Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.

Dependents:   micropython-repl

This a port of MicroPython to the mbed Classic platform.

This provides an interpreter running on the board's USB serial connection.

Getting Started

Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:

  MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM
  Type "help()" for more information.
  >>>

Then you can start using micropython. For example:

  >>> from mbed import DigitalOut
  >>> from pins import LED1
  >>> led = DigitalOut(LED1)
  >>> led.write(1)

Requirements

You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.

Caveats

This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.

  • Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
  • Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
  • The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
  • Exceptions from the mbed classes are not yet handled.
  • Asynchronous processing (e.g. events on inputs) is not supported.

Credits

  • Damien P. George and other contributors who created micropython.
  • Colin Hogben, author of this port.

py/parsenum.c

Committer:
Colin Hogben
Date:
2016-04-27
Revision:
10:33521d742af1
Parent:
0:5868e8752d44

File content as of revision 10:33521d742af1:

/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdlib.h>

#include "py/nlr.h"
#include "py/parsenumbase.h"
#include "py/parsenum.h"
#include "py/smallint.h"

#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif

STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) {
    // if lex!=NULL then the parser called us and we need to convert the
    // exception's type from ValueError to SyntaxError and add traceback info
    if (lex != NULL) {
        ((mp_obj_base_t*)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError;
        mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
    }
    nlr_raise(exc);
}

mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) {
    const byte *restrict str = (const byte *)str_;
    const byte *restrict top = str + len;
    bool neg = false;
    mp_obj_t ret_val;

    // check radix base
    if ((base != 0 && base < 2) || base > 36) {
        // this won't be reached if lex!=NULL
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "int() arg 2 must be >= 2 and <= 36"));
    }

    // skip leading space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // parse optional sign
    if (str < top) {
        if (*str == '+') {
            str++;
        } else if (*str == '-') {
            str++;
            neg = true;
        }
    }

    // parse optional base prefix
    str += mp_parse_num_base((const char*)str, top - str, &base);

    // string should be an integer number
    mp_int_t int_val = 0;
    const byte *restrict str_val_start = str;
    for (; str < top; str++) {
        // get next digit as a value
        mp_uint_t dig = *str;
        if (unichar_isdigit(dig) && (int)dig - '0' < base) {
            // 0-9 digit
            dig = dig - '0';
        } else if (base == 16) {
            dig |= 0x20;
            if ('a' <= dig && dig <= 'f') {
                // a-f hex digit
                dig = dig - 'a' + 10;
            } else {
                // unknown character
                break;
            }
        } else {
            // unknown character
            break;
        }

        // add next digi and check for overflow
        if (mp_small_int_mul_overflow(int_val, base)) {
            goto overflow;
        }
        int_val = int_val * base + dig;
        if (!MP_SMALL_INT_FITS(int_val)) {
            goto overflow;
        }
    }

    // negate value if needed
    if (neg) {
        int_val = -int_val;
    }

    // create the small int
    ret_val = MP_OBJ_NEW_SMALL_INT(int_val);

have_ret_val:
    // check we parsed something
    if (str == str_val_start) {
        goto value_error;
    }

    // skip trailing space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // check we reached the end of the string
    if (str != top) {
        goto value_error;
    }

    // return the object
    return ret_val;

overflow:
    // reparse using long int
    {
        const char *s2 = (const char*)str_val_start;
        ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base);
        str = (const byte*)s2;
        goto have_ret_val;
    }

value_error:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError,
            "invalid syntax for integer");
        raise_exc(exc, lex);
    } else if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL) {
        mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "invalid syntax for integer with base %d", base);
        raise_exc(exc, lex);
    } else {
        vstr_t vstr;
        mp_print_t print;
        vstr_init_print(&vstr, 50, &print);
        mp_printf(&print, "invalid syntax for integer with base %d: ", base);
        mp_str_print_quoted(&print, str_val_start, top - str_val_start, true);
        mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError,
            mp_obj_new_str_from_vstr(&mp_type_str, &vstr));
        raise_exc(exc, lex);
    }
}

typedef enum {
    PARSE_DEC_IN_INTG,
    PARSE_DEC_IN_FRAC,
    PARSE_DEC_IN_EXP,
} parse_dec_in_t;

mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) {
#if MICROPY_PY_BUILTINS_FLOAT
    const char *top = str + len;
    mp_float_t dec_val = 0;
    bool dec_neg = false;
    bool imag = false;

    // skip leading space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // parse optional sign
    if (str < top) {
        if (*str == '+') {
            str++;
        } else if (*str == '-') {
            str++;
            dec_neg = true;
        }
    }

    const char *str_val_start = str;

    // determine what the string is
    if (str < top && (str[0] | 0x20) == 'i') {
        // string starts with 'i', should be 'inf' or 'infinity' (case insensitive)
        if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') {
            // inf
            str += 3;
            dec_val = INFINITY;
            if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') {
                // infinity
                str += 5;
            }
        }
    } else if (str < top && (str[0] | 0x20) == 'n') {
        // string starts with 'n', should be 'nan' (case insensitive)
        if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') {
            // NaN
            str += 3;
            dec_val = MICROPY_FLOAT_C_FUN(nan)("");
        }
    } else {
        // string should be a decimal number
        parse_dec_in_t in = PARSE_DEC_IN_INTG;
        bool exp_neg = false;
        mp_float_t frac_mult = 0.1;
        mp_int_t exp_val = 0;
        while (str < top) {
            mp_uint_t dig = *str++;
            if ('0' <= dig && dig <= '9') {
                dig -= '0';
                if (in == PARSE_DEC_IN_EXP) {
                    exp_val = 10 * exp_val + dig;
                } else {
                    if (in == PARSE_DEC_IN_FRAC) {
                        dec_val += dig * frac_mult;
                        frac_mult *= 0.1;
                    } else {
                        dec_val = 10 * dec_val + dig;
                    }
                }
            } else if (in == PARSE_DEC_IN_INTG && dig == '.') {
                in = PARSE_DEC_IN_FRAC;
            } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) {
                in = PARSE_DEC_IN_EXP;
                if (str < top) {
                    if (str[0] == '+') {
                        str++;
                    } else if (str[0] == '-') {
                        str++;
                        exp_neg = true;
                    }
                }
                if (str == top) {
                    goto value_error;
                }
            } else if (allow_imag && (dig | 0x20) == 'j') {
                imag = true;
                break;
            } else {
                // unknown character
                str--;
                break;
            }
        }

        // work out the exponent
        if (exp_neg) {
            exp_val = -exp_val;
        }

        // apply the exponent
        dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val);
    }

    // negate value if needed
    if (dec_neg) {
        dec_val = -dec_val;
    }

    // check we parsed something
    if (str == str_val_start) {
        goto value_error;
    }

    // skip trailing space
    for (; str < top && unichar_isspace(*str); str++) {
    }

    // check we reached the end of the string
    if (str != top) {
        goto value_error;
    }

    // return the object
#if MICROPY_PY_BUILTINS_COMPLEX
    if (imag) {
        return mp_obj_new_complex(0, dec_val);
    } else if (force_complex) {
        return mp_obj_new_complex(dec_val, 0);
#else
    if (imag || force_complex) {
        raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "complex values not supported"), lex);
#endif
    } else {
        return mp_obj_new_float(dec_val);
    }

value_error:
    raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid syntax for number"), lex);

#else
    raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "decimal numbers not supported"), lex);
#endif
}