Quirin Fitzi
/
PM2_Example_PES_board_2
Workshop 2
main.cpp@29:d6f1ccf42a31, 2022-03-18 (annotated)
- Committer:
- pmic
- Date:
- Fri Mar 18 09:44:52 2022 +0100
- Revision:
- 29:d6f1ccf42a31
- Parent:
- 28:3760373c234d
- Child:
- 30:1e8295770bc1
Updated usage of mechanical_button.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
pmic | 1:93d997d6b232 | 1 | #include "mbed.h" |
pmic | 17:c19b471f05cb | 2 | #include "PM2_Libary.h" |
pmic | 6:e1fa1a2d7483 | 3 | |
pmic | 24:86f1a63e35a0 | 4 | // logical variable main task |
pmic | 24:86f1a63e35a0 | 5 | bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task |
pmic | 17:c19b471f05cb | 6 | |
pmic | 24:86f1a63e35a0 | 7 | // user button on nucleo board |
pmic | 24:86f1a63e35a0 | 8 | Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) |
pmic | 24:86f1a63e35a0 | 9 | InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) |
pmic | 24:86f1a63e35a0 | 10 | void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below |
pmic | 24:86f1a63e35a0 | 11 | void user_button_released_fcn(); |
pmic | 6:e1fa1a2d7483 | 12 | |
pmic | 24:86f1a63e35a0 | 13 | // while loop gets executed every main_task_period_ms milliseconds |
pmic | 24:86f1a63e35a0 | 14 | int main_task_period_ms = 50; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second |
pmic | 24:86f1a63e35a0 | 15 | Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms |
pmic | 6:e1fa1a2d7483 | 16 | |
pmic | 24:86f1a63e35a0 | 17 | // led on nucleo board |
pmic | 24:86f1a63e35a0 | 18 | DigitalOut user_led(LED1); // create DigitalOut object to command user led |
pmic | 17:c19b471f05cb | 19 | |
pmic | 24:86f1a63e35a0 | 20 | // additional Led |
pmic | 24:86f1a63e35a0 | 21 | DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm) |
pmic | 17:c19b471f05cb | 22 | |
pmic | 24:86f1a63e35a0 | 23 | // mechanical button |
pmic | 24:86f1a63e35a0 | 24 | DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below |
pmic | 24:86f1a63e35a0 | 25 | |
pmic | 24:86f1a63e35a0 | 26 | // Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor |
pmic | 24:86f1a63e35a0 | 27 | float ir_distance_mV = 0.0f; // define variable to store measurement |
pmic | 24:86f1a63e35a0 | 28 | AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 |
pmic | 6:e1fa1a2d7483 | 29 | |
pmic | 24:86f1a63e35a0 | 30 | // 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB |
pmic | 24:86f1a63e35a0 | 31 | DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors |
pmic | 17:c19b471f05cb | 32 | |
pmic | 24:86f1a63e35a0 | 33 | float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors |
pmic | 24:86f1a63e35a0 | 34 | FastPWM pwm_M1(PB_13); // motor M1 is used open loop |
pmic | 24:86f1a63e35a0 | 35 | FastPWM pwm_M2(PA_9); // motor M2 is speed controlled |
pmic | 24:86f1a63e35a0 | 36 | FastPWM pwm_M3(PA_10); // motor M3 is position controlled (angle controlled) |
pmic | 17:c19b471f05cb | 37 | |
pmic | 24:86f1a63e35a0 | 38 | EncoderCounter encoder_M1(PA_6, PC_7); // create encoder read objects |
pmic | 17:c19b471f05cb | 39 | EncoderCounter encoder_M2(PB_6, PB_7); |
pmic | 17:c19b471f05cb | 40 | EncoderCounter encoder_M3(PA_0, PA_1); |
pmic | 17:c19b471f05cb | 41 | |
pmic | 24:86f1a63e35a0 | 42 | // create SpeedController and PositionController controller objects, default parametrization is for 78.125:1 gear box |
pmic | 24:86f1a63e35a0 | 43 | float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack |
pmic | 24:86f1a63e35a0 | 44 | float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio |
pmic | 25:ea1d6e27c895 | 45 | float kn = 180.0f / 12.0f; // define motor constant in rpm per V |
pmic | 24:86f1a63e35a0 | 46 | // float k_gear = 25.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 25:1 |
pmic | 24:86f1a63e35a0 | 47 | // float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 |
pmic | 6:e1fa1a2d7483 | 48 | |
pmic | 24:86f1a63e35a0 | 49 | SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters |
pmic | 17:c19b471f05cb | 50 | // SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 25:1 gear |
pmic | 17:c19b471f05cb | 51 | |
pmic | 24:86f1a63e35a0 | 52 | float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage |
pmic | 17:c19b471f05cb | 53 | PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters |
pmic | 17:c19b471f05cb | 54 | // PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 25:1 gear, we need a different speed controller gain here |
pmic | 17:c19b471f05cb | 55 | |
pmic | 17:c19b471f05cb | 56 | // Futaba Servo S3001 20mm 3kg Analog |
pmic | 24:86f1a63e35a0 | 57 | Servo servo_S1(PB_2); // create servo objects |
pmic | 10:c5d85e35758c | 58 | Servo servo_S2(PC_8); |
pmic | 24:86f1a63e35a0 | 59 | int servo_pos_S1_mus = 0; // servo S1 position, the desired position gets commanded as a time |
pmic | 24:86f1a63e35a0 | 60 | int servo_pos_S2_mus = 0; // servo S2 position |
pmic | 24:86f1a63e35a0 | 61 | int servo_period_mus = 20000; // define servo period time in mus |
pmic | 17:c19b471f05cb | 62 | |
pmic | 24:86f1a63e35a0 | 63 | int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move |
pmic | 24:86f1a63e35a0 | 64 | int loops_per_second = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second |
pmic | 1:93d997d6b232 | 65 | |
pmic | 11:af0f165f8761 | 66 | // Groove Ultrasonic Ranger V2.0 |
pmic | 24:86f1a63e35a0 | 67 | float us_distance_cm = 0.0f; // define variable to store measurement |
pmic | 25:ea1d6e27c895 | 68 | RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); |
pmic | 24:86f1a63e35a0 | 69 | // RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 1/main_task_period_ms = 20 Hz parametrization |
pmic | 17:c19b471f05cb | 70 | |
pmic | 24:86f1a63e35a0 | 71 | // LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) |
pmic | 25:ea1d6e27c895 | 72 | // LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" |
pmic | 20:7e7325edcf5c | 73 | |
pmic | 1:93d997d6b232 | 74 | int main() |
pmic | 23:26b3a25fc637 | 75 | { |
pmic | 24:86f1a63e35a0 | 76 | // attach button fall and rise functions to user button object |
pmic | 24:86f1a63e35a0 | 77 | user_button.fall(&user_button_pressed_fcn); |
pmic | 24:86f1a63e35a0 | 78 | user_button.rise(&user_button_released_fcn); |
pmic | 17:c19b471f05cb | 79 | |
pmic | 29:d6f1ccf42a31 | 80 | // start timer |
pmic | 24:86f1a63e35a0 | 81 | main_task_timer.start(); |
pmic | 6:e1fa1a2d7483 | 82 | |
pmic | 24:86f1a63e35a0 | 83 | // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential |
pmic | 24:86f1a63e35a0 | 84 | mechanical_button.mode(PullUp); |
pmic | 24:86f1a63e35a0 | 85 | |
pmic | 24:86f1a63e35a0 | 86 | // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled |
pmic | 10:c5d85e35758c | 87 | enable_motors = 1; |
pmic | 17:c19b471f05cb | 88 | |
pmic | 24:86f1a63e35a0 | 89 | // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V |
pmic | 25:ea1d6e27c895 | 90 | pwm_M1.period(pwm_period_s); |
pmic | 17:c19b471f05cb | 91 | pwm_M1.write(0.5); |
pmic | 9:f10b974d01e0 | 92 | |
pmic | 24:86f1a63e35a0 | 93 | // enable servos, you can also disable them at any point in your program if you don't want your servos to become warm |
pmic | 24:86f1a63e35a0 | 94 | servo_S1.Enable(servo_pos_S1_mus, servo_period_mus); |
pmic | 24:86f1a63e35a0 | 95 | servo_S2.Enable(servo_pos_S2_mus, servo_period_mus); |
pmic | 6:e1fa1a2d7483 | 96 | |
pmic | 24:86f1a63e35a0 | 97 | while (true) { // this loop will run forever |
pmic | 6:e1fa1a2d7483 | 98 | |
pmic | 24:86f1a63e35a0 | 99 | main_task_timer.reset(); |
pmic | 6:e1fa1a2d7483 | 100 | |
pmic | 24:86f1a63e35a0 | 101 | if (do_execute_main_task) { |
pmic | 17:c19b471f05cb | 102 | |
pmic | 24:86f1a63e35a0 | 103 | // read analog input |
pmic | 24:86f1a63e35a0 | 104 | ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; |
pmic | 6:e1fa1a2d7483 | 105 | |
pmic | 24:86f1a63e35a0 | 106 | // command dc motors if mechanical button is pressed |
pmic | 29:d6f1ccf42a31 | 107 | if (mechanical_button.read()) { |
pmic | 24:86f1a63e35a0 | 108 | pwm_M1.write(0.75); // write output voltage to motor M1 |
pmic | 24:86f1a63e35a0 | 109 | speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2 |
pmic | 24:86f1a63e35a0 | 110 | positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3 |
pmic | 24:86f1a63e35a0 | 111 | } else { |
pmic | 24:86f1a63e35a0 | 112 | pwm_M1.write(0.5); |
pmic | 24:86f1a63e35a0 | 113 | speedController_M2.setDesiredSpeedRPS(0.0f); |
pmic | 24:86f1a63e35a0 | 114 | positionController_M3.setDesiredRotation(0.0f, max_speed_rps); |
pmic | 24:86f1a63e35a0 | 115 | } |
pmic | 6:e1fa1a2d7483 | 116 | |
pmic | 24:86f1a63e35a0 | 117 | // command servo position, this needs to be calibrated |
pmic | 24:86f1a63e35a0 | 118 | servo_S1.SetPosition(servo_pos_S1_mus); |
pmic | 24:86f1a63e35a0 | 119 | servo_S2.SetPosition(servo_pos_S2_mus); |
pmic | 24:86f1a63e35a0 | 120 | if (servo_pos_S1_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { |
pmic | 24:86f1a63e35a0 | 121 | servo_pos_S1_mus += 100; |
pmic | 8:9bb806a7f585 | 122 | } |
pmic | 24:86f1a63e35a0 | 123 | if (servo_pos_S2_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { |
pmic | 24:86f1a63e35a0 | 124 | servo_pos_S2_mus += 100; |
pmic | 8:9bb806a7f585 | 125 | } |
pmic | 10:c5d85e35758c | 126 | servo_counter++; |
pmic | 6:e1fa1a2d7483 | 127 | |
pmic | 24:86f1a63e35a0 | 128 | // read ultra sonic distance sensor |
pmic | 24:86f1a63e35a0 | 129 | us_distance_cm = us_range_finder.read_cm(); |
pmic | 11:af0f165f8761 | 130 | |
pmic | 24:86f1a63e35a0 | 131 | // visual feedback that the main task is executed |
pmic | 24:86f1a63e35a0 | 132 | extra_led = 1; |
pmic | 9:f10b974d01e0 | 133 | |
pmic | 1:93d997d6b232 | 134 | } else { |
pmic | 6:e1fa1a2d7483 | 135 | |
pmic | 24:86f1a63e35a0 | 136 | ir_distance_mV = 0.0f; |
pmic | 1:93d997d6b232 | 137 | |
pmic | 17:c19b471f05cb | 138 | pwm_M1.write(0.5); |
pmic | 17:c19b471f05cb | 139 | speedController_M2.setDesiredSpeedRPS(0.0f); |
pmic | 17:c19b471f05cb | 140 | positionController_M3.setDesiredRotation(0.0f, max_speed_rps); |
pmic | 6:e1fa1a2d7483 | 141 | |
pmic | 24:86f1a63e35a0 | 142 | servo_pos_S1_mus = 0; |
pmic | 24:86f1a63e35a0 | 143 | servo_pos_S2_mus = 0; |
pmic | 24:86f1a63e35a0 | 144 | servo_S1.SetPosition(servo_pos_S1_mus); |
pmic | 24:86f1a63e35a0 | 145 | servo_S2.SetPosition(servo_pos_S2_mus); |
pmic | 17:c19b471f05cb | 146 | |
pmic | 24:86f1a63e35a0 | 147 | us_distance_cm = 0.0f; |
pmic | 6:e1fa1a2d7483 | 148 | |
pmic | 24:86f1a63e35a0 | 149 | extra_led = 0; |
pmic | 1:93d997d6b232 | 150 | } |
pmic | 6:e1fa1a2d7483 | 151 | |
pmic | 24:86f1a63e35a0 | 152 | user_led = !user_led; |
pmic | 24:86f1a63e35a0 | 153 | |
pmic | 24:86f1a63e35a0 | 154 | // do only output via serial what's really necessary (this makes your code slow) |
pmic | 24:86f1a63e35a0 | 155 | printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 position (ms): %3d, Servo S2 position (ms): %3d, US sensor (cm): %3.3f\r\n", |
pmic | 24:86f1a63e35a0 | 156 | ir_distance_mV, |
pmic | 17:c19b471f05cb | 157 | encoder_M1.read(), |
pmic | 17:c19b471f05cb | 158 | speedController_M2.getSpeedRPS(), |
pmic | 17:c19b471f05cb | 159 | positionController_M3.getRotation(), |
pmic | 24:86f1a63e35a0 | 160 | servo_pos_S1_mus, |
pmic | 24:86f1a63e35a0 | 161 | servo_pos_S2_mus, |
pmic | 24:86f1a63e35a0 | 162 | us_distance_cm); |
pmic | 6:e1fa1a2d7483 | 163 | |
pmic | 24:86f1a63e35a0 | 164 | // read out the imu, the actual frames of the sensor reading needs to be figured out |
pmic | 24:86f1a63e35a0 | 165 | // imu.updateGyro(); |
pmic | 24:86f1a63e35a0 | 166 | // imu.updateAcc(); |
pmic | 24:86f1a63e35a0 | 167 | // imu.updateMag(); |
pmic | 24:86f1a63e35a0 | 168 | // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), |
pmic | 24:86f1a63e35a0 | 169 | // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); |
pmic | 17:c19b471f05cb | 170 | |
pmic | 24:86f1a63e35a0 | 171 | // read timer and make the main thread sleep for the remaining time span (non blocking) |
pmic | 24:86f1a63e35a0 | 172 | int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); |
pmic | 24:86f1a63e35a0 | 173 | thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); |
pmic | 1:93d997d6b232 | 174 | } |
pmic | 1:93d997d6b232 | 175 | } |
pmic | 6:e1fa1a2d7483 | 176 | |
pmic | 24:86f1a63e35a0 | 177 | void user_button_pressed_fcn() |
pmic | 25:ea1d6e27c895 | 178 | { |
pmic | 26:28693b369945 | 179 | user_button_timer.start(); |
pmic | 6:e1fa1a2d7483 | 180 | user_button_timer.reset(); |
pmic | 6:e1fa1a2d7483 | 181 | } |
pmic | 6:e1fa1a2d7483 | 182 | |
pmic | 24:86f1a63e35a0 | 183 | void user_button_released_fcn() |
pmic | 6:e1fa1a2d7483 | 184 | { |
pmic | 24:86f1a63e35a0 | 185 | // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time |
pmic | 24:86f1a63e35a0 | 186 | int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); |
pmic | 6:e1fa1a2d7483 | 187 | user_button_timer.stop(); |
pmic | 24:86f1a63e35a0 | 188 | if (user_button_elapsed_time_ms > 200) { |
pmic | 24:86f1a63e35a0 | 189 | do_execute_main_task = !do_execute_main_task; |
pmic | 8:9bb806a7f585 | 190 | } |
pmic | 6:e1fa1a2d7483 | 191 | } |