Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.

Dependents:   micropython-repl

This a port of MicroPython to the mbed Classic platform.

This provides an interpreter running on the board's USB serial connection.

Getting Started

Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:

  MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM
  Type "help()" for more information.
  >>>

Then you can start using micropython. For example:

  >>> from mbed import DigitalOut
  >>> from pins import LED1
  >>> led = DigitalOut(LED1)
  >>> led.write(1)

Requirements

You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.

Caveats

This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.

  • Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
  • Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
  • The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
  • Exceptions from the mbed classes are not yet handled.
  • Asynchronous processing (e.g. events on inputs) is not supported.

Credits

  • Damien P. George and other contributors who created micropython.
  • Colin Hogben, author of this port.

py/parse.c

Committer:
Colin Hogben
Date:
2016-04-27
Revision:
10:33521d742af1
Parent:
2:c89e95946844

File content as of revision 10:33521d742af1:

/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h> // for ssize_t
#include <assert.h>
#include <string.h>

#include "py/nlr.h"
#include "py/lexer.h"
#include "py/parse.h"
#include "py/parsenum.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/objint.h"
#include "py/builtin.h"

#if MICROPY_ENABLE_COMPILER

#define RULE_ACT_ARG_MASK       (0x0f)
#define RULE_ACT_KIND_MASK      (0x30)
#define RULE_ACT_ALLOW_IDENT    (0x40)
#define RULE_ACT_ADD_BLANK      (0x80)
#define RULE_ACT_OR             (0x10)
#define RULE_ACT_AND            (0x20)
#define RULE_ACT_LIST           (0x30)

#define RULE_ARG_KIND_MASK      (0xf000)
#define RULE_ARG_ARG_MASK       (0x0fff)
#define RULE_ARG_TOK            (0x1000)
#define RULE_ARG_RULE           (0x2000)
#define RULE_ARG_OPT_RULE       (0x3000)

// (un)comment to use rule names; for debugging
//#define USE_RULE_NAME (1)

typedef struct _rule_t {
    byte rule_id;
    byte act;
#ifdef USE_RULE_NAME
    const char *rule_name;
#endif
    uint16_t arg[];
} rule_t;

enum {
#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
#include "py/grammar.h"
#undef DEF_RULE
    RULE_maximum_number_of,
    RULE_string, // special node for non-interned string
    RULE_bytes, // special node for non-interned bytes
    RULE_const_object, // special node for a constant, generic Python object
};

#define or(n)                   (RULE_ACT_OR | n)
#define and(n)                  (RULE_ACT_AND | n)
#define and_ident(n)            (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
#define and_blank(n)            (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
#define one_or_more             (RULE_ACT_LIST | 2)
#define list                    (RULE_ACT_LIST | 1)
#define list_with_end           (RULE_ACT_LIST | 3)
#define tok(t)                  (RULE_ARG_TOK | MP_TOKEN_##t)
#define rule(r)                 (RULE_ARG_RULE | RULE_##r)
#define opt_rule(r)             (RULE_ARG_OPT_RULE | RULE_##r)
#ifdef USE_RULE_NAME
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } };
#else
#define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } };
#endif
#include "py/grammar.h"
#undef or
#undef and
#undef list
#undef list_with_end
#undef tok
#undef rule
#undef opt_rule
#undef one_or_more
#undef DEF_RULE

STATIC const rule_t *rules[] = {
#define DEF_RULE(rule, comp, kind, ...) &rule_##rule,
#include "py/grammar.h"
#undef DEF_RULE
};

typedef struct _rule_stack_t {
    size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
    size_t rule_id : 8; // this must be large enough to fit largest rule number
    size_t arg_i; // this dictates the maximum nodes in a "list" of things
} rule_stack_t;

typedef struct _mp_parse_chunk_t {
    size_t alloc;
    union {
        size_t used;
        struct _mp_parse_chunk_t *next;
    } union_;
    byte data[];
} mp_parse_chunk_t;

typedef enum {
    PARSE_ERROR_NONE = 0,
    PARSE_ERROR_MEMORY,
    PARSE_ERROR_CONST,
} parse_error_t;

typedef struct _parser_t {
    parse_error_t parse_error;

    size_t rule_stack_alloc;
    size_t rule_stack_top;
    rule_stack_t *rule_stack;

    size_t result_stack_alloc;
    size_t result_stack_top;
    mp_parse_node_t *result_stack;

    mp_lexer_t *lexer;

    mp_parse_tree_t tree;
    mp_parse_chunk_t *cur_chunk;

    #if MICROPY_COMP_CONST
    mp_map_t consts;
    #endif
} parser_t;

STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
    // use a custom memory allocator to store parse nodes sequentially in large chunks

    mp_parse_chunk_t *chunk = parser->cur_chunk;

    if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
        // not enough room at end of previously allocated chunk so try to grow
        mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk,
            sizeof(mp_parse_chunk_t) + chunk->alloc,
            sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
        if (new_data == NULL) {
            // could not grow existing memory; shrink it to fit previous
            (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
                sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
            chunk->alloc = chunk->union_.used;
            chunk->union_.next = parser->tree.chunk;
            parser->tree.chunk = chunk;
            chunk = NULL;
        } else {
            // could grow existing memory
            chunk->alloc += num_bytes;
        }
    }

    if (chunk == NULL) {
        // no previous chunk, allocate a new chunk
        size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
        if (alloc < num_bytes) {
            alloc = num_bytes;
        }
        chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
        chunk->alloc = alloc;
        chunk->union_.used = 0;
        parser->cur_chunk = chunk;
    }

    byte *ret = chunk->data + chunk->union_.used;
    chunk->union_.used += num_bytes;
    return ret;
}

STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i) {
    if (parser->parse_error) {
        return;
    }
    if (parser->rule_stack_top >= parser->rule_stack_alloc) {
        rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true);
        if (rs == NULL) {
            parser->parse_error = PARSE_ERROR_MEMORY;
            return;
        }
        parser->rule_stack = rs;
        parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
    }
    rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
    rs->src_line = src_line;
    rs->rule_id = rule->rule_id;
    rs->arg_i = arg_i;
}

STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
    assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
    size_t rule_id = arg & RULE_ARG_ARG_MASK;
    assert(rule_id < RULE_maximum_number_of);
    push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0);
}

STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line) {
    assert(!parser->parse_error);
    parser->rule_stack_top -= 1;
    *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id];
    *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
    *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
}

mp_parse_node_t mp_parse_node_new_leaf(size_t kind, mp_int_t arg) {
    if (kind == MP_PARSE_NODE_SMALL_INT) {
        return (mp_parse_node_t)(kind | (arg << 1));
    }
    return (mp_parse_node_t)(kind | (arg << 4));
}

bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
    if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
        *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
        return true;
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
        // nodes are 32-bit pointers, but need to extract 64-bit object
        *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
        #else
        *o = (mp_obj_t)pns->nodes[0];
        #endif
        return MP_OBJ_IS_INT(*o);
    } else {
        return false;
    }
}

int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
    if (MP_PARSE_NODE_IS_NULL(*pn)) {
        *nodes = NULL;
        return 0;
    } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
        *nodes = pn;
        return 1;
    } else {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
        if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
            *nodes = pn;
            return 1;
        } else {
            *nodes = pns->nodes;
            return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        }
    }
}

#if MICROPY_DEBUG_PRINTERS
void mp_parse_node_print(mp_parse_node_t pn, size_t indent) {
    if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
    } else {
        printf("       ");
    }
    for (size_t i = 0; i < indent; i++) {
        printf(" ");
    }
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        printf("NULL\n");
    } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
        mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
        printf("int(" INT_FMT ")\n", arg);
    } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
        uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
        switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
            case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
            case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
            case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
            case MP_PARSE_NODE_TOKEN: printf("tok(%u)\n", (uint)arg); break;
            default: assert(0);
        }
    } else {
        // node must be a mp_parse_node_struct_t
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
            printf("literal str(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_bytes) {
            printf("literal bytes(%.*s)\n", (int)pns->nodes[1], (char*)pns->nodes[0]);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
            #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
            printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
            #else
            printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
            #endif
        } else {
            size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
#ifdef USE_RULE_NAME
            printf("%s(%u) (n=%u)\n", rules[MP_PARSE_NODE_STRUCT_KIND(pns)]->rule_name, (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
#else
            printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
#endif
            for (size_t i = 0; i < n; i++) {
                mp_parse_node_print(pns->nodes[i], indent + 2);
            }
        }
    }
}
#endif // MICROPY_DEBUG_PRINTERS

/*
STATIC void result_stack_show(parser_t *parser) {
    printf("result stack, most recent first\n");
    for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
        mp_parse_node_print(parser->result_stack[i], 0);
    }
}
*/

STATIC mp_parse_node_t pop_result(parser_t *parser) {
    if (parser->parse_error) {
        return MP_PARSE_NODE_NULL;
    }
    assert(parser->result_stack_top > 0);
    return parser->result_stack[--parser->result_stack_top];
}

STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
    if (parser->parse_error) {
        return MP_PARSE_NODE_NULL;
    }
    assert(parser->result_stack_top > pos);
    return parser->result_stack[parser->result_stack_top - 1 - pos];
}

STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
    if (parser->parse_error) {
        return;
    }
    if (parser->result_stack_top >= parser->result_stack_alloc) {
        mp_parse_node_t *stack = m_renew_maybe(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC, true);
        if (stack == NULL) {
            parser->parse_error = PARSE_ERROR_MEMORY;
            return;
        }
        parser->result_stack = stack;
        parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
    }
    parser->result_stack[parser->result_stack_top++] = pn;
}

STATIC mp_parse_node_t make_node_string_bytes(parser_t *parser, size_t src_line, size_t rule_kind, const char *str, size_t len) {
    mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * 2);
    if (pn == NULL) {
        parser->parse_error = PARSE_ERROR_MEMORY;
        return MP_PARSE_NODE_NULL;
    }
    pn->source_line = src_line;
    pn->kind_num_nodes = rule_kind | (2 << 8);
    char *p = m_new(char, len);
    memcpy(p, str, len);
    pn->nodes[0] = (uintptr_t)p;
    pn->nodes[1] = len;
    return (mp_parse_node_t)pn;
}

STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
    mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
    if (pn == NULL) {
        parser->parse_error = PARSE_ERROR_MEMORY;
        return MP_PARSE_NODE_NULL;
    }
    pn->source_line = src_line;
    #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
    // nodes are 32-bit pointers, but need to store 64-bit object
    pn->kind_num_nodes = RULE_const_object | (2 << 8);
    pn->nodes[0] = (uint64_t)obj;
    pn->nodes[1] = (uint64_t)obj >> 32;
    #else
    pn->kind_num_nodes = RULE_const_object | (1 << 8);
    pn->nodes[0] = (uintptr_t)obj;
    #endif
    return (mp_parse_node_t)pn;
}

STATIC void push_result_token(parser_t *parser) {
    mp_parse_node_t pn;
    mp_lexer_t *lex = parser->lexer;
    if (lex->tok_kind == MP_TOKEN_NAME) {
        qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
        #if MICROPY_COMP_CONST
        // lookup identifier in table of dynamic constants
        mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP);
        if (elem != NULL) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value));
        } else
        #endif
        {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
        }
    } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
        mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
        if (MP_OBJ_IS_SMALL_INT(o)) {
            pn = mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o));
        } else {
            pn = make_node_const_object(parser, lex->tok_line, o);
        }
    } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
        mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
        pn = make_node_const_object(parser, lex->tok_line, o);
    } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
        // Don't automatically intern all strings/bytes.  doc strings (which are usually large)
        // will be discarded by the compiler, and so we shouldn't intern them.
        qstr qst = MP_QSTR_NULL;
        if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
            // intern short strings
            qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
        } else {
            // check if this string is already interned
            qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
        }
        if (qst != MP_QSTR_NULL) {
            // qstr exists, make a leaf node
            pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
        } else {
            // not interned, make a node holding a pointer to the string/bytes data
            pn = make_node_string_bytes(parser, lex->tok_line, lex->tok_kind == MP_TOKEN_STRING ? RULE_string : RULE_bytes, lex->vstr.buf, lex->vstr.len);
        }
    } else {
        pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
    }
    push_result_node(parser, pn);
}

#if MICROPY_COMP_MODULE_CONST
STATIC const mp_rom_map_elem_t mp_constants_table[] = {
    #if MICROPY_PY_UCTYPES
    { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
    #endif
    // Extra constants as defined by a port
    MICROPY_PORT_CONSTANTS
};
STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
#endif

#if MICROPY_COMP_CONST_FOLDING
STATIC bool fold_constants(parser_t *parser, const rule_t *rule, size_t num_args) {
    // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
    // it does not do partial folding, eg 1 + 2 + x -> 3 + x

    mp_obj_t arg0;
    if (rule->rule_id == RULE_expr
        || rule->rule_id == RULE_xor_expr
        || rule->rule_id == RULE_and_expr) {
        // folding for binary ops: | ^ &
        mp_parse_node_t pn = peek_result(parser, num_args - 1);
        if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
            return false;
        }
        mp_binary_op_t op;
        if (rule->rule_id == RULE_expr) {
            op = MP_BINARY_OP_OR;
        } else if (rule->rule_id == RULE_xor_expr) {
            op = MP_BINARY_OP_XOR;
        } else {
            op = MP_BINARY_OP_AND;
        }
        for (ssize_t i = num_args - 2; i >= 0; --i) {
            pn = peek_result(parser, i);
            mp_obj_t arg1;
            if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
                return false;
            }
            arg0 = mp_binary_op(op, arg0, arg1);
        }
    } else if (rule->rule_id == RULE_shift_expr
        || rule->rule_id == RULE_arith_expr
        || rule->rule_id == RULE_term) {
        // folding for binary ops: << >> + - * / % //
        mp_parse_node_t pn = peek_result(parser, num_args - 1);
        if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
            return false;
        }
        for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
            pn = peek_result(parser, i - 1);
            mp_obj_t arg1;
            if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
                return false;
            }
            mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
            static const uint8_t token_to_op[] = {
                MP_BINARY_OP_ADD,
                MP_BINARY_OP_SUBTRACT,
                MP_BINARY_OP_MULTIPLY,
                255,//MP_BINARY_OP_POWER,
                255,//MP_BINARY_OP_TRUE_DIVIDE,
                MP_BINARY_OP_FLOOR_DIVIDE,
                MP_BINARY_OP_MODULO,
                255,//MP_BINARY_OP_LESS
                MP_BINARY_OP_LSHIFT,
                255,//MP_BINARY_OP_MORE
                MP_BINARY_OP_RSHIFT,
            };
            mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS];
            if (op == (mp_binary_op_t)255) {
                return false;
            }
            int rhs_sign = mp_obj_int_sign(arg1);
            if (op <= MP_BINARY_OP_RSHIFT) {
                // << and >> can't have negative rhs
                if (rhs_sign < 0) {
                    return false;
                }
            } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
                // % and // can't have zero rhs
                if (rhs_sign == 0) {
                    return false;
                }
            }
            arg0 = mp_binary_op(op, arg0, arg1);
        }
    } else if (rule->rule_id == RULE_factor_2) {
        // folding for unary ops: + - ~
        mp_parse_node_t pn = peek_result(parser, 0);
        if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
            return false;
        }
        mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
        mp_unary_op_t op;
        if (tok == MP_TOKEN_OP_PLUS) {
            op = MP_UNARY_OP_POSITIVE;
        } else if (tok == MP_TOKEN_OP_MINUS) {
            op = MP_UNARY_OP_NEGATIVE;
        } else {
            assert(tok == MP_TOKEN_OP_TILDE); // should be
            op = MP_UNARY_OP_INVERT;
        }
        arg0 = mp_unary_op(op, arg0);

    #if MICROPY_COMP_CONST
    } else if (rule->rule_id == RULE_expr_stmt) {
        mp_parse_node_t pn1 = peek_result(parser, 0);
        if (!MP_PARSE_NODE_IS_NULL(pn1)
            && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
            || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
            // this node is of the form <x> = <y>
            mp_parse_node_t pn0 = peek_result(parser, 1);
            if (MP_PARSE_NODE_IS_ID(pn0)
                && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
                && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
                && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
                && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
                ) {
                // code to assign dynamic constants: id = const(value)

                // get the id
                qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);

                // get the value
                mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
                if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) {
                    parser->parse_error = PARSE_ERROR_CONST;
                    return false;
                }
                mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value);

                // store the value in the table of dynamic constants
                mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
                assert(elem->value == MP_OBJ_NULL);
                elem->value = MP_OBJ_NEW_SMALL_INT(value);

                // replace const(value) with value
                pop_result(parser);
                push_result_node(parser, pn_value);

                // finished folding this assignment, but we still want it to be part of the tree
                return false;
            }
        }
        return false;
    #endif

    #if MICROPY_COMP_MODULE_CONST
    } else if (rule->rule_id == RULE_atom_expr_normal) {
        mp_parse_node_t pn0 = peek_result(parser, 1);
        mp_parse_node_t pn1 = peek_result(parser, 0);
        if (!(MP_PARSE_NODE_IS_ID(pn0)
            && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
            return false;
        }
        // id1.id2
        // look it up in constant table, see if it can be replaced with an integer
        mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
        assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
        qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
        qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
        mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
        if (elem == NULL) {
            return false;
        }
        mp_obj_t dest[2];
        mp_load_method_maybe(elem->value, q_attr, dest);
        if (!(dest[0] != MP_OBJ_NULL && MP_OBJ_IS_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
            return false;
        }
        arg0 = dest[0];
    #endif

    } else {
        return false;
    }

    // success folding this rule

    for (size_t i = num_args; i > 0; i--) {
        pop_result(parser);
    }
    if (MP_OBJ_IS_SMALL_INT(arg0)) {
        push_result_node(parser, mp_parse_node_new_leaf(MP_PARSE_NODE_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(arg0)));
    } else {
        // TODO reuse memory for parse node struct?
        push_result_node(parser, make_node_const_object(parser, 0, arg0));
    }

    return true;
}
#endif

STATIC void push_result_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t num_args) {
    // optimise away parenthesis around an expression if possible
    if (rule->rule_id == RULE_atom_paren) {
        // there should be just 1 arg for this rule
        mp_parse_node_t pn = peek_result(parser, 0);
        if (MP_PARSE_NODE_IS_NULL(pn)) {
            // need to keep parenthesis for ()
        } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
            // need to keep parenthesis for (a, b, ...)
        } else {
            // parenthesis around a single expression, so it's just the expression
            return;
        }
    }

    #if MICROPY_COMP_CONST_FOLDING
    if (fold_constants(parser, rule, num_args)) {
        // we folded this rule so return straight away
        return;
    }
    #endif

    mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
    if (pn == NULL) {
        parser->parse_error = PARSE_ERROR_MEMORY;
        return;
    }
    pn->source_line = src_line;
    pn->kind_num_nodes = (rule->rule_id & 0xff) | (num_args << 8);
    for (size_t i = num_args; i > 0; i--) {
        pn->nodes[i - 1] = pop_result(parser);
    }
    push_result_node(parser, (mp_parse_node_t)pn);
}

mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {

    // initialise parser and allocate memory for its stacks

    parser_t parser;

    parser.parse_error = PARSE_ERROR_NONE;

    parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
    parser.rule_stack_top = 0;
    parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc);

    parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
    parser.result_stack_top = 0;
    parser.result_stack = m_new_maybe(mp_parse_node_t, parser.result_stack_alloc);

    parser.lexer = lex;

    parser.tree.chunk = NULL;
    parser.cur_chunk = NULL;

    #if MICROPY_COMP_CONST
    mp_map_init(&parser.consts, 0);
    #endif

    // check if we could allocate the stacks
    if (parser.rule_stack == NULL || parser.result_stack == NULL) {
        goto memory_error;
    }

    // work out the top-level rule to use, and push it on the stack
    size_t top_level_rule;
    switch (input_kind) {
        case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
        case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
        default: top_level_rule = RULE_file_input;
    }
    push_rule(&parser, lex->tok_line, rules[top_level_rule], 0);

    // parse!

    size_t n, i; // state for the current rule
    size_t rule_src_line; // source line for the first token matched by the current rule
    bool backtrack = false;
    const rule_t *rule = NULL;

    for (;;) {
        next_rule:
        if (parser.rule_stack_top == 0 || parser.parse_error) {
            break;
        }

        pop_rule(&parser, &rule, &i, &rule_src_line);
        n = rule->act & RULE_ACT_ARG_MASK;

        /*
        // debugging
        printf("depth=%d ", parser.rule_stack_top);
        for (int j = 0; j < parser.rule_stack_top; ++j) {
            printf(" ");
        }
        printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack);
        */

        switch (rule->act & RULE_ACT_KIND_MASK) {
            case RULE_ACT_OR:
                if (i > 0 && !backtrack) {
                    goto next_rule;
                } else {
                    backtrack = false;
                }
                for (; i < n; ++i) {
                    uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK;
                    if (kind == RULE_ARG_TOK) {
                        if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) {
                            push_result_token(&parser);
                            mp_lexer_to_next(lex);
                            goto next_rule;
                        }
                    } else {
                        assert(kind == RULE_ARG_RULE);
                        if (i + 1 < n) {
                            push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule
                        }
                        push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule
                        goto next_rule;
                    }
                }
                backtrack = true;
                break;

            case RULE_ACT_AND: {

                // failed, backtrack if we can, else syntax error
                if (backtrack) {
                    assert(i > 0);
                    if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
                        // an optional rule that failed, so continue with next arg
                        push_result_node(&parser, MP_PARSE_NODE_NULL);
                        backtrack = false;
                    } else {
                        // a mandatory rule that failed, so propagate backtrack
                        if (i > 1) {
                            // already eaten tokens so can't backtrack
                            goto syntax_error;
                        } else {
                            goto next_rule;
                        }
                    }
                }

                // progress through the rule
                for (; i < n; ++i) {
                    switch (rule->arg[i] & RULE_ARG_KIND_MASK) {
                        case RULE_ARG_TOK: {
                            // need to match a token
                            mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK;
                            if (lex->tok_kind == tok_kind) {
                                // matched token
                                if (tok_kind == MP_TOKEN_NAME) {
                                    push_result_token(&parser);
                                }
                                mp_lexer_to_next(lex);
                            } else {
                                // failed to match token
                                if (i > 0) {
                                    // already eaten tokens so can't backtrack
                                    goto syntax_error;
                                } else {
                                    // this rule failed, so backtrack
                                    backtrack = true;
                                    goto next_rule;
                                }
                            }
                            break;
                        }
                        case RULE_ARG_RULE:
                        case RULE_ARG_OPT_RULE:
                        rule_and_no_other_choice:
                            push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule
                            push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule
                            goto next_rule;
                        default:
                            assert(0);
                            goto rule_and_no_other_choice; // to help flow control analysis
                    }
                }

                assert(i == n);

                // matched the rule, so now build the corresponding parse_node

                #if !MICROPY_ENABLE_DOC_STRING
                // this code discards lonely statements, such as doc strings
                if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
                    mp_parse_node_t p = peek_result(&parser, 1);
                    if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) {
                        pop_result(&parser); // MP_PARSE_NODE_NULL
                        mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string
                        if (MP_PARSE_NODE_IS_STRUCT(pn)) {
                            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
                            if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) {
                                m_del(char, (char*)pns->nodes[0], (size_t)pns->nodes[1]);
                            }
                        }
                        push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0);
                        break;
                    }
                }
                #endif

                // count number of arguments for the parse node
                i = 0;
                size_t num_not_nil = 0;
                for (size_t x = n; x > 0;) {
                    --x;
                    if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                        mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK;
                        if (tok_kind == MP_TOKEN_NAME) {
                            // only tokens which were names are pushed to stack
                            i += 1;
                            num_not_nil += 1;
                        }
                    } else {
                        // rules are always pushed
                        if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) {
                            num_not_nil += 1;
                        }
                        i += 1;
                    }
                }

                if (num_not_nil == 1 && (rule->act & RULE_ACT_ALLOW_IDENT)) {
                    // this rule has only 1 argument and should not be emitted
                    mp_parse_node_t pn = MP_PARSE_NODE_NULL;
                    for (size_t x = 0; x < i; ++x) {
                        mp_parse_node_t pn2 = pop_result(&parser);
                        if (pn2 != MP_PARSE_NODE_NULL) {
                            pn = pn2;
                        }
                    }
                    push_result_node(&parser, pn);
                } else {
                    // this rule must be emitted

                    if (rule->act & RULE_ACT_ADD_BLANK) {
                        // and add an extra blank node at the end (used by the compiler to store data)
                        push_result_node(&parser, MP_PARSE_NODE_NULL);
                        i += 1;
                    }

                    push_result_rule(&parser, rule_src_line, rule, i);
                }
                break;
            }

            case RULE_ACT_LIST: {
                // n=2 is: item item*
                // n=1 is: item (sep item)*
                // n=3 is: item (sep item)* [sep]
                bool had_trailing_sep;
                if (backtrack) {
                    list_backtrack:
                    had_trailing_sep = false;
                    if (n == 2) {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else {
                            // fail on item, in later rounds; finish with this rule
                            backtrack = false;
                        }
                    } else {
                        if (i == 1) {
                            // fail on item, first time round; propagate backtrack
                            goto next_rule;
                        } else if ((i & 1) == 1) {
                            // fail on item, in later rounds; have eaten tokens so can't backtrack
                            if (n == 3) {
                                // list allows trailing separator; finish parsing list
                                had_trailing_sep = true;
                                backtrack = false;
                            } else {
                                // list doesn't allowing trailing separator; fail
                                goto syntax_error;
                            }
                        } else {
                            // fail on separator; finish parsing list
                            backtrack = false;
                        }
                    }
                } else {
                    for (;;) {
                        size_t arg = rule->arg[i & 1 & n];
                        switch (arg & RULE_ARG_KIND_MASK) {
                            case RULE_ARG_TOK:
                                if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
                                    if (i & 1 & n) {
                                        // separators which are tokens are not pushed to result stack
                                    } else {
                                        push_result_token(&parser);
                                    }
                                    mp_lexer_to_next(lex);
                                    // got element of list, so continue parsing list
                                    i += 1;
                                } else {
                                    // couldn't get element of list
                                    i += 1;
                                    backtrack = true;
                                    goto list_backtrack;
                                }
                                break;
                            case RULE_ARG_RULE:
                            rule_list_no_other_choice:
                                push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule
                                push_rule_from_arg(&parser, arg); // push child of list-rule
                                goto next_rule;
                            default:
                                assert(0);
                                goto rule_list_no_other_choice; // to help flow control analysis
                        }
                    }
                }
                assert(i >= 1);

                // compute number of elements in list, result in i
                i -= 1;
                if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                    // don't count separators when they are tokens
                    i = (i + 1) / 2;
                }

                if (i == 1) {
                    // list matched single item
                    if (had_trailing_sep) {
                        // if there was a trailing separator, make a list of a single item
                        push_result_rule(&parser, rule_src_line, rule, i);
                    } else {
                        // just leave single item on stack (ie don't wrap in a list)
                    }
                } else {
                    push_result_rule(&parser, rule_src_line, rule, i);
                }
                break;
            }

            default:
                assert(0);
        }
    }

    #if MICROPY_COMP_CONST
    mp_map_deinit(&parser.consts);
    #endif

    // truncate final chunk and link into chain of chunks
    if (parser.cur_chunk != NULL) {
        (void)m_renew(byte, parser.cur_chunk,
            sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
            sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used);
        parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
        parser.cur_chunk->union_.next = parser.tree.chunk;
        parser.tree.chunk = parser.cur_chunk;
    }

    mp_obj_t exc;

    if (parser.parse_error) {
        #if MICROPY_COMP_CONST
        if (parser.parse_error == PARSE_ERROR_CONST) {
            exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
                "constant must be an integer");
        } else
        #endif
        {
            assert(parser.parse_error == PARSE_ERROR_MEMORY);
        memory_error:
            exc = mp_obj_new_exception_msg(&mp_type_MemoryError,
                "parser could not allocate enough memory");
        }
        parser.tree.root = MP_PARSE_NODE_NULL;
    } else if (
        lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
        || parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
        ) {
    syntax_error:
        if (lex->tok_kind == MP_TOKEN_INDENT) {
            exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
                "unexpected indent");
        } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
            exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
                "unindent does not match any outer indentation level");
        } else {
            exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
                "invalid syntax");
        }
        parser.tree.root = MP_PARSE_NODE_NULL;
    } else {
        // no errors

        //result_stack_show(parser);
        //printf("rule stack alloc: %d\n", parser.rule_stack_alloc);
        //printf("result stack alloc: %d\n", parser.result_stack_alloc);
        //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated);

        // get the root parse node that we created
        assert(parser.result_stack_top == 1);
        exc = MP_OBJ_NULL;
        parser.tree.root = parser.result_stack[0];
    }

    // free the memory that we don't need anymore
    m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
    m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
    // we also free the lexer on behalf of the caller (see below)

    if (exc != MP_OBJ_NULL) {
        // had an error so raise the exception
        // add traceback to give info about file name and location
        // we don't have a 'block' name, so just pass the NULL qstr to indicate this
        mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
        mp_lexer_free(lex);
        nlr_raise(exc);
    } else {
        mp_lexer_free(lex);
        return parser.tree;
    }
}

void mp_parse_tree_clear(mp_parse_tree_t *tree) {
    mp_parse_chunk_t *chunk = tree->chunk;
    while (chunk != NULL) {
        mp_parse_chunk_t *next = chunk->union_.next;
        m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
        chunk = next;
    }
}

#endif // MICROPY_ENABLE_COMPILER