 5] << 8),
00939                                                  conf_descr[index + 2] & 0x0f);
00940                                 USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev);
00941                                 if (ep != NULL && dev != NULL) {
00942                                     addEndpoint(dev, current_intf, ep);
00943                                 } else {
00944                                     USB_DBG("EP NULL");
00945                                 }
00946                                 nb_endpoints_used++;
00947                             } else {
00948                                 USB_DBG("ISO USBEndpoint NOT SUPPORTED");
00949                             }
00950                         }
00951                     }
00952                 }
00953                 break;
00954             case HID_DESCRIPTOR:
00955                 lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8);
00956                 break;
00957             default:
00958                 break;
00959         }
00960         index += len_desc;
00961     }
00962 }
00963 
00964 
00965 USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
00966 {
00967     return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true);
00968 }
00969 
00970 USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
00971 {
00972     return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false);
00973 }
00974 
00975 USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
00976 {
00977     return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true);
00978 }
00979 
00980 USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
00981 {
00982     return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false);
00983 }
00984 
00985 USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write) {
00986     
00987 #if DEBUG_TRANSFER
00988     const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS");
00989     USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d - ep: %02X]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(ep->getIntfNb()), dev->getHub(), dev->getPort(), dev->getAddress(), ep->getAddress());
00990 #endif
00991     
00992     usb_mutex.lock();
00993     
00994     USB_TYPE res;
00995     ENDPOINT_DIRECTION dir = (write) ? OUT : IN;
00996     
00997     if (dev == NULL) {
00998         USB_ERR("dev NULL");
00999         usb_mutex.unlock();
01000         return USB_TYPE_ERROR;
01001     }
01002 
01003     if (ep == NULL) {
01004         USB_ERR("ep NULL");
01005         usb_mutex.unlock();
01006         return USB_TYPE_ERROR;
01007     }
01008 
01009     if (ep->getState() != USB_TYPE_IDLE) {
01010         USB_WARN("[ep: %p - dev: %p - %s] NOT IDLE: %s", ep, ep->dev, ep->dev->getName(ep->getIntfNb()), ep->getStateString());
01011         usb_mutex.unlock();
01012         return ep->getState();
01013     }
01014 
01015     if ((ep->getDir() != dir) || (ep->getType() != type)) {
01016         USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev);
01017         usb_mutex.unlock();
01018         return USB_TYPE_ERROR;
01019     }
01020 
01021     if (dev->getAddress() != ep->getDeviceAddress()) {
01022         USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev);
01023         usb_mutex.unlock();
01024         return USB_TYPE_ERROR;
01025     }
01026     
01027 #if DEBUG_TRANSFER
01028     if (write) {
01029         USB_DBG_TRANSFER("%s WRITE buffer", type_str);
01030         for (int i = 0; i < ep->getLengthTransferred(); i++)
01031             printf("%02X ", buf[i]);
01032         printf("\r\n\r\n");
01033     }
01034 #endif
01035     addTransfer(ep, buf, len);
01036 
01037     if (blocking) {
01038         
01039         ep->ep_queue.get();
01040         res = ep->getState();
01041         
01042         USB_DBG_TRANSFER("%s TRANSFER res: %s on ep: %p\r\n", type_str, ep->getStateString(), ep);
01043         
01044         if (res != USB_TYPE_IDLE) {
01045             usb_mutex.unlock();
01046             return res;
01047         }
01048         
01049         usb_mutex.unlock();
01050         return USB_TYPE_OK;
01051     }
01052     
01053     usb_mutex.unlock();
01054     return USB_TYPE_PROCESSING;
01055 
01056 }
01057 
01058 
01059 USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
01060     return controlTransfer(dev, requestType, request, value, index, buf, len, false);
01061 }
01062 
01063 USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
01064     return controlTransfer(dev, requestType, request, value, index, buf, len, true);
01065 }
01066 
01067 USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write)
01068 {
01069     usb_mutex.lock();
01070     USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getHub(), dev->getPort());
01071 
01072     int length_transfer = len;
01073     USB_TYPE res;
01074     uint32_t token;
01075 
01076     control->setSpeed(dev->getSpeed());
01077     control->setSize(dev->getSizeControlEndpoint());
01078     if (dev->isActiveAddress()) {
01079         control->setDeviceAddress(dev->getAddress());
01080     } else {
01081         control->setDeviceAddress(0);
01082     }
01083 
01084     USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress());
01085     fillControlBuf(requestType, request, value, index, len);
01086 
01087 #if DEBUG_TRANSFER
01088     USB_DBG_TRANSFER("SETUP PACKET: ");
01089     for (int i = 0; i < 8; i++)
01090         printf("%01X ", setupPacket[i]);
01091     printf("\r\n");
01092 #endif
01093 
01094     control->setNextToken(TD_SETUP);
01095     addTransfer(control, (uint8_t*)setupPacket, 8);
01096 
01097     control->ep_queue.get();
01098     res = control->getState();
01099 
01100     USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString());
01101 
01102     if (res != USB_TYPE_IDLE) {
01103         usb_mutex.unlock();
01104         return res;
01105     }
01106 
01107     if (length_transfer) {
01108         token = (write) ? TD_OUT : TD_IN;
01109         control->setNextToken(token);
01110         addTransfer(control, (uint8_t *)buf, length_transfer);
01111 
01112         control->ep_queue.get();
01113         res = control->getState();
01114 
01115 #if DEBUG_TRANSFER
01116         USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString());
01117         if (write) {
01118             USB_DBG_TRANSFER("CONTROL WRITE buffer");
01119             for (int i = 0; i < control->getLengthTransferred(); i++)
01120                 printf("%02X ", buf[i]);
01121             printf("\r\n\r\n");
01122         } else {
01123             USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred());
01124             for (int i = 0; i < control->getLengthTransferred(); i++)
01125                 printf("%02X ", buf[i]);
01126             printf("\r\n\r\n");
01127         }
01128 #endif
01129 
01130         if (res != USB_TYPE_IDLE) {
01131             usb_mutex.unlock();
01132             return res;
01133         }
01134     }
01135 
01136     token = (write) ? TD_IN : TD_OUT;
01137     control->setNextToken(token);
01138     addTransfer(control, NULL, 0);
01139 
01140     control->ep_queue.get();
01141     res = control->getState();
01142 
01143     USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString());
01144     usb_mutex.unlock();
01145 
01146     if (res != USB_TYPE_IDLE)
01147         return res;
01148 
01149     return USB_TYPE_OK;
01150 }
01151 
01152 
01153 void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len)
01154 {
01155 #ifdef __BIG_ENDIAN
01156 #error "Must implement BE to LE conv here"
01157 #endif
01158     setupPacket[0] = requestType;
01159     setupPacket[1] = request;
01160     //We are in LE so it's fine
01161     *((uint16_t*)&setupPacket[2]) = value;
01162     *((uint16_t*)&setupPacket[4]) = index;
01163     *((uint16_t*)&setupPacket[6]) = (uint32_t) len;
01164 }