Psi Swarm Code V0.41 [With Beautiful Meme program]

Dependencies:   PsiSwarmLibrary mbed

Fork of BeautifulMemeProjectBT by Alan Millard

Revision:
30:513457c1ad12
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/BeautifulMeme/programs.cpp	Tue Mar 15 00:58:43 2016 +0000
@@ -0,0 +1,869 @@
+/// PsiSwarm Beautiful Meme Project Source Code
+/// Version 0.41
+/// James Hilder, Alan Millard, Homero Elizondo, Jon Timmis
+/// University of York
+
+// programs.cpp - Various PsiSwarm Programs for Beautiful Meme Project
+
+#include "bmeme.h"
+
+int obstacle_avoidance_threshold = 300;
+int robot_avoidance_threshold = 2000;
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// head_to_bearing_program
+char was_turning = 0;
+
+///The head to bearing program moves towards a given bearing (eg 0 for the beacon or 180 for the opposite wall) and keeps going until an obstacle is detected in front of it
+void head_to_bearing_program(int target_bearing)
+{
+    if(step_cycle == 0 || was_turning == 0) {
+        // Check if we are heading in the right bearing (+- 25 degrees)
+        int current_bearing = (360 - beacon_heading) % 360;
+        // Current bearing should range from 0 to 359; target_bearing likewise; check the are within 25 degrees of each other
+        char bearing_ok = 0;
+        int lower_bound = target_bearing - 25;
+        int upper_bound = target_bearing + 25;
+        if(lower_bound < 0) {
+            if(current_bearing > (lower_bound + 360) || current_bearing < upper_bound) bearing_ok = 1;
+        } else if(upper_bound > 359) {
+            if(current_bearing > lower_bound || current_bearing < (upper_bound - 360)) bearing_ok = 1;
+        } else if(current_bearing > lower_bound && current_bearing < upper_bound) bearing_ok = 1;
+        // Check if there is an obstacle in front of us
+        if((reflected_sensor_data[7] > 1000 || reflected_sensor_data[0] > 1000) && bearing_ok == 1) target_reached = 1;
+        else {
+            // Now move forward if we are facing correct bearing, otherwise turn
+            if(bearing_ok == 1) {
+                //Check if anything is in front of us to determine speed - if it is, move slowly
+                int t_time = 6 * BEACON_PERIOD;
+                float t_speed = 1.0;
+                if(reflected_sensor_data[7] > 150 || reflected_sensor_data[0] > 150) {
+                    t_time = 4 * BEACON_PERIOD;
+                    t_speed = 0.6;
+                }
+                if(reflected_sensor_data[7] > 300 || reflected_sensor_data[0] > 300) {
+                    t_time = 3 * BEACON_PERIOD;
+                    t_speed = 0.4;
+                }
+                if(reflected_sensor_data[7] > 500 || reflected_sensor_data[0] > 500) {
+                    t_time = 2 * BEACON_PERIOD;
+                    t_speed = 0.2;
+                }
+                time_based_forward(t_speed,t_time,0);
+                was_turning = 0;
+            } else {
+                turn_to_bearing(target_bearing);
+                was_turning = 1;
+            }
+        }
+    }
+}
+
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// recharging_program
+
+char recharge_power_check_count = 0;
+char battery_low_count = 0;
+
+void recharging_program()
+{
+    switch(recharging_state) {
+        case 0:
+            // We are not currently recharging, check the battery state
+            if(get_battery_voltage() < battery_low_threshold) {
+                // Battery is below low threshold
+                battery_low_count ++;
+                // We don't immediately start recharging routine in case as battery level can fluctuate a little due to load; if we get a low value for 4 continuous timesteps we start recharging routine
+                if(battery_low_count > 3) {
+                    // Set recharging state to 'looking for charger'
+                    recharging_state = 1;
+                    strcpy(prog_name,"CHARGING PROGRAM");
+                    set_program_info("HEAD TO BEACON");
+                }
+            } else battery_low_count = 0;
+            break;
+            // State 1:  Head to beacon [as this is where battery charger is]
+        case 1:
+            target_reached = 0;
+            head_to_bearing_program(0);
+            if(target_reached == 1) {
+                recharging_state = 2;
+                set_program_info("TURN 90 DEGREES");
+            }
+            break;
+            // Stage 2:  Turn 90 degrees to align with charging pads
+        case 2:
+            disable_ir_emitters = 1;
+            time_based_turn_degrees(0.8, 70.0, 1);
+            recharge_power_check_count = 0;
+            recharging_state = 3;
+            break;
+            // Stage 3:  Wait for turn to complete
+        case 3:
+            if (time_based_motor_action != 1) {
+                recharging_state = 4;
+                set_program_info("CHECK FOR POWER");
+            }
+            break;
+            // Stage 4:  Check if charging
+        case 4:
+            recharge_power_check_count++;
+            if(get_dc_status() == 1) {
+                recharging_state = 5;
+            } else {
+                if(recharge_power_check_count < 10)recharging_state = 6;
+                else {
+                    recharging_state = 7;
+                    set_program_info("NO POWER - RETRY");
+                }
+            }
+            break;
+            // Stage 5:  Charging.  Wait until threshold voltage exceeded
+        case 5:
+            if(get_battery_voltage() > battery_high_threshold) {
+                set_program_info("LEAVE CHARGER");
+                recharging_state = 7;
+            } else {
+                char b_voltage[16];
+                sprintf(b_voltage,"CHARGE: %1.3fV",get_battery_voltage());
+                set_program_info(b_voltage);
+            }
+            break;
+            // Stage 6:  We didn't find power, keep turning a couple of degrees at a time a recheck
+        case 6:
+            time_based_turn_degrees(0.5,4,1);
+            recharging_state = 4;
+            break;
+            // Stage 7:  Charge may be finished.  Turn 90 degrees then move away and resume previous program
+        case 7:
+            time_based_turn_degrees(0.8, 90.0, 1);
+            recharging_state = 8;
+            break;
+
+            // Stage 8:  Wait for turn to complete
+        case 8:
+            if (time_based_motor_action != 1) recharging_state = 9;
+            break;
+            // Stage 9:  Move away
+        case 9:
+            time_based_forward(0.5, 1000000, 1);
+            recharging_state = 10;
+            break;
+            // Stage 10:  Wait for move to complete
+        case 10:
+            if (time_based_motor_action != 1) recharging_state = 11;
+            break;
+            // Stage 11:  Check if battery is below low threshold; if it is, start over, else end charge cycle
+        case 11:
+            disable_ir_emitters = 0;
+            if (get_battery_voltage() < battery_low_threshold) {
+                recharging_state = 1;
+            } else {
+                recharging_state = 0;
+                //Restore name of old program on display
+                set_program(main_program_state);
+            }
+            break;
+    }
+}
+
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// curved_walk_with_interaction_program (Alan's Random Walk\Obstacle Avoid and Robot Interaction Program)
+
+enum random_walk_state {random_walk, turn_towards, interact, turn_away, avoid_obstacle};
+enum random_walk_state internal_state = random_walk;
+char action_timeout = 0;
+char interaction_timeout = 0;
+char random_walk_timeout = 0;
+float previous_left_motor_speed = 0.5;
+float previous_right_motor_speed = 0.5;
+
+void curved_random_walk_with_interaction_program()
+{
+    if(internal_state == random_walk) {
+        if(interaction_timeout < 4)
+            interaction_timeout++;
+
+        int closest_robot = -1;
+        unsigned short shortest_distance = 0;
+
+        // Check whether there are any other robots within range
+        for(int i = 0; i < 8; i++) {
+            if(robots_found[i]) {
+                if(robots_distance[i] > shortest_distance) {
+                    shortest_distance = robots_distance[i];
+                    closest_robot = i;
+                }
+            }
+        }
+
+        // Turn towards the closest robot
+        if(closest_robot >= 0 && shortest_distance > 300 && interaction_timeout >= 4) {
+            time_based_turn_degrees(1, robots_heading[closest_robot], 1);
+
+            action_timeout = 0;
+            internal_state = turn_towards;
+            char temp_message[17];
+            sprintf(temp_message,"FACE ROBOT %d",closest_robot);
+            set_program_info(temp_message);
+        } else { // Otherwise, do a random walk
+            // Check the front sensors for obstacles
+            if(reflected_sensor_data[0] > obstacle_avoidance_threshold ||
+                    reflected_sensor_data[1] > obstacle_avoidance_threshold ||
+                    reflected_sensor_data[6] > obstacle_avoidance_threshold ||
+                    reflected_sensor_data[7] > obstacle_avoidance_threshold) {
+                // Ignore the rear sensors when calculating the heading
+                reflected_sensor_data[2] = 0;
+                reflected_sensor_data[3] = 0;
+                reflected_sensor_data[4] = 0;
+                reflected_sensor_data[5] = 0;
+
+                // Turn 180 degrees away from the sensed obstacle
+                int heading = get_bearing_from_ir_array (reflected_sensor_data) + 180;
+
+                // Normalise
+                heading %= 360;
+
+                if(heading < -180)
+                    heading += 360;
+
+                if(heading > 180)
+                    heading -= 360;
+                set_program_info("AVOID OBSTACLE");
+                time_based_turn_degrees(1, heading, 1);
+
+                action_timeout = 0;
+                internal_state = turn_away;
+            } else {
+                // Change motor speeds every 1s
+                if(random_walk_timeout >= 2) {
+                    float random_offset = (((float) rand() / (float) RAND_MAX) - 0.5) * 0.5;
+
+                    float left_motor_speed = previous_left_motor_speed - random_offset;
+                    float right_motor_speed = previous_right_motor_speed + random_offset;
+
+                    float threshold = 0.25;
+
+                    if(left_motor_speed < threshold)
+                        left_motor_speed = threshold;
+
+                    if(right_motor_speed < threshold)
+                        right_motor_speed = threshold;
+
+                    set_left_motor_speed(left_motor_speed);
+                    set_right_motor_speed(right_motor_speed);
+
+                    random_walk_timeout = 0;
+                }
+
+                random_walk_timeout++;
+            }
+        }
+    } else if(internal_state == turn_towards) {
+        if(action_timeout < 4)
+            action_timeout++;
+        else {
+            set_program_info("SAY HELLO");
+            vibrate();
+
+            action_timeout = 0;
+            internal_state = interact;
+        }
+    } else if(internal_state == interact) {
+        if(action_timeout < 4)
+            action_timeout++;
+        else {
+            set_program_info("TURN AROUND");
+            time_based_turn_degrees(1, 180, 1);
+
+            action_timeout = 0;
+            internal_state = turn_away;
+        }
+
+    } else if(internal_state == turn_away) {
+        if(action_timeout < 4)
+            action_timeout++;
+        else {
+            set_program_info("RANDOM WALK");
+            interaction_timeout = 0;
+            internal_state = random_walk;
+        }
+    } else if(internal_state == avoid_obstacle) {
+        if(action_timeout < 4)
+            action_timeout++;
+        else
+            set_program_info("RANDOM WALK");
+        internal_state = random_walk;
+    }
+}
+
+
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// straight_random_walk_with_interaction_program
+
+void straight_random_walk_with_interaction_program()
+{
+
+}
+
+
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// find_space_program
+
+char prog_debug = 1    ;
+float target_wheel_speed;
+int random_walk_bearing;
+
+void find_space_program(char bidirectional)
+{
+    // The find_space_program is a continuous turn-move vector program
+
+    if(program_run_init == 1) {
+        // Setup the LEDs to red
+        set_leds(0x00,0xFF);
+        set_center_led(1,1);
+        program_run_init = 0;
+        random_walk_bearing = rand() % 360;
+    }
+
+    // When step_cycle = 0 we calculate a vector to move to and a target distance
+    if(step_cycle == 0) {
+        struct FloatVector target_vector;
+        target_vector.angle = 0;
+        target_vector.distance = 0;
+        // Check for near robots within range
+        for(int i = 1; i < 8; i++) {
+            if(robots_found[i]) {
+                int res_bearing = robots_heading[i];
+                res_bearing += 180;
+                if(res_bearing > 180) res_bearing -= 360;   
+                target_vector = addVector(target_vector,res_bearing,robots_distance[i]);
+                if(prog_debug) out("Repelled from robot %d at bearing %d, strength %d,  resultant b:%f, d:%f\n",i,robots_heading[i],robots_distance[i],target_vector.angle,target_vector.distance);
+            }
+        }
+        if(target_vector.angle!=0){
+           set_leds(0xFF,0xFF);
+           set_center_led(3,1);  
+        }
+        // Check for obstacles
+        char obstacle = 0;
+        int peak_strength = 0;
+        for(int i=0; i<8; i++){
+            if(reflected_sensor_data[i] > peak_strength) peak_strength = reflected_sensor_data[i];
+            if(peak_strength > obstacle_avoidance_threshold) obstacle = 1;
+        }
+        if(obstacle){  
+           //Choose new random walk bearing
+           set_leds(0x00,0xFF);
+           set_center_led(1,1);
+           random_walk_bearing = rand() % 360;
+           int obstacle_bearing = get_bearing_from_ir_array (reflected_sensor_data);
+           int obs_bearing = obstacle_bearing + 180;
+           if(obs_bearing > 180) obs_bearing -= 360;
+           target_vector = addVector(target_vector,obs_bearing,peak_strength);
+           if(prog_debug) out("Repelled from obstacle at bearing %d, strength %d,  resultant b:%f, d:%f\n",obstacle_bearing,peak_strength,target_vector.angle,target_vector.distance);
+        }   
+        
+        if(target_vector.angle == 0 && target_vector.distance == 0){
+            set_leds(0xFF,0x00);
+            set_center_led(2,1);
+            random_walk_bearing += 180;
+            if(random_walk_bearing > 360) random_walk_bearing -= 360;
+            target_vector.distance = 100;   
+            int current_bearing = 360 - beacon_heading;
+            //Now work out turn needed to face intended heading
+            int target_turn = (random_walk_bearing - current_bearing) % 360;
+            if(target_turn > 180) target_turn -= 360;
+            if(target_turn < -180) target_turn += 360;
+            target_vector.angle = target_turn;
+            if(prog_debug) out("Random walk bearing:%d Current:%d Target:%f\n",random_walk_bearing,current_bearing,target_vector.angle);
+        }
+        char wheel_direction = 1;
+        if(bidirectional){
+            // Allow reverse wheel direction
+            if(target_vector.angle < -90) {target_vector.angle += 180; wheel_direction = 0;}
+            else if(target_vector.angle > 90) {target_vector.angle -= 180; wheel_direction = 0;}
+        }
+        //Now turn to angle
+        float maximum_turn_angle = get_maximum_turn_angle(BEACON_PERIOD*10);
+        if(target_vector.angle < 0){
+            if(target_vector.angle < -maximum_turn_angle){
+                   target_vector.angle = -maximum_turn_angle;
+                   target_vector.distance = 100;
+            }    
+        }else{
+            if(target_vector.angle > maximum_turn_angle){
+                   target_vector.angle = maximum_turn_angle;
+                   target_vector.distance = 100;
+            } 
+        }
+        //Set the wheel speed for next action
+        if(target_vector.distance < 120) target_wheel_speed = 0.25;
+        else if(target_vector.distance < 240) target_wheel_speed = 0.35;
+        else if(target_vector.distance < 480) target_wheel_speed = 0.45;
+        else if(target_vector.distance < 960) target_wheel_speed = 0.55;
+        else target_wheel_speed = 0.65;
+        if(wheel_direction == 0) target_wheel_speed = 0-target_wheel_speed;
+        
+        //Now turn...
+        time_based_turn_degrees(1, (int) target_vector.angle, 1);
+    } else time_based_forward(target_wheel_speed,BEACON_PERIOD*6,0);
+}
+
+
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// clustering_program
+
+
+void clustering_program(char invert, char bidirectional)
+{
+    // The clustering program is a continuous turn-move vector program
+    // In normal mode (invert = 0) it is attracted to same-group robots and repels opposite-group, walls and very close same-group robots
+    // In invert mode (invert = 1) it avoids same-group and is attracted to opposite group
+
+    // Store the robot group: even robots (0) are green, odd robots (1) are red
+    char group = robot_id % 2;
+
+    if(program_run_init == 1) {
+        // Setup the LEDs based on robot_id
+        if(group == 0) {
+            set_leds(0xFF,0x00);
+            set_center_led(2,1);
+        } else {
+            set_leds(0x00,0xFF);
+            set_center_led(1,1);
+        }
+        program_run_init = 0;
+        random_walk_bearing = rand() % 360;
+    }
+
+    // When step_cycle = 0 we calculate a vector to move to and a target distance
+    if(step_cycle == 0) {
+        char avoiding_friend = 0;
+        struct FloatVector target_vector;
+        target_vector.angle = 0;
+        target_vector.distance = 0;
+        // Check for near robots within range
+        for(int i = 1; i < 8; i++) {
+            if(robots_found[i]) {
+                // Determine if the robot is an attractor or a repellor
+                char attract = 0;
+                if((invert==0 && ((i%2) == group)) || (invert==1 && ((i%2) != group))) attract = 1;
+                // Avoid very close attractors to stop collisions
+                if(attract==1 && robots_distance[i] > robot_avoidance_threshold) {attract = 0; avoiding_friend = 1;}
+                int res_bearing = robots_heading[i];
+                if(attract==0){
+                    res_bearing += 180;
+                    if(res_bearing > 180) res_bearing -= 360;   
+                }
+                target_vector = addVector(target_vector,res_bearing,robots_distance[i]);
+                if(prog_debug) {
+                    if(attract) {
+                        out("Attracted to robot %d at bearing %d, strength %d,  resultant b:%f, d:%f\n",i,robots_heading[i],robots_distance[i],target_vector.angle,target_vector.distance);
+                    } else {
+                        out("Repelled from robot %d at bearing %d, strength %d,  resultant b:%f, d:%f\n",i,robots_heading[i],robots_distance[i],target_vector.angle,target_vector.distance);
+                    }
+                }
+            }
+        }
+        
+        // Check for obstacles
+        char obstacle = 0;
+        int peak_strength = 0;
+        for(int i=0; i<8; i++){
+            if(reflected_sensor_data[i] > peak_strength) peak_strength = reflected_sensor_data[i];
+            if(peak_strength > obstacle_avoidance_threshold) obstacle = 1;
+        }
+        if(obstacle){  
+           //Choose new random walk bearing
+           random_walk_bearing = rand() % 360;
+           int obstacle_bearing = get_bearing_from_ir_array (reflected_sensor_data);
+           int obs_bearing = obstacle_bearing + 180;
+           if(obs_bearing > 180) obs_bearing -= 360;
+           target_vector = addVector(target_vector,obs_bearing,peak_strength);
+           if(prog_debug) out("Repelled from obstacle at bearing %d, strength %d,  resultant b:%f, d:%f\n",obstacle_bearing,peak_strength,target_vector.angle,target_vector.distance);
+        }   
+        if(target_vector.angle == 0 && target_vector.distance == 0){
+            //I have nothing attracting me so persist with random walk: with a 2% chance pick new bearing
+            if(rand() % 100 > 97) random_walk_bearing = rand() % 360;
+            target_vector.distance = 100;   
+            int current_bearing = 360 - beacon_heading;
+            //Now work out turn needed to face intended heading
+            int target_turn = (random_walk_bearing - current_bearing) % 360;
+            if(target_turn > 180) target_turn -= 360;
+            if(target_turn < -180) target_turn += 360;
+            target_vector.angle = target_turn;
+            if(prog_debug) out("Random walk bearing:%d Current:%d Target:%f\n",random_walk_bearing,current_bearing,target_vector.angle);
+        }
+        char wheel_direction = 1;
+        if(bidirectional){
+            // Allow reverse wheel direction
+            if(target_vector.angle < -90) {target_vector.angle += 180; wheel_direction = 0;}
+            else if(target_vector.angle > 90) {target_vector.angle -= 180; wheel_direction = 0;}
+        }
+        //Now turn to angle
+        float maximum_turn_angle = get_maximum_turn_angle(BEACON_PERIOD*10);
+        if(target_vector.angle < 0){
+            if(target_vector.angle < -maximum_turn_angle){
+                   target_vector.angle = -maximum_turn_angle;
+                   target_vector.distance = 100;
+            }    
+        }else{
+            if(target_vector.angle > maximum_turn_angle){
+                   target_vector.angle = maximum_turn_angle;
+                   target_vector.distance = 100;
+            } 
+        }
+        if(avoiding_friend) target_vector.distance = 100;
+        //Set the wheel speed for next action
+        if(target_vector.distance < 120) target_wheel_speed = 0.25;
+        else if(target_vector.distance < 240) target_wheel_speed = 0.35;
+        else if(target_vector.distance < 480) target_wheel_speed = 0.5;
+        else if(target_vector.distance < 960) target_wheel_speed = 0.65;
+        else target_wheel_speed = 0.85;
+        if(wheel_direction == 0) target_wheel_speed = 0-target_wheel_speed;
+        
+        //Now turn...
+        time_based_turn_degrees(1, (int) target_vector.angle, 1);
+    } else time_based_forward(target_wheel_speed,BEACON_PERIOD*7,0);
+}
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// stop_program - Pauses robot
+
+void stop_program()
+{
+    if(program_run_init == 1) {
+        save_led_states();
+        set_leds(0,0);
+        set_center_led(0,0);
+        stop();
+        program_run_init = 0;
+    }
+}
+
+
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// tag_game_program
+
+enum tag_game_role {hunter, hunted};
+enum tag_game_role role;
+int tag_distance = 500;
+char hunters[8]; // Memory of which robots have come within tag distance - assumed to be hunters
+Timeout hunter_timeout; // Timeout before robots switch back to being hunted
+char initial_hunter = 2; // Robot with this ID is permanently a hunter
+
+// Resets hunter robots to hunted after timeout
+void role_reset()
+{
+    role = hunted;
+    set_program_info("HUNTED");
+    // Clear memory of hunters
+    for(int i = 0; i < 8; i++)
+        hunters[i] = 0;
+}
+
+void tag_game_program()
+{
+    // Initialisation
+    if(program_run_init == 1) {
+        
+        // Set robot roles
+        if(robot_id == initial_hunter){
+            role = hunter;
+            set_program_info("FIRST HUNTER");
+        }
+        else {
+            role = hunted;
+            set_program_info("HUNTED");
+        }
+        // Clear memory of hunters    
+        for(int i = 0; i < 8; i++)
+            hunters[i] = 0;
+
+        program_run_init = 0;
+    }
+    
+    // Bias forward movement
+    float left_motor_speed = 0.5;
+    float right_motor_speed = 0.5;
+    
+    // Check the front sensors for obstacles
+    if(reflected_sensor_data[0] > obstacle_avoidance_threshold ||
+       reflected_sensor_data[1] > obstacle_avoidance_threshold ||
+       reflected_sensor_data[6] > obstacle_avoidance_threshold ||
+       reflected_sensor_data[7] > obstacle_avoidance_threshold)
+    {                
+        // Ignore the rear sensors when calculating the heading
+        reflected_sensor_data[2] = 0;
+        reflected_sensor_data[3] = 0;
+        reflected_sensor_data[4] = 0;
+        reflected_sensor_data[5] = 0;
+
+        // Get heading of sensed obstacle
+        int heading = get_bearing_from_ir_array(reflected_sensor_data);
+        
+        // Turn in opposite direction
+        if(heading > 0 && heading < 90)
+        {
+            left_motor_speed -= 0.75;
+            right_motor_speed += 0.5;
+        }
+        else if(heading < 0 && heading > -90)
+        {
+            left_motor_speed += 0.5;
+            right_motor_speed -= 0.75;
+        }
+        
+        set_left_motor_speed(left_motor_speed);
+        set_right_motor_speed(right_motor_speed);
+        
+        // Return early - obstacle avoidance is the top priority
+        return;
+    }
+        
+    int closest_robot = -1;
+    unsigned short shortest_distance = 0;
+
+    // Check whether there are any other robots within range
+    for(int i = 0; i < 8; i++)
+    {
+        if(robots_found[i])
+        {
+            if(robots_distance[i] > shortest_distance)
+            {
+                shortest_distance = robots_distance[i];
+                closest_robot = i;
+            }
+        }
+    }
+    
+    // If the closest robot is within tag distance, this robot has been tagged
+    if(shortest_distance > tag_distance)
+    {
+        // Switch role to hunter
+        if(role == hunted)
+        {
+            role = hunter;
+            set_program_info("NEW HUNTER");
+            // Reset to hunted after 10 seconds
+            hunter_timeout.attach(&role_reset, 10);
+        }
+        
+        // Keep a record of which robot tagged them, so hunters do not chase hunters
+        // Unless they are the initial hunter, who is aggresive towards everyone
+        if(robot_id != initial_hunter)
+            hunters[closest_robot] = 1;
+    }
+        
+    if(role == hunter)
+    {
+        // Set LEDS to red
+        set_leds(0x00, 0xFF);
+        set_center_led(1, 1);
+        
+        if(closest_robot >= 0 && !hunters[closest_robot]) // Ignore other hunters
+        {
+            // Turn towards closest hunted robot (unless it is straight ahead, or behind)            
+            if(robots_heading[closest_robot] > 22.5 && robots_heading[closest_robot] < 90)
+            {
+                left_motor_speed += 0.5;
+                right_motor_speed -= 0.5;
+            }
+            else if(robots_heading[closest_robot] < -22.5 && robots_heading[closest_robot] > -90)
+            {
+                left_motor_speed -= 0.5;
+                right_motor_speed += 0.5;
+            }
+        }
+        
+        set_left_motor_speed(left_motor_speed);
+        set_right_motor_speed(right_motor_speed);
+    }
+    else // role == hunted
+    {
+        // Set LEDs to green        
+        set_leds(0xFF, 0x00);
+        set_center_led(2, 1);
+        
+        // Avoid everyone
+        if(closest_robot >= 0)
+        {
+            // Turn away from closest robot
+            if(robots_heading[closest_robot] >= 0 && robots_heading[closest_robot] < 90)
+            {
+                left_motor_speed -= 0.5;
+                right_motor_speed += 0.5;
+            }
+            else if(robots_heading[closest_robot] < 0 && robots_heading[closest_robot] > -90)
+            {
+                left_motor_speed += 0.5;
+                right_motor_speed -= 0.5;
+            }
+        }
+        
+        set_left_motor_speed(left_motor_speed);
+        set_right_motor_speed(right_motor_speed);
+    }
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// flocking_program
+
+void flocking_program()
+{
+    char display_line[16] = "               ";      
+    int average_heading = 0;
+    int number_of_neighbours = 0;
+    int number_of_flocking_headings = 0;
+    int target_heading = 0;
+    int angles = 0;    
+    int ir_sensor_threshold = 600;
+    int sensors_activated = 0;
+    
+    struct FloatVector obstacle_vector;
+    obstacle_vector.angle = 0;
+    obstacle_vector.distance = 0;
+    
+    struct FloatVector cohesion_vector;
+    cohesion_vector.angle = 0;
+    cohesion_vector.distance = 0;
+    
+    for(int i = 0; i < 8; i++)
+    {
+        if(reflected_sensor_data[i] > ir_sensor_threshold)
+        {            
+            obstacle_vector = addVector(obstacle_vector, get_bearing_from_ir_array(reflected_sensor_data), reflected_sensor_data[i]);
+            sensors_activated++;
+        }
+                
+        if(robots_found[i])
+        {
+            // -180 degrees is reserved for "no byte received"
+            if(flocking_headings[i] != -180)
+            {
+                average_heading += flocking_headings[i];
+                number_of_flocking_headings++;
+            }
+            
+            cohesion_vector = addVector(cohesion_vector, robots_heading[i], robots_distance[i]);
+            number_of_neighbours++;
+        }
+    }
+    
+    cohesion_vector.distance /= number_of_neighbours; // Normalise        
+    obstacle_vector.distance /= sensors_activated; // Normalise
+    
+    int obstacle_avoidance_angle;
+    
+    if(sensors_activated > 0)
+    {
+        obstacle_avoidance_angle = obstacle_vector.angle + 180;
+                
+        if(obstacle_avoidance_angle > 180)
+            obstacle_avoidance_angle -= 360;
+        if(obstacle_avoidance_angle < -180)
+            obstacle_avoidance_angle += 360;
+        
+        target_heading += obstacle_avoidance_angle;
+        angles++;
+    }
+
+    int cohesion_angle;
+    
+    // Don't bother performing cohesion if robots are already close enough
+    if(number_of_neighbours > 0 && cohesion_vector.distance < 200)
+    {            
+        cohesion_angle = cohesion_vector.angle;
+        
+        if(cohesion_angle > 180)
+            cohesion_angle -= 360;
+        if(cohesion_angle < -180)
+            cohesion_angle += 360;
+        
+        target_heading += cohesion_angle;
+        angles++;
+    }
+    
+    int relative_flocking_heading;
+    
+    if(number_of_flocking_headings > 0)
+    {        
+        average_heading /= number_of_flocking_headings;            
+
+        relative_flocking_heading = beacon_heading - average_heading;
+        
+        if(relative_flocking_heading > 180)
+            relative_flocking_heading -= 360;
+        if(relative_flocking_heading < -180)
+            relative_flocking_heading += 360;
+        
+        target_heading += relative_flocking_heading;
+        angles++;
+    }
+        
+    if(angles > 0)
+        target_heading /= angles; // Calculate average
+
+    float left_motor_speed = 0.25;
+    float right_motor_speed = 0.25;
+
+    if(target_heading > 22.5)
+        right_motor_speed *= -1;
+    else if(target_heading < -22.5)
+        left_motor_speed *= -1;
+        
+    set_left_motor_speed(left_motor_speed);
+    set_right_motor_speed(right_motor_speed);
+
+    // Only transmit beacon heading if the beacon is visible
+    if(beacon_found)
+    {        
+        float degrees_per_value = 256.0f / 360.0f;
+        char beacon_heading_byte = (beacon_heading + 180) * degrees_per_value; // Convert beacon heading from +/-180 degrees into a single byte value
+        
+        bt.putc(beacon_heading_byte);
+    }
+    
+    sprintf(display_line, "%d %d %d %d", target_heading, obstacle_avoidance_angle, cohesion_angle, relative_flocking_heading);
+ 
+    set_program_info(display_line);
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/// generic_program - Framework for building typical programs
+
+void generic_program()
+{
+    // Do something on the first run of a program
+    if(program_run_init == 1) {
+        // Initialisation code goes here...
+
+        program_run_init = 0;
+    }
+
+    // step_cycle is either zero or one; use this avoid estimating bearings on the cycle after a turn (as the results will be skewed by the turn)
+    if(step_cycle == 0) {
+        // Do something based on sensor data (eg turn)
+    } else {
+        // Do something ignoring sensor data (eg move, or nothing!)
+    }
+
+}
\ No newline at end of file