Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.

Dependents:   micropython-repl

This a port of MicroPython to the mbed Classic platform.

This provides an interpreter running on the board's USB serial connection.

Getting Started

Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:

  MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM
  Type "help()" for more information.
  >>>

Then you can start using micropython. For example:

  >>> from mbed import DigitalOut
  >>> from pins import LED1
  >>> led = DigitalOut(LED1)
  >>> led.write(1)

Requirements

You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.

Caveats

This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.

  • Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
  • Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
  • The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
  • Exceptions from the mbed classes are not yet handled.
  • Asynchronous processing (e.g. events on inputs) is not supported.

Credits

  • Damien P. George and other contributors who created micropython.
  • Colin Hogben, author of this port.

py/bc.c

Committer:
pythontech
Date:
2016-04-16
Revision:
0:5868e8752d44

File content as of revision 0:5868e8752d44:

/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2014 Damien P. George
 * Copyright (c) 2014 Paul Sokolovsky
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <string.h>
#include <assert.h>

#include "py/nlr.h"
#include "py/objfun.h"
#include "py/runtime0.h"
#include "py/bc0.h"
#include "py/bc.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif

mp_uint_t mp_decode_uint(const byte **ptr) {
    mp_uint_t unum = 0;
    byte val;
    const byte *p = *ptr;
    do {
        val = *p++;
        unum = (unum << 7) | (val & 0x7f);
    } while ((val & 0x80) != 0);
    *ptr = p;
    return unum;
}

STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, size_t expected, size_t given) {
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
    // generic message, used also for other argument issues
    (void)f;
    (void)expected;
    (void)given;
    mp_arg_error_terse_mismatch();
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
    (void)f;
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
        "function takes %d positional arguments but %d were given", expected, given));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
        "%q() takes %d positional arguments but %d were given",
        mp_obj_fun_get_name(MP_OBJ_FROM_PTR(f)), expected, given));
#endif
}

#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, size_t sz) {
    DEBUG_printf("%p: ", a);
    for (size_t i = 0; i < sz; i++) {
        DEBUG_printf("%p ", a[i]);
    }
    DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif

// On entry code_state should be allocated somewhere (stack/heap) and
// contain the following valid entries:
//    - code_state->ip should contain the offset in bytes from the start of
//      the bytecode chunk to just after n_state and n_exc_stack
//    - code_state->n_state should be set to the state size (locals plus stack)
void mp_setup_code_state(mp_code_state *code_state, mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // This function is pretty complicated.  It's main aim is to be efficient in speed and RAM
    // usage for the common case of positional only args.
    size_t n_state = code_state->n_state;

    // ip comes in as an offset into bytecode, so turn it into a true pointer
    code_state->ip = self->bytecode + (size_t)code_state->ip;

    // store pointer to constant table
    code_state->const_table = self->const_table;

    #if MICROPY_STACKLESS
    code_state->prev = NULL;
    #endif

    // get params
    size_t scope_flags = *code_state->ip++;
    size_t n_pos_args = *code_state->ip++;
    size_t n_kwonly_args = *code_state->ip++;
    size_t n_def_pos_args = *code_state->ip++;

    code_state->sp = &code_state->state[0] - 1;
    code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;

    // zero out the local stack to begin with
    memset(code_state->state, 0, n_state * sizeof(*code_state->state));

    const mp_obj_t *kwargs = args + n_args;

    // var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed)
    mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - n_pos_args - n_kwonly_args];

    // check positional arguments

    if (n_args > n_pos_args) {
        // given more than enough arguments
        if ((scope_flags & MP_SCOPE_FLAG_VARARGS) == 0) {
            fun_pos_args_mismatch(self, n_pos_args, n_args);
        }
        // put extra arguments in varargs tuple
        *var_pos_kw_args-- = mp_obj_new_tuple(n_args - n_pos_args, args + n_pos_args);
        n_args = n_pos_args;
    } else {
        if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
            DEBUG_printf("passing empty tuple as *args\n");
            *var_pos_kw_args-- = mp_const_empty_tuple;
        }
        // Apply processing and check below only if we don't have kwargs,
        // otherwise, kw handling code below has own extensive checks.
        if (n_kw == 0 && (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) == 0) {
            if (n_args >= (size_t)(n_pos_args - n_def_pos_args)) {
                // given enough arguments, but may need to use some default arguments
                for (size_t i = n_args; i < n_pos_args; i++) {
                    code_state->state[n_state - 1 - i] = self->extra_args[i - (n_pos_args - n_def_pos_args)];
                }
            } else {
                fun_pos_args_mismatch(self, n_pos_args - n_def_pos_args, n_args);
            }
        }
    }

    // copy positional args into state
    for (size_t i = 0; i < n_args; i++) {
        code_state->state[n_state - 1 - i] = args[i];
    }

    // check keyword arguments

    if (n_kw != 0 || (scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) {
        DEBUG_printf("Initial args: ");
        dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args);

        mp_obj_t dict = MP_OBJ_NULL;
        if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
            dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
            *var_pos_kw_args = dict;
        }

        // get pointer to arg_names array
        const mp_obj_t *arg_names = (const mp_obj_t*)code_state->const_table;

        for (size_t i = 0; i < n_kw; i++) {
            mp_obj_t wanted_arg_name = kwargs[2 * i];
            for (size_t j = 0; j < n_pos_args + n_kwonly_args; j++) {
                if (wanted_arg_name == arg_names[j]) {
                    if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) {
                        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                            "function got multiple values for argument '%q'", MP_OBJ_QSTR_VALUE(wanted_arg_name)));
                    }
                    code_state->state[n_state - 1 - j] = kwargs[2 * i + 1];
                    goto continue2;
                }
            }
            // Didn't find name match with positional args
            if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) == 0) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
            }
            mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
        }

        DEBUG_printf("Args with kws flattened: ");
        dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args);

        // fill in defaults for positional args
        mp_obj_t *d = &code_state->state[n_state - n_pos_args];
        mp_obj_t *s = &self->extra_args[n_def_pos_args - 1];
        for (size_t i = n_def_pos_args; i > 0; i--, d++, s--) {
            if (*d == MP_OBJ_NULL) {
                *d = *s;
            }
        }

        DEBUG_printf("Args after filling default positional: ");
        dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args);

        // Check that all mandatory positional args are specified
        while (d < &code_state->state[n_state]) {
            if (*d++ == MP_OBJ_NULL) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                    "function missing required positional argument #%d", &code_state->state[n_state] - d));
            }
        }

        // Check that all mandatory keyword args are specified
        // Fill in default kw args if we have them
        for (size_t i = 0; i < n_kwonly_args; i++) {
            if (code_state->state[n_state - 1 - n_pos_args - i] == MP_OBJ_NULL) {
                mp_map_elem_t *elem = NULL;
                if ((scope_flags & MP_SCOPE_FLAG_DEFKWARGS) != 0) {
                    elem = mp_map_lookup(&((mp_obj_dict_t*)MP_OBJ_TO_PTR(self->extra_args[n_def_pos_args]))->map, arg_names[n_pos_args + i], MP_MAP_LOOKUP);
                }
                if (elem != NULL) {
                    code_state->state[n_state - 1 - n_pos_args - i] = elem->value;
                } else {
                    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
                        "function missing required keyword argument '%q'", MP_OBJ_QSTR_VALUE(arg_names[n_pos_args + i])));
                }
            }
        }

    } else {
        // no keyword arguments given
        if (n_kwonly_args != 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
                "function missing keyword-only argument"));
        }
        if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
            *var_pos_kw_args = mp_obj_new_dict(0);
        }
    }

    // get the ip and skip argument names
    const byte *ip = code_state->ip;

    // store pointer to code_info and jump over it
    {
        code_state->code_info = ip;
        const byte *ip2 = ip;
        size_t code_info_size = mp_decode_uint(&ip2);
        ip += code_info_size;
    }

    // bytecode prelude: initialise closed over variables
    size_t local_num;
    while ((local_num = *ip++) != 255) {
        code_state->state[n_state - 1 - local_num] =
            mp_obj_new_cell(code_state->state[n_state - 1 - local_num]);
    }

    // now that we skipped over the prelude, set the ip for the VM
    code_state->ip = ip;

    DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", n_pos_args, n_kwonly_args);
    dump_args(code_state->state + n_state - n_pos_args - n_kwonly_args, n_pos_args + n_kwonly_args);
    dump_args(code_state->state, n_state);
}

#if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE

// The following table encodes the number of bytes that a specific opcode
// takes up.  There are 3 special opcodes that always have an extra byte:
//     MP_BC_MAKE_CLOSURE
//     MP_BC_MAKE_CLOSURE_DEFARGS
//     MP_BC_RAISE_VARARGS
// There are 4 special opcodes that have an extra byte only when
// MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE is enabled:
//     MP_BC_LOAD_NAME
//     MP_BC_LOAD_GLOBAL
//     MP_BC_LOAD_ATTR
//     MP_BC_STORE_ATTR
#define OC4(a, b, c, d) (a | (b << 2) | (c << 4) | (d << 6))
#define U (0) // undefined opcode
#define B (MP_OPCODE_BYTE) // single byte
#define Q (MP_OPCODE_QSTR) // single byte plus 2-byte qstr
#define V (MP_OPCODE_VAR_UINT) // single byte plus variable encoded unsigned int
#define O (MP_OPCODE_OFFSET) // single byte plus 2-byte bytecode offset
STATIC const byte opcode_format_table[64] = {
    OC4(U, U, U, U), // 0x00-0x03
    OC4(U, U, U, U), // 0x04-0x07
    OC4(U, U, U, U), // 0x08-0x0b
    OC4(U, U, U, U), // 0x0c-0x0f
    OC4(B, B, B, U), // 0x10-0x13
    OC4(V, U, Q, V), // 0x14-0x17
    OC4(B, U, V, V), // 0x18-0x1b
    OC4(Q, Q, Q, Q), // 0x1c-0x1f
    OC4(B, B, V, V), // 0x20-0x23
    OC4(Q, Q, Q, B), // 0x24-0x27
    OC4(V, V, Q, Q), // 0x28-0x2b
    OC4(U, U, U, U), // 0x2c-0x2f
    OC4(B, B, B, B), // 0x30-0x33
    OC4(B, O, O, O), // 0x34-0x37
    OC4(O, O, U, U), // 0x38-0x3b
    OC4(U, O, B, O), // 0x3c-0x3f
    OC4(O, B, B, O), // 0x40-0x43
    OC4(B, B, O, U), // 0x44-0x47
    OC4(U, U, U, U), // 0x48-0x4b
    OC4(U, U, U, U), // 0x4c-0x4f
    OC4(V, V, V, V), // 0x50-0x53
    OC4(B, V, V, V), // 0x54-0x57
    OC4(V, V, V, B), // 0x58-0x5b
    OC4(B, B, B, U), // 0x5c-0x5f
    OC4(V, V, V, V), // 0x60-0x63
    OC4(V, V, V, V), // 0x64-0x67
    OC4(Q, Q, B, U), // 0x68-0x6b
    OC4(U, U, U, U), // 0x6c-0x6f

    OC4(B, B, B, B), // 0x70-0x73
    OC4(B, B, B, B), // 0x74-0x77
    OC4(B, B, B, B), // 0x78-0x7b
    OC4(B, B, B, B), // 0x7c-0x7f
    OC4(B, B, B, B), // 0x80-0x83
    OC4(B, B, B, B), // 0x84-0x87
    OC4(B, B, B, B), // 0x88-0x8b
    OC4(B, B, B, B), // 0x8c-0x8f
    OC4(B, B, B, B), // 0x90-0x93
    OC4(B, B, B, B), // 0x94-0x97
    OC4(B, B, B, B), // 0x98-0x9b
    OC4(B, B, B, B), // 0x9c-0x9f
    OC4(B, B, B, B), // 0xa0-0xa3
    OC4(B, B, B, B), // 0xa4-0xa7
    OC4(B, B, B, B), // 0xa8-0xab
    OC4(B, B, B, B), // 0xac-0xaf

    OC4(B, B, B, B), // 0xb0-0xb3
    OC4(B, B, B, B), // 0xb4-0xb7
    OC4(B, B, B, B), // 0xb8-0xbb
    OC4(B, B, B, B), // 0xbc-0xbf

    OC4(B, B, B, B), // 0xc0-0xc3
    OC4(B, B, B, B), // 0xc4-0xc7
    OC4(B, B, B, B), // 0xc8-0xcb
    OC4(B, B, B, B), // 0xcc-0xcf

    OC4(B, B, B, B), // 0xd0-0xd3
    OC4(B, B, B, B), // 0xd4-0xd7
    OC4(B, B, B, B), // 0xd8-0xdb
    OC4(B, B, B, B), // 0xdc-0xdf

    OC4(B, B, B, B), // 0xe0-0xe3
    OC4(B, B, B, B), // 0xe4-0xe7
    OC4(B, B, B, B), // 0xe8-0xeb
    OC4(B, B, B, B), // 0xec-0xef

    OC4(B, B, B, B), // 0xf0-0xf3
    OC4(B, B, B, B), // 0xf4-0xf7
    OC4(B, B, B, U), // 0xf8-0xfb
    OC4(U, U, U, U), // 0xfc-0xff
};
#undef OC4
#undef U
#undef B
#undef Q
#undef V
#undef O

uint mp_opcode_format(const byte *ip, size_t *opcode_size) {
    uint f = (opcode_format_table[*ip >> 2] >> (2 * (*ip & 3))) & 3;
    const byte *ip_start = ip;
    if (f == MP_OPCODE_QSTR) {
        ip += 3;
    } else {
        int extra_byte = (
            *ip == MP_BC_RAISE_VARARGS
            || *ip == MP_BC_MAKE_CLOSURE
            || *ip == MP_BC_MAKE_CLOSURE_DEFARGS
            #if MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE
            || *ip == MP_BC_LOAD_NAME
            || *ip == MP_BC_LOAD_GLOBAL
            || *ip == MP_BC_LOAD_ATTR
            || *ip == MP_BC_STORE_ATTR
            #endif
        );
        ip += 1;
        if (f == MP_OPCODE_VAR_UINT) {
            while ((*ip++ & 0x80) != 0) {
            }
        } else if (f == MP_OPCODE_OFFSET) {
            ip += 2;
        }
        ip += extra_byte;
    }
    *opcode_size = ip - ip_start;
    return f;
}

#endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE