ESE350 project, Spring 2016, University of Pennsylvania

Dependencies:   Adafruit9-DOf Receiver mbed-rtos mbed

quadcopter.cpp

Committer:
ivo_david_michelle
Date:
2016-04-14
Revision:
27:11116aa69f32
Parent:
26:7f50323c0c0d
Child:
28:61f7356325c3

File content as of revision 27:11116aa69f32:

#include "quadcopter.h"
#include "sensor.h"
#include "receiver.h"
#include <string>

#ifndef M_PI
#define M_PI           3.14159265358979323846
#endif

//#include "mbed.h"

// constructor
Quadcopter::Quadcopter(Serial *pcPntr, MRF24J40 *mrfPntr)
{


    pc_= pcPntr;  // enable printing
    //initSensors(accel_, mag_, gyro_, offsetAngRate_);  // IMUm_= 1;
    g_= 9.81;
    l_= 0.25;
    gamma_= 1;

    zeroVelPwm=0.1;
    maxPwm=0.15;


    // proportional attitude control gains
    // TODO change gains so that joystick deflection never produces pwm duty cycle >10%.


    // control gains set s.t. 100% joystick results in 15% (actually: (maxPwm-zeroVelPwm+0.1)) duty cycle. 
    kp_f_ =(maxPwm-zeroVelPwm)*4/0.5; 
    kp_phi_ =  (maxPwm-zeroVelPwm)*l_/0.5*4/M_PI;
    kp_theta_ = (maxPwm-zeroVelPwm)*l_/0.5*4/M_PI;;
    kp_psi_ = 0;

    // derivative attitude control gains
    kd_phi_ = 0;
    kd_theta_ = 0;
    kd_psi_ = 0.1;

    // desired values (will come from joystick)
    F_des_ = 0; // desired thrust force (excluding weight compensation)



    dof_ = Adafruit_9DOF();
    accel_ = Adafruit_LSM303_Accel_Unified(30301);
    mag_ = Adafruit_LSM303_Mag_Unified(30302);
    gyro_ = Adafruit_L3GD20_Unified(20);
    //motor1_(p21);

    // initSensors(accel_, mag_, gyro_, offsetAngRate_);  // IMU

    // prepare for communication with remote control
    rcTimer_.start();
    mrf_ = mrfPntr;  // RF tranceiver to link with handheld.
    rcLength_ = 250;
    mrf_->SetChannel(3);  //Set the Channel. 0 is default, 15 is max

    initial_offsets_ = (offset*) malloc(sizeof(offset));
    initSensors(*this);  // IMU
}


void Quadcopter::readSensorValues()
{
    accel_.getEvent(&accel_event_);
    if (dof_.accelGetOrientation(&accel_event_, &orientation_)) {
    }
    /* Calculate the heading using the magnetometer */
    mag_.getEvent(&mag_event_);
    if (dof_.magGetOrientation(SENSOR_AXIS_Z, &mag_event_, &orientation_)) {
    }

    gyro_.getEvent(&gyro_event_);

    gyro_event_.gyro.x   -= initial_offsets_->gyro_x;
    gyro_event_.gyro.y   -= initial_offsets_->gyro_y;
    gyro_event_.gyro.z   -= initial_offsets_->gyro_z;
    orientation_.roll    -= initial_offsets_->roll;
    orientation_.pitch   -= initial_offsets_->pitch;
    orientation_.heading -= initial_offsets_->heading;

    // measured values (will come from IMU/parameter class/Input to function later)
    // angles
    state_.phi = orientation_.roll;
    state_.theta =orientation_.pitch;
    state_.psi =orientation_.heading;
    // angular velocities in body coordinate system
    state_.p = gyro_event_.gyro.x;
    state_.q = gyro_event_.gyro.y;
    state_.r = gyro_event_.gyro.z;

    // TODO print values to check what they are
    // TODO convert to Radians (*pi/180)

    // pc_->printf("Roll: %f\tPitch: %f\tYaw: %f\tVel x: %f\tVel y: %f\tVel z: %f \r\n", state_.phi, state_.theta, state_.psi, state_.p, state_.q, state_.r);
    state_.phi = orientation_.roll * M_PI / 180;
    state_.theta = orientation_.pitch * M_PI / 180;
    state_.psi = orientation_.heading * M_PI / 180;
    //pc_->printf("Roll: %f\tPitch: %f\tYaw: %f\tVel x: %f\tVel y: %f\tVel z: %f\r\n", state_.phi, state_.theta, state_.psi, state_.p, state_.q, state_.r);
}

// Date member function
void Quadcopter::setState(state *source, state *goal)
{
    goal->phi = source->phi;
    goal->theta = source->theta;
    goal->psi = source->psi;
    goal->p = source->p;
    goal->q = source->q;
    goal->r = source->r;
}

void Quadcopter::controller()
{
    // compute desired angles (in the case we decide not to set
    // the angles, but for instance the velocity with the Joystick

    // PD controller
    controlInput_.f = kp_f_*F_des_;//m_*g_ + F_des_;
    controlInput_.mx = kp_phi_*(desiredState_.phi-state_.phi)+kd_phi_*(desiredState_.p-state_.p);
    controlInput_.my = kp_theta_*(desiredState_.theta-state_.theta)+kd_theta_*(desiredState_.q-state_.q);
    controlInput_.mz = kd_psi_*desiredState_.r; // feedforward desired yaw rate.  // kp_psi_*(desiredState_.psi-state_.psi)+kd_psi_*(desiredState_.r-state_.r);
    //print("Calculated Control");

    //pc_->printf("F: %f M_x: %f M_y: %f M_z: %f\n\r",  controlInput_.f, controlInput_.mz, controlInput_.my, controlInput_.mz);
    //        pc_->printf("F: %f\n\r",  F);

    // set pwm values
    // make code faster by precomputing all the components that are used multiple times and hardcode 0.25/gamma...
    motorPwm_.m1=zeroVelPwm + 0.25*controlInput_.f-0.5/l_*controlInput_.my-0.25/gamma_*controlInput_.mz;
    motorPwm_.m2=zeroVelPwm + 0.25*controlInput_.f-0.5/l_*controlInput_.mx+0.25/gamma_*controlInput_.mz;
    motorPwm_.m3=zeroVelPwm + 0.25*controlInput_.f+0.5/l_*controlInput_.my-0.25/gamma_*controlInput_.mz;
    motorPwm_.m4=zeroVelPwm + 0.25*controlInput_.f+0.5/l_*controlInput_.mx+0.25/gamma_*controlInput_.mz;

    motorPwm_.m1 = min(maxPwm, motorPwm_.m1);
    motorPwm_.m2 = min(maxPwm, motorPwm_.m2);
    motorPwm_.m3 = min(maxPwm, motorPwm_.m3);
    motorPwm_.m4 = min(maxPwm, motorPwm_.m4);


}

motors Quadcopter::getPwm()
{
    return motorPwm_;
}

state Quadcopter::getState()
{
    return state_;
}

Adafruit_LSM303_Accel_Unified Quadcopter::getAccel()
{
    return accel_;
}

Adafruit_LSM303_Mag_Unified Quadcopter::getMag()
{
    return mag_;
}

Adafruit_L3GD20_Unified Quadcopter::getGyro()
{
    return gyro_;
}

offset* Quadcopter::getOffset()
{
    return initial_offsets_;
}

Adafruit_9DOF Quadcopter::getIMU()
{
    return dof_;
}

double Quadcopter::getForce()
{
    return F_des_;
}


void Quadcopter::readRc()
{
    uint8_t zero = 0;
    uint8_t *rssi = &zero;

    uint8_t receive = 0;

    char rxBuffer[rcLength_];

    float thrust;
    float yaw;
    float pitch;
    float roll;
    long long id;

    receive = rf_receive_rssi(*mrf_, rxBuffer, rssi, rcLength_ + 1);
    if (receive > 0) {
        sscanf(rxBuffer, "%lld,%f,%f,%f,%f", &id, &thrust, &yaw, &pitch, &roll);
    } else {
        pc_->printf("Receive failure\r\n");
    }

    // convert to radians, range is = +-40° or +-0.698132 radians
    desiredState_.phi = ((roll - 0.5) * 80) * M_PI / 180;
    desiredState_.theta = ((pitch - 0.5) * 80) * M_PI / 180;
    desiredState_.r = yaw-0.5; // number between 0 and 1 //((yaw - 0.5) * 80) * M_PI / 180;
    F_des_ = thrust-0.5; // number between 0 and 1  //((thrust - 0.5) * 80) * M_PI / 180;

    // print id with thrust, yaw, pitch, and roll
    // pc_->printf("%lld: thrust: %f, yaw: %f, pitch: %f, roll: %f\r\n", id, F_des_, desiredState_.psi, desiredState_.theta, desiredState_.phi);
}