Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.
This a port of MicroPython to the mbed Classic platform.
This provides an interpreter running on the board's USB serial connection.
Getting Started
Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:
MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM Type "help()" for more information. >>>
Then you can start using micropython. For example:
>>> from mbed import DigitalOut >>> from pins import LED1 >>> led = DigitalOut(LED1) >>> led.write(1)
Requirements
You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.
Caveats
This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.
- Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
- Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
- The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
- Exceptions from the mbed classes are not yet handled.
- Asynchronous processing (e.g. events on inputs) is not supported.
Credits
- Damien P. George and other contributors who created micropython.
- Colin Hogben, author of this port.
py/vstr.c
- Committer:
- Colin Hogben
- Date:
- 2016-04-27
- Revision:
- 10:33521d742af1
- Parent:
- 0:5868e8752d44
File content as of revision 10:33521d742af1:
/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdio.h> #include <stdarg.h> #include <string.h> #include <assert.h> #include "py/mpconfig.h" #include "py/misc.h" #include "py/mpprint.h" // returned value is always at least 1 greater than argument #define ROUND_ALLOC(a) (((a) & ((~0) - 7)) + 8) // Init the vstr so it allocs exactly given number of bytes. Set length to zero. void vstr_init(vstr_t *vstr, size_t alloc) { if (alloc < 1) { alloc = 1; } vstr->alloc = alloc; vstr->len = 0; vstr->buf = m_new(char, vstr->alloc); if (vstr->buf == NULL) { vstr->had_error = true; return; } vstr->had_error = false; vstr->fixed_buf = false; } // Init the vstr so it allocs exactly enough ram to hold a null-terminated // string of the given length, and set the length. void vstr_init_len(vstr_t *vstr, size_t len) { vstr_init(vstr, len + 1); vstr->len = len; } void vstr_init_fixed_buf(vstr_t *vstr, size_t alloc, char *buf) { vstr->alloc = alloc; vstr->len = 0; vstr->buf = buf; vstr->had_error = false; vstr->fixed_buf = true; } void vstr_init_print(vstr_t *vstr, size_t alloc, mp_print_t *print) { vstr_init(vstr, alloc); print->data = vstr; print->print_strn = (mp_print_strn_t)vstr_add_strn; } void vstr_clear(vstr_t *vstr) { if (!vstr->fixed_buf) { m_del(char, vstr->buf, vstr->alloc); } vstr->buf = NULL; } vstr_t *vstr_new(void) { vstr_t *vstr = m_new_obj(vstr_t); if (vstr == NULL) { return NULL; } vstr_init(vstr, 16); return vstr; } vstr_t *vstr_new_size(size_t alloc) { vstr_t *vstr = m_new_obj(vstr_t); if (vstr == NULL) { return NULL; } vstr_init(vstr, alloc); return vstr; } void vstr_free(vstr_t *vstr) { if (vstr != NULL) { if (!vstr->fixed_buf) { m_del(char, vstr->buf, vstr->alloc); } m_del_obj(vstr_t, vstr); } } void vstr_reset(vstr_t *vstr) { vstr->len = 0; vstr->had_error = false; } bool vstr_had_error(vstr_t *vstr) { return vstr->had_error; } char *vstr_str(vstr_t *vstr) { if (vstr->had_error) { return NULL; } return vstr->buf; } size_t vstr_len(vstr_t *vstr) { if (vstr->had_error) { return 0; } return vstr->len; } // Extend vstr strictly by requested size, return pointer to newly added chunk. char *vstr_extend(vstr_t *vstr, size_t size) { if (vstr->fixed_buf) { return NULL; } char *new_buf = m_renew(char, vstr->buf, vstr->alloc, vstr->alloc + size); if (new_buf == NULL) { vstr->had_error = true; return NULL; } char *p = new_buf + vstr->alloc; vstr->alloc += size; vstr->buf = new_buf; return p; } STATIC bool vstr_ensure_extra(vstr_t *vstr, size_t size) { if (vstr->len + size > vstr->alloc) { if (vstr->fixed_buf) { return false; } size_t new_alloc = ROUND_ALLOC((vstr->len + size) * 2); char *new_buf = m_renew(char, vstr->buf, vstr->alloc, new_alloc); if (new_buf == NULL) { vstr->had_error = true; return false; } vstr->alloc = new_alloc; vstr->buf = new_buf; } return true; } void vstr_hint_size(vstr_t *vstr, size_t size) { // it's not an error if we fail to allocate for the size hint bool er = vstr->had_error; vstr_ensure_extra(vstr, size); vstr->had_error = er; } char *vstr_add_len(vstr_t *vstr, size_t len) { if (vstr->had_error || !vstr_ensure_extra(vstr, len)) { return NULL; } char *buf = vstr->buf + vstr->len; vstr->len += len; return buf; } // Doesn't increase len, just makes sure there is a null byte at the end char *vstr_null_terminated_str(vstr_t *vstr) { if (vstr->had_error || !vstr_ensure_extra(vstr, 1)) { return NULL; } vstr->buf[vstr->len] = '\0'; return vstr->buf; } void vstr_add_byte(vstr_t *vstr, byte b) { byte *buf = (byte*)vstr_add_len(vstr, 1); if (buf == NULL) { return; } buf[0] = b; } void vstr_add_char(vstr_t *vstr, unichar c) { #if MICROPY_PY_BUILTINS_STR_UNICODE // TODO: Can this be simplified and deduplicated? // Is it worth just calling vstr_add_len(vstr, 4)? if (c < 0x80) { byte *buf = (byte*)vstr_add_len(vstr, 1); if (buf == NULL) { return; } *buf = (byte)c; } else if (c < 0x800) { byte *buf = (byte*)vstr_add_len(vstr, 2); if (buf == NULL) { return; } buf[0] = (c >> 6) | 0xC0; buf[1] = (c & 0x3F) | 0x80; } else if (c < 0x10000) { byte *buf = (byte*)vstr_add_len(vstr, 3); if (buf == NULL) { return; } buf[0] = (c >> 12) | 0xE0; buf[1] = ((c >> 6) & 0x3F) | 0x80; buf[2] = (c & 0x3F) | 0x80; } else { assert(c < 0x110000); byte *buf = (byte*)vstr_add_len(vstr, 4); if (buf == NULL) { return; } buf[0] = (c >> 18) | 0xF0; buf[1] = ((c >> 12) & 0x3F) | 0x80; buf[2] = ((c >> 6) & 0x3F) | 0x80; buf[3] = (c & 0x3F) | 0x80; } #else vstr_add_byte(vstr, c); #endif } void vstr_add_str(vstr_t *vstr, const char *str) { vstr_add_strn(vstr, str, strlen(str)); } void vstr_add_strn(vstr_t *vstr, const char *str, size_t len) { if (vstr->had_error || !vstr_ensure_extra(vstr, len)) { // if buf is fixed, we got here because there isn't enough room left // so just try to copy as much as we can, with room for a possible null byte if (vstr->fixed_buf && vstr->len < vstr->alloc) { len = vstr->alloc - vstr->len; goto copy; } return; } copy: memmove(vstr->buf + vstr->len, str, len); vstr->len += len; } STATIC char *vstr_ins_blank_bytes(vstr_t *vstr, size_t byte_pos, size_t byte_len) { if (vstr->had_error) { return NULL; } size_t l = vstr->len; if (byte_pos > l) { byte_pos = l; } if (byte_len > 0) { // ensure room for the new bytes if (!vstr_ensure_extra(vstr, byte_len)) { return NULL; } // copy up the string to make room for the new bytes memmove(vstr->buf + byte_pos + byte_len, vstr->buf + byte_pos, l - byte_pos); // increase the length vstr->len += byte_len; } return vstr->buf + byte_pos; } void vstr_ins_byte(vstr_t *vstr, size_t byte_pos, byte b) { char *s = vstr_ins_blank_bytes(vstr, byte_pos, 1); if (s != NULL) { *s = b; } } void vstr_ins_char(vstr_t *vstr, size_t char_pos, unichar chr) { // TODO UNICODE char *s = vstr_ins_blank_bytes(vstr, char_pos, 1); if (s != NULL) { *s = chr; } } void vstr_cut_head_bytes(vstr_t *vstr, size_t bytes_to_cut) { vstr_cut_out_bytes(vstr, 0, bytes_to_cut); } void vstr_cut_tail_bytes(vstr_t *vstr, size_t len) { if (vstr->had_error) { return; } if (len > vstr->len) { vstr->len = 0; } else { vstr->len -= len; } } void vstr_cut_out_bytes(vstr_t *vstr, size_t byte_pos, size_t bytes_to_cut) { if (vstr->had_error || byte_pos >= vstr->len) { return; } else if (byte_pos + bytes_to_cut >= vstr->len) { vstr->len = byte_pos; } else { memmove(vstr->buf + byte_pos, vstr->buf + byte_pos + bytes_to_cut, vstr->len - byte_pos - bytes_to_cut); vstr->len -= bytes_to_cut; } } void vstr_printf(vstr_t *vstr, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vstr_vprintf(vstr, fmt, ap); va_end(ap); } void vstr_vprintf(vstr_t *vstr, const char *fmt, va_list ap) { mp_print_t print = {vstr, (mp_print_strn_t)vstr_add_strn}; mp_vprintf(&print, fmt, ap); }