For YRL Robot Arm
servo.cpp
- Committer:
- jah128
- Date:
- 2017-03-03
- Revision:
- 0:b14dfd8816da
File content as of revision 0:b14dfd8816da:
/* University of York Robotics Laboratory Robot Arm Controller Board * * Dynamixel Servo Library for AX-12 and MX-28 * * Based on library by Chris Styles (see copyright notice at end of file) * * File: servo.cpp * * (C) Dept. Electronics & Computer Science, University of York * James Hilder, Alan Millard, Shuhei Miyashita, Homero Elizondo, Jon Timmis * * February 2017, Version 1.0 */ #include "robotarm.h" int delay = RETURN_DELAY; char read_timeout_counter = 0; Servo::Servo(PinName tx, PinName rx) : _servo(tx,rx) { _servo.baud(57600); } void Servo::ClearBuffer() { if (_servo.readable()) { pc.printf("\nBuffer error:"); while(_servo.readable()) { pc.printf("%c",_servo.getc()); } pc.printf("\n"); } } void Servo::ScanForServos () { pc.printf("SCANNING FOR ServoS...\n"); pc.printf("Checking at 57600 baud\n"); _servo.baud(57600); delay = 250; for(int k=0; k<2; k++) { if(k==1) { _servo.baud(1000000); pc.printf("\nChecking at 1000000 baud\n"); } for(int id = 0; id<254; id++) { //pc.printf("ID %d: ",id); char TxBuf[8]; TxBuf[0] = 0xff; TxBuf[1] = 0xff; TxBuf[2] = id; char sum = id + 7; TxBuf[3] = 4; TxBuf[4] = 2; TxBuf[5] = REG_MODEL_NUMBER; TxBuf[6] = 1; TxBuf[7] = 0xFF - sum; for (int i = 0; i<8 ; i++) { _servo.putc(TxBuf[i]); } // Wait for data to transmit int t_delay = 60; wait_us(t_delay); if(_servo.readable()) { pc.printf("ID %d: ",id); // Receive the Status packet 6+ number of bytes read char status[8]; for (int i=0; i<(7) ; i++) { status[i] = _servo.getc(); } if(status[2] == id) { pc.printf(" FOUND ["); char modelnumber = status[5]; switch(modelnumber) { case (AX12_MODEL): pc.printf("AX12]\n"); break; case (MX28_MODEL): pc.printf("MX28]\n"); break; default: pc.printf("UNKNOWN MODEL]\n"); break; } } else pc.printf(" ID ERROR\n"); } else { //pc.printf(" NOT FOUND\n"); } } } pc.printf("\nScan complete.\n"); delay = RETURN_DELAY; } // Get the soft lower limit for servo short Servo::GetLowerLimit(int ID) { if(USE_SOFT_LIMITS==1){ switch(ID){ case BASE: return BASE_LIMIT_LOW; case SHOULDER: return SHOULDER_LIMIT_LOW; case ELBOW: return ELBOW_LIMIT_LOW; //case WRIST: return WRIST_LIMIT_LOW; } } return 0; } // Get the soft upper limit for servo short Servo::GetUpperLimit(int ID) { if(USE_SOFT_LIMITS==1){ switch(ID){ case BASE: return BASE_LIMIT_HIGH; case SHOULDER: return SHOULDER_LIMIT_HIGH; case ELBOW: return ELBOW_LIMIT_HIGH; // case WRIST: return WRIST_LIMIT_HIGH; } } return 4095; } // Get detailed data for servo void Servo::DebugData(int ID) { pc.printf("\nGetting Current Data for Servo %d",ID); char data[49]; for(int i=0; i<12; i++) { int offset = i*4; int ErrorCode = read(ID, offset, 4, data+offset); pc.printf("."); } pc.printf("\n"); pc.printf("\nEEPROM VALUES\n"); int modelnumber = data[0] + (data[1] << 8); pc.printf("Model Number : %x [",modelnumber); switch(modelnumber) { case (AX12_MODEL): pc.printf("AX12]\n"); break; case (MX28_MODEL): pc.printf("MX28]\n"); break; default: pc.printf("UNKNOWN]\n"); break; } pc.printf("Firmware Version : %x\n",data[2]); pc.printf("ID : %x\n",data[3]); int baudrate = 2000000 / (data[4] + 1); //Special high-speed baudrates [for MX28 only] if(data[4] == 250) baudrate = 2250000; if(data[4] == 251) baudrate = 2500000; if(data[4] == 252) baudrate = 3000000; pc.printf("Baud Rate : %x [%d]\n",data[4],baudrate); pc.printf("Return Delay Time : %x [%duS]\n",data[5],(data[5] * 2)); short cw_angle_limit = data[6] + (data[7] << 8); short ccw_angle_limit = data[8] + (data[9] << 8); pc.printf("CW Angle Limit : %x [%d",cw_angle_limit,cw_angle_limit); if(cw_angle_limit ==0 && ccw_angle_limit == 0)pc.printf(" - Wheel Mode]\n"); else { if(cw_angle_limit == 4095 && ccw_angle_limit == 4095)pc.printf(" - Multiturn Mode]\n"); else pc.printf("- Joint Mode]\n"); } pc.printf("CCW Angle Limit : %x [%d",ccw_angle_limit,ccw_angle_limit); if(cw_angle_limit ==0 && ccw_angle_limit == 0)pc.printf(" - Wheel Mode]\n"); else { if(cw_angle_limit == 4095 && ccw_angle_limit == 4095)pc.printf(" - Multiturn Mode]\n"); else pc.printf("- Joint Mode]\n"); } //Fill in blanks pc.printf("High Temp Limit : %x [%dC]\n",data[11],data[11]); pc.printf("Low Voltage Limit : %x [%2.1fV]\n",data[12],(float) (data[12]*0.1f)); pc.printf("High Voltage Limit: %x [%2.1fV]\n",data[13],(float) (data[13]*0.1f)); short max_torque = data[14] + (data[15] << 8); float pct_max_torque = (float) (max_torque / 10.23f); pc.printf("Preset Max Torque : %x [%3.2f%%]\n",max_torque,pct_max_torque); pc.printf("Status Return Lev.: %x [%d]\n",data[16]); pc.printf("Alarm LED : %x [%d]\n",data[17]); pc.printf("Alarm Shutdown : %x [%d]\n",data[18]); short multiturn_offset = data[20] + (data[21] << 8); pc.printf("Multiturn Offset : %x [%d]\n",multiturn_offset,multiturn_offset); pc.printf("\nRAM VALUES\n"); pc.printf("Torque Enable : %x\n",data[24]); pc.printf("LED : %x\n",data[25]); pc.printf("D Gain : %x [%d]\n",data[26],data[26]); pc.printf("I Gain : %x [%d]\n",data[27],data[27]); pc.printf("P Gain : %x [%d]\n",data[28],data[28]); short goal_position = data[30] + (data[31] << 8); float gp_degrees = (goal_position - 2048) * 0.087890625; pc.printf("Goal Position : %x [%d: %3.2f degrees]\n",goal_position,goal_position,gp_degrees); short moving_speed = data[32] + (data[33] << 8); float mv_rpm = moving_speed * 0.114; pc.printf("Moving Speed : %x [%d: %4.2 rpm]\n",moving_speed,moving_speed,mv_rpm); short c_max_torque = data[34] + (data[35] << 8); float cpct_max_torque = (float) (c_max_torque / 10.23f); pc.printf("Current Max Torque: %x [%3.2f%%]\n",c_max_torque,cpct_max_torque); short present_position = data[36] + (data[37] << 8); float pp_degrees = present_position * 0.088f; pc.printf("Present Position : %x [%d: %3.2f degrees]\n",present_position,present_position,pp_degrees); short present_speed = data[38] + (data[39] << 8); float p_rpm = present_speed * 0.114; pc.printf("Present Speed : %x [%d: %4.2 rpm]\n",present_speed,present_speed,p_rpm); short present_load = data[40] + (data[41] << 8); if(present_load < 1024) { float present_loadpct = (1024 - present_load) / 10.23f; pc.printf("Present Load : %x [%3.2f%% CCW]\n",present_load,present_loadpct); } else { if(present_load > 1024) { float present_loadpct_cw = (present_load - 1024) / 10.23f; pc.printf("Present Load : %x [%3.2f%% CW]\n",present_load,present_loadpct_cw); } else pc.printf("Present Load : %x [NONE]\n",present_load); } pc.printf("Voltage : %x [%fV]\n",data[42],(data[42] * 0.1f)); pc.printf("Temperature : %x [%dC]\n",data[43],data[43]); } // Set the mode of the servo // 0 = Positional (0-300 degrees) // 1 = Rotational -1 to 1 speed int Servo::SetMode(int ID, int mode) { if (mode == 1) { // set CR SetCWLimit(ID, 0); SetCCWLimit(ID, 0); SetCRSpeed(ID, 0.0); } else { SetCWLimit(ID, 0); SetCCWLimit(ID, 300); SetCRSpeed(ID, 0.0); } return(0); } // if flag[0] is set, were blocking // if flag[1] is set, we're registering // they are mutually exclusive operations int Servo::SetGoal(int ID, short goal, int flags) { char reg_flag = 0; char data[2]; // set the flag is only the register bit is set in the flag if (flags == 0x2) { reg_flag = 1; } if(GetLowerLimit(ID) > goal){ goal=GetLowerLimit(ID); if(USE_LIMIT_WARNING == 1){ display.clear_display(); display.set_position(0,0); display.write_string("RANGE ERROR"); } } if(GetUpperLimit(ID) < goal){ goal=GetUpperLimit(ID); if(USE_LIMIT_WARNING == 1){ display.clear_display(); display.set_position(0,0); display.write_string("RANGE ERROR"); } } if (DEBUG) { pc.printf("SetGoal to 0x%x ",goal); } // Apply inversions if set switch(ID){ case(BASE):if(INVERT_BASE == 1)goal=4095-goal;break; case(SHOULDER):if(INVERT_SHOULDER == 1)goal=4095-goal;break; case(ELBOW):if(INVERT_ELBOW == 1)goal=4095-goal;break; case(WRIST):if(INVERT_BASE == 1)goal=4095-goal;break; } data[0] = goal & 0xff; // bottom 8 bits data[1] = goal >> 8; // top 8 bits // write the packet, return the error code int rVal = write(ID, REG_GOAL_POSITION, 2, data, reg_flag); if (flags == 1) { // block until it comes to a halt if (DEBUG) pc.printf(" [WAITING]"); while (isMoving(ID)) {} } if (DEBUG) pc.printf("\n"); return(rVal); } // if flag[0] is set, were blocking // if flag[1] is set, we're registering // they are mutually exclusive operations int Servo::SetGoalDegrees(int ID, int degrees, int flags) { short goal = (degrees * 11.377778) + 2048; return SetGoal(ID,goal,flags); } // Set continuous rotation speed from -1 to 1 int Servo::SetCRSpeed(int ID, float speed) { // bit 10 = direction, 0 = CCW, 1=CW // bits 9-0 = Speed char data[2]; int goal = (0x3ff * abs(speed)); // Set direction CW if we have a negative speed if (speed < 0) { goal |= (0x1 << 10); } data[0] = goal & 0xff; // bottom 8 bits data[1] = goal >> 8; // top 8 bits // write the packet, return the error code int rVal = write(ID, 0x20, 2, data); return(rVal); } int Servo::SetCWLimit (int ID, int degrees) { char data[2]; // 1023 / 300 * degrees short limit = (1023 * degrees) / 300; if (DEBUG) { pc.printf("SetCWLimit to 0x%x\n",limit); } data[0] = limit & 0xff; // bottom 8 bits data[1] = limit >> 8; // top 8 bits // write the packet, return the error code return (write(ID, REG_CW_LIMIT, 2, data)); } int Servo::SetCCWLimit (int ID, int degrees) { char data[2]; // 1023 / 300 * degrees short limit = (1023 * degrees) / 300; if (DEBUG) { pc.printf("SetCCWLimit to 0x%x\n",limit); } data[0] = limit & 0xff; // bottom 8 bits data[1] = limit >> 8; // top 8 bits // write the packet, return the error code return (write(ID, REG_CCW_LIMIT, 2, data)); } int Servo::SetTorqueEnable (int ID, int enable) { char data[1]; data[0]=enable; if (DEBUG) { pc.printf("SetTorqueEnable to %d\n",enable); } // write the packet, return the error code return (write(ID, REG_TORQUE_ENABLE, 1, data)); } int Servo::SetLowVoltageLimit (int ID, char lv_limit) { char data[1]; data[0] = lv_limit; if (DEBUG) { pc.printf("Setting low voltage limit to %2.1f\n",(float) lv_limit / 10.0); } return (write(ID, REG_LOW_VOLTAGE_LIMIT, 1, data)); } int Servo::LockEeprom (int ID) { char data[1]; data[0]=1; if (DEBUG) { pc.printf("Locking EEPROM\n"); } return (write(ID, REG_EEPROM_LOCK, 1, data)); } int Servo::SetHighVoltageLimit (int ID, char hv_limit) { char data[1]; data[0] = hv_limit; if (DEBUG) { pc.printf("Setting high voltage limit to %2.1f\n",(float) hv_limit / 10.0); } return (write(ID, REG_HIGH_VOLTAGE_LIMIT, 1, data)); } int Servo::SetDelayTime (int ID, char delay) { char data[1]; data[0] = delay; if (DEBUG) { pc.printf("Setting delay time to %dus\n",delay+delay); } return (write(ID, REG_RETURN_DELAY, 1, data)); } int Servo::SetTemperatureLimit (int ID, char temp_limit) { char data[1]; data[0] = temp_limit; if (DEBUG) { pc.printf("Setting temperature limit to %dC\n",temp_limit); } return (write(ID, REG_HIGHTEMP_LIMIT, 1, data)); } int Servo::SetID (int CurrentID, int NewID) { char data[1]; data[0] = NewID; if (DEBUG) { pc.printf("Setting ID from 0x%x to 0x%x\n",CurrentID,NewID); } return (write(CurrentID, REG_ID, 1, data)); } int Servo::SetBaud (int ID, int baud) { char data[1]; data[0] = baud; if (DEBUG) { pc.printf("Setting baud to %d\n",(2000000 / baud)); } return (write(ID, REG_BAUDRATE, 1, data)); } // return 1 is the servo is still in flight int Servo::isMoving(int ID) { char data[1]; read(ID,REG_MOVING,1,data); return(data[0]); } void Servo::trigger(void) { char TxBuf[16]; char sum = 0; if (TRIGGER_DEBUG) { pc.printf("\nTriggered\n"); } // Build the TxPacket first in RAM, then we'll send in one go if (TRIGGER_DEBUG) { pc.printf("\nTrigger Packet\n Header : 0xFF, 0xFF\n"); } TxBuf[0] = 0xFF; TxBuf[1] = 0xFF; // ID - Broadcast TxBuf[2] = 0xFE; sum += TxBuf[2]; if (TRIGGER_DEBUG) { pc.printf(" ID : %d\n",TxBuf[2]); } // Length TxBuf[3] = 0x02; sum += TxBuf[3]; if (TRIGGER_DEBUG) { pc.printf(" Length %d\n",TxBuf[3]); } // Instruction - ACTION TxBuf[4] = 0x04; sum += TxBuf[4]; if (TRIGGER_DEBUG) { pc.printf(" Instruction 0x%X\n",TxBuf[5]); } // Checksum TxBuf[5] = 0xFF - sum; if (TRIGGER_DEBUG) { pc.printf(" Checksum 0x%X\n",TxBuf[5]); } // Transmit the packet in one burst with no pausing for (int i = 0; i < 6 ; i++) { _servo.putc(TxBuf[i]); } // This is a broadcast packet, so there will be no reply return; } int Servo::GetModelNumber(int ID) { if (DEBUG) { pc.printf("\nGetModelNumber(%d)",ID); } char data[2]; int ErrorCode = read(ID, REG_MODEL_NUMBER, 2, data); int modelnumber = data[0] + (data[1] << 8); return (modelnumber); } float Servo::GetPositionDegrees(int ID) { short position = GetPosition(ID); //float angle = (position * 300)/1024; FOR AX-12 float angle = (position - 2048) * 0.087890625; return (angle); } short Servo::GetPosition(int ID) { if (DEBUG) { pc.printf("\nGetPosition(%d)",ID); } char data[2]; int ErrorCode = read(ID, REG_POSITION, 2, data); if (DEBUG) { pc.printf("[EC=%d]",ErrorCode); } short position = data[0] + (data[1] << 8); // Apply inversions if set switch(ID){ case(BASE):if(INVERT_BASE == 1)position=4095-position;break; case(SHOULDER):if(INVERT_SHOULDER == 1)position=4095-position;break; case(ELBOW):if(INVERT_ELBOW == 1)position=4095-position;break; case(WRIST):if(INVERT_BASE == 1)position=4095-position;break; } return (position); } float Servo::GetTemp (int ID) { if (DEBUG) { pc.printf("\nGetTemp(%d)",ID); } char data[1]; int ErrorCode = read(ID, REG_TEMP, 1, data); float temp = data[0]; return(temp); } short Servo::GetTemperature(int ID) { if (DEBUG) { pc.printf("\nGetTemperature(%d)",ID); } char data[1]; int ErrorCode = read(ID, REG_TEMP, 1, data); return (short) (data[0]); } float Servo::GetVolts (int ID) { if (DEBUG) { pc.printf("\nGetVolts(%d)",ID); } char data[1]; int ErrorCode = read(ID, REG_VOLTS, 1, data); float volts = data[0]/10.0; return(volts); } short Servo::GetVoltage(int ID) { if (DEBUG) { pc.printf("\nGetVoltage(%d)",ID); } char data[1]; int ErrorCode = read(ID, REG_VOLTS, 1, data); return (short) (data[0]); } short Servo::GetLoad(int ID) { if (DEBUG) { pc.printf("\nGetLoad(%d)",ID); } char data[2]; int ErrorCode = read(ID, REG_LOAD, 2, data); return (short) (data[0] + (data[1]<<8)); } short Servo::GetSpeed(int ID) { if (DEBUG) { pc.printf("\nGetSpeed(%d)",ID); } char data[2]; int ErrorCode = read(ID, REG_SPEED, 2, data); return (short) (data[0] + (data[1]<<8)); } int Servo::read(int ID, int start, int bytes, char* data) { char PacketLength = 0x4; char TxBuf[16]; char sum = 0; char Status[16]; Status[4] = 0xFE; // return code if (READ_DEBUG) { pc.printf("\nread(%d,0x%x,%d,data)\n",ID,start,bytes); } // Build the TxPacket first in RAM, then we'll send in one go if (READ_DEBUG) { pc.printf("\nInstruction Packet\n Header : 0xFF, 0xFF\n"); } TxBuf[0] = 0xff; TxBuf[1] = 0xff; // ID TxBuf[2] = ID; sum += TxBuf[2]; if (READ_DEBUG) { pc.printf(" ID : %d\n",TxBuf[2]); } // Packet Length TxBuf[3] = PacketLength; // Length = 4 ; 2 + 1 (start) = 1 (bytes) sum += TxBuf[3]; // Accululate the packet sum if (READ_DEBUG) { pc.printf(" Length : 0x%x\n",TxBuf[3]); } // Instruction - Read TxBuf[4] = 0x2; sum += TxBuf[4]; if (READ_DEBUG) { pc.printf(" Instruction : 0x%x\n",TxBuf[4]); } // Start Address TxBuf[5] = start; sum += TxBuf[5]; if (READ_DEBUG) { pc.printf(" Start Address : 0x%x\n",TxBuf[5]); } // Bytes to read TxBuf[6] = bytes; sum += TxBuf[6]; if (READ_DEBUG) { pc.printf(" No bytes : 0x%x\n",TxBuf[6]); } // Checksum TxBuf[7] = 0xFF - sum; if (READ_DEBUG) { pc.printf(" Checksum : 0x%x\n",TxBuf[7]); } // Transmit the packet in one burst with no pausing for (int i = 0; i<8 ; i++) { _servo.putc(TxBuf[i]); } // Wait for data to transmit wait_us(60); //was 60 // Skip if the read was to the broadcast address if (ID != 0xFE) { int timedout = 0; int timeout_count = 0; while(!_servo.readable()) { timeout_count++; if(timeout_count % 10000 == 0) { timedout=1; break; } } if(timedout==1) { read_timeout_counter++; if(DEBUG)pc.printf(" Read timed out [%d of %d]\n",read_timeout_counter,READ_TIMEOUT_LIMIT); if(read_timeout_counter == READ_TIMEOUT_LIMIT){ display.clear_display(); display.set_position(0,0); display.write_string("SERVO ERROR"); read_timeout_counter = 0; return 255; } return read(ID,start,bytes,data); } else { read_timeout_counter = 0; // Receive the Status packet 6+ number of bytes read for (int i=0; i<(6+bytes) ; i++) { Status[i] = _servo.getc(); } // Copy the data from Status into data for return for (int i=0; i < Status[3]-2 ; i++) { data[i] = Status[5+i]; } if (READ_DEBUG) { pc.printf("\nStatus Packet\n"); pc.printf(" Header : 0x%x\n",Status[0]); pc.printf(" Header : 0x%x\n",Status[1]); pc.printf(" ID : 0x%x\n",Status[2]); pc.printf(" Length : 0x%x\n",Status[3]); pc.printf(" Error Code : 0x%x\n",Status[4]); for (int i=0; i < Status[3]-2 ; i++) { pc.printf(" Data : 0x%x\n",Status[5+i]); } pc.printf(" Checksum : 0x%x\n",Status[5+(Status[3]-2)]); } } // if (ID!=0xFE) wait_us(5); } return(Status[4]); } int Servo:: write(int ID, int start, int bytes, char* data, int flag) { // 0xff, 0xff, ID, Length, Intruction(write), Address, Param(s), Checksum char TxBuf[16]; char sum = 0; char Status[6]; if (WRITE_DEBUG) { pc.printf("\nwrite(%d,0x%x,%d,data,%d)\n",ID,start,bytes,flag); } // Build the TxPacket first in RAM, then we'll send in one go if (WRITE_DEBUG) { pc.printf("\nInstruction Packet\n Header : 0xFF, 0xFF\n"); } TxBuf[0] = 0xff; TxBuf[1] = 0xff; // ID TxBuf[2] = ID; sum += TxBuf[2]; if (WRITE_DEBUG) { pc.printf(" ID : %d\n",TxBuf[2]); } // packet Length TxBuf[3] = 3+bytes; sum += TxBuf[3]; if (WRITE_DEBUG) { pc.printf(" Length : %d\n",TxBuf[3]); } // Instruction if (flag == 1) { TxBuf[4]=0x04; sum += TxBuf[4]; } else { TxBuf[4]=0x03; sum += TxBuf[4]; } if (WRITE_DEBUG) { pc.printf(" Instruction : 0x%x\n",TxBuf[4]); } // Start Address TxBuf[5] = start; sum += TxBuf[5]; if (WRITE_DEBUG) { pc.printf(" Start : 0x%x\n",TxBuf[5]); } // data for (char i=0; i<bytes ; i++) { TxBuf[6+i] = data[i]; sum += TxBuf[6+i]; if (WRITE_DEBUG) { pc.printf(" Data : 0x%x\n",TxBuf[6+i]); } } // checksum TxBuf[6+bytes] = 0xFF - sum; if (WRITE_DEBUG) { pc.printf(" Checksum : 0x%x\n",TxBuf[6+bytes]); } // Transmit the packet in one burst with no pausing for (int i = 0; i < (7 + bytes) ; i++) { _servo.putc(TxBuf[i]); } // Wait for data to transmit wait_us(60); // make sure we have a valid return Status[4]=0x00; // we'll only get a reply if it was not broadcast if (ID!=0xFE) { int timedout = 0; int timeout_count = 0; while(!_servo.readable()) { timeout_count++; if(timeout_count % 10000 == 0) { timedout=1; break; } } if(timedout==1) { read_timeout_counter++; if(DEBUG)pc.printf(" Write ack. timed out [%d of %d]\n",read_timeout_counter,READ_TIMEOUT_LIMIT); if(read_timeout_counter == READ_TIMEOUT_LIMIT){ display.clear_display(); display.set_position(0,0); display.write_string("SERVO ERROR"); read_timeout_counter = 0; return 255; } return write(ID,start,bytes,data,flag); } else { read_timeout_counter = 0; // response is always 6 bytes // 0xFF, 0xFF, ID, Length Error, Param(s) Checksum for (int i=0; i < 6 ; i++) { Status[i] = _servo.getc(); } } // Build the TxPacket first in RAM, then we'll send in one go if (WRITE_DEBUG) { pc.printf("\nStatus Packet\n Header : 0x%X, 0x%X\n",Status[0],Status[1]); pc.printf(" ID : %d\n",Status[2]); pc.printf(" Length : %d\n",Status[3]); pc.printf(" Error : 0x%x\n",Status[4]); pc.printf(" Checksum : 0x%x\n",Status[5]); } } return(Status[4]); // return error code } //Set the baud rate for serial connection to something other than default(1000000) void Servo::SetInitBaud(int baud, int delaytime) { pc.printf("Setting serial baud rate to %d\n",baud); _servo.baud(baud); delay = delaytime; } /* Additional copyright notice */ /* * Copyright 2017 University of York * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and limitations under the License. * */ /* * Copyright (c) 2010, Chris Styles (http://mbed.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * Copyright (c) 2010, Chris Styles (http://mbed.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */