Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.
This a port of MicroPython to the mbed Classic platform.
This provides an interpreter running on the board's USB serial connection.
Getting Started
Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:
MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM Type "help()" for more information. >>>
Then you can start using micropython. For example:
>>> from mbed import DigitalOut >>> from pins import LED1 >>> led = DigitalOut(LED1) >>> led.write(1)
Requirements
You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.
Caveats
This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.
- Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
- Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
- The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
- Exceptions from the mbed classes are not yet handled.
- Asynchronous processing (e.g. events on inputs) is not supported.
Credits
- Damien P. George and other contributors who created micropython.
- Colin Hogben, author of this port.
py/parsenum.c
- Committer:
- Colin Hogben
- Date:
- 2016-04-27
- Revision:
- 10:33521d742af1
- Parent:
- 0:5868e8752d44
File content as of revision 10:33521d742af1:
/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdbool.h> #include <stdlib.h> #include "py/nlr.h" #include "py/parsenumbase.h" #include "py/parsenum.h" #include "py/smallint.h" #if MICROPY_PY_BUILTINS_FLOAT #include <math.h> #endif STATIC NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) { // if lex!=NULL then the parser called us and we need to convert the // exception's type from ValueError to SyntaxError and add traceback info if (lex != NULL) { ((mp_obj_base_t*)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError; mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL); } nlr_raise(exc); } mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) { const byte *restrict str = (const byte *)str_; const byte *restrict top = str + len; bool neg = false; mp_obj_t ret_val; // check radix base if ((base != 0 && base < 2) || base > 36) { // this won't be reached if lex!=NULL nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "int() arg 2 must be >= 2 and <= 36")); } // skip leading space for (; str < top && unichar_isspace(*str); str++) { } // parse optional sign if (str < top) { if (*str == '+') { str++; } else if (*str == '-') { str++; neg = true; } } // parse optional base prefix str += mp_parse_num_base((const char*)str, top - str, &base); // string should be an integer number mp_int_t int_val = 0; const byte *restrict str_val_start = str; for (; str < top; str++) { // get next digit as a value mp_uint_t dig = *str; if (unichar_isdigit(dig) && (int)dig - '0' < base) { // 0-9 digit dig = dig - '0'; } else if (base == 16) { dig |= 0x20; if ('a' <= dig && dig <= 'f') { // a-f hex digit dig = dig - 'a' + 10; } else { // unknown character break; } } else { // unknown character break; } // add next digi and check for overflow if (mp_small_int_mul_overflow(int_val, base)) { goto overflow; } int_val = int_val * base + dig; if (!MP_SMALL_INT_FITS(int_val)) { goto overflow; } } // negate value if needed if (neg) { int_val = -int_val; } // create the small int ret_val = MP_OBJ_NEW_SMALL_INT(int_val); have_ret_val: // check we parsed something if (str == str_val_start) { goto value_error; } // skip trailing space for (; str < top && unichar_isspace(*str); str++) { } // check we reached the end of the string if (str != top) { goto value_error; } // return the object return ret_val; overflow: // reparse using long int { const char *s2 = (const char*)str_val_start; ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base); str = (const byte*)s2; goto have_ret_val; } value_error: if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) { mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError, "invalid syntax for integer"); raise_exc(exc, lex); } else if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL) { mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid syntax for integer with base %d", base); raise_exc(exc, lex); } else { vstr_t vstr; mp_print_t print; vstr_init_print(&vstr, 50, &print); mp_printf(&print, "invalid syntax for integer with base %d: ", base); mp_str_print_quoted(&print, str_val_start, top - str_val_start, true); mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError, mp_obj_new_str_from_vstr(&mp_type_str, &vstr)); raise_exc(exc, lex); } } typedef enum { PARSE_DEC_IN_INTG, PARSE_DEC_IN_FRAC, PARSE_DEC_IN_EXP, } parse_dec_in_t; mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex) { #if MICROPY_PY_BUILTINS_FLOAT const char *top = str + len; mp_float_t dec_val = 0; bool dec_neg = false; bool imag = false; // skip leading space for (; str < top && unichar_isspace(*str); str++) { } // parse optional sign if (str < top) { if (*str == '+') { str++; } else if (*str == '-') { str++; dec_neg = true; } } const char *str_val_start = str; // determine what the string is if (str < top && (str[0] | 0x20) == 'i') { // string starts with 'i', should be 'inf' or 'infinity' (case insensitive) if (str + 2 < top && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') { // inf str += 3; dec_val = INFINITY; if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') { // infinity str += 5; } } } else if (str < top && (str[0] | 0x20) == 'n') { // string starts with 'n', should be 'nan' (case insensitive) if (str + 2 < top && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') { // NaN str += 3; dec_val = MICROPY_FLOAT_C_FUN(nan)(""); } } else { // string should be a decimal number parse_dec_in_t in = PARSE_DEC_IN_INTG; bool exp_neg = false; mp_float_t frac_mult = 0.1; mp_int_t exp_val = 0; while (str < top) { mp_uint_t dig = *str++; if ('0' <= dig && dig <= '9') { dig -= '0'; if (in == PARSE_DEC_IN_EXP) { exp_val = 10 * exp_val + dig; } else { if (in == PARSE_DEC_IN_FRAC) { dec_val += dig * frac_mult; frac_mult *= 0.1; } else { dec_val = 10 * dec_val + dig; } } } else if (in == PARSE_DEC_IN_INTG && dig == '.') { in = PARSE_DEC_IN_FRAC; } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { in = PARSE_DEC_IN_EXP; if (str < top) { if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; exp_neg = true; } } if (str == top) { goto value_error; } } else if (allow_imag && (dig | 0x20) == 'j') { imag = true; break; } else { // unknown character str--; break; } } // work out the exponent if (exp_neg) { exp_val = -exp_val; } // apply the exponent dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val); } // negate value if needed if (dec_neg) { dec_val = -dec_val; } // check we parsed something if (str == str_val_start) { goto value_error; } // skip trailing space for (; str < top && unichar_isspace(*str); str++) { } // check we reached the end of the string if (str != top) { goto value_error; } // return the object #if MICROPY_PY_BUILTINS_COMPLEX if (imag) { return mp_obj_new_complex(0, dec_val); } else if (force_complex) { return mp_obj_new_complex(dec_val, 0); #else if (imag || force_complex) { raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "complex values not supported"), lex); #endif } else { return mp_obj_new_float(dec_val); } value_error: raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid syntax for number"), lex); #else raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, "decimal numbers not supported"), lex); #endif }