Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.

Dependents:   micropython-repl

This a port of MicroPython to the mbed Classic platform.

This provides an interpreter running on the board's USB serial connection.

Getting Started

Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:

  MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM
  Type "help()" for more information.
  >>>

Then you can start using micropython. For example:

  >>> from mbed import DigitalOut
  >>> from pins import LED1
  >>> led = DigitalOut(LED1)
  >>> led.write(1)

Requirements

You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.

Caveats

This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.

  • Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
  • Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
  • The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
  • Exceptions from the mbed classes are not yet handled.
  • Asynchronous processing (e.g. events on inputs) is not supported.

Credits

  • Damien P. George and other contributors who created micropython.
  • Colin Hogben, author of this port.

py/objint.c

Committer:
Colin Hogben
Date:
2016-04-27
Revision:
10:33521d742af1
Parent:
0:5868e8752d44

File content as of revision 10:33521d742af1:

/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "py/nlr.h"
#include "py/parsenum.h"
#include "py/smallint.h"
#include "py/objint.h"
#include "py/objstr.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/binary.h"

#if MICROPY_PY_BUILTINS_FLOAT
#include <math.h>
#endif

// This dispatcher function is expected to be independent of the implementation of long int
STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    (void)type_in;
    mp_arg_check_num(n_args, n_kw, 0, 2, false);

    switch (n_args) {
        case 0:
            return MP_OBJ_NEW_SMALL_INT(0);

        case 1:
            if (MP_OBJ_IS_INT(args[0])) {
                // already an int (small or long), just return it
                return args[0];
            } else if (MP_OBJ_IS_STR_OR_BYTES(args[0])) {
                // a string, parse it
                mp_uint_t l;
                const char *s = mp_obj_str_get_data(args[0], &l);
                return mp_parse_num_integer(s, l, 0, NULL);
#if MICROPY_PY_BUILTINS_FLOAT
            } else if (mp_obj_is_float(args[0])) {
                return mp_obj_new_int_from_float(mp_obj_float_get(args[0]));
#endif
            } else {
                // try to convert to small int (eg from bool)
                return MP_OBJ_NEW_SMALL_INT(mp_obj_get_int(args[0]));
            }

        case 2:
        default: {
            // should be a string, parse it
            // TODO proper error checking of argument types
            mp_uint_t l;
            const char *s = mp_obj_str_get_data(args[0], &l);
            return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL);
        }
    }
}

#if MICROPY_PY_BUILTINS_FLOAT
mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) {
    union {
        mp_float_t f;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
        uint32_t i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        uint32_t i[2];
#endif
    } u = {val};

    uint32_t e;
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
    e = u.i;
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
    e = u.i[MP_ENDIANNESS_LITTLE];
#endif
#define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32)
#define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32)

    if (e & (1 << MP_FLOAT_SIGN_SHIFT_I32)) {
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
        e |= u.i[MP_ENDIANNESS_BIG] != 0;
#endif
        e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32;
    } else {
        e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1);
    }
    // 8 * sizeof(uintptr_t) counts the number of bits for a small int
    // TODO provide a way to configure this properly
    if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_SMALLINT;
    }
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
    if (e <= (((sizeof(long long) * BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) {
        return MP_FP_CLASS_FIT_LONGINT;
    }
#endif
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ
    return MP_FP_CLASS_FIT_LONGINT;
#else
    return MP_FP_CLASS_OVERFLOW;
#endif
}
#undef MP_FLOAT_SIGN_SHIFT_I32
#undef MP_FLOAT_EXP_SHIFT_I32
#endif

void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    (void)kind;
    // The size of this buffer is rather arbitrary. If it's not large
    // enough, a dynamic one will be allocated.
    char stack_buf[sizeof(mp_int_t) * 4];
    char *buf = stack_buf;
    mp_uint_t buf_size = sizeof(stack_buf);
    mp_uint_t fmt_size;

    char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0');
    mp_print_str(print, str);

    if (buf != stack_buf) {
        m_del(char, buf, buf_size);
    }
}

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
typedef mp_longint_impl_t fmt_int_t;
#else
typedef mp_int_t fmt_int_t;
#endif

STATIC const uint8_t log_base2_floor[] = {
    0,
    0, 1, 1, 2,
    2, 2, 2, 3,
    3, 3, 3, 3,
    3, 3, 3, 4,
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 4,
    4, 4, 4, 5
};

STATIC uint int_as_str_size_formatted(uint base, const char *prefix, char comma) {
    if (base < 2 || base > 32) {
        return 0;
    }

    uint num_digits = sizeof(fmt_int_t) * 8 / log_base2_floor[base] + 1;
    uint num_commas = comma ? num_digits / 3: 0;
    uint prefix_len = prefix ? strlen(prefix) : 0;
    return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte
}

// This routine expects you to pass in a buffer and size (in *buf and *buf_size).
// If, for some reason, this buffer is too small, then it will allocate a
// buffer and return the allocated buffer and size in *buf and *buf_size. It
// is the callers responsibility to free this allocated buffer.
//
// The resulting formatted string will be returned from this function and the
// formatted size will be in *fmt_size.
char *mp_obj_int_formatted(char **buf, mp_uint_t *buf_size, mp_uint_t *fmt_size, mp_const_obj_t self_in,
                           int base, const char *prefix, char base_char, char comma) {
    fmt_int_t num;
    if (MP_OBJ_IS_SMALL_INT(self_in)) {
        // A small int; get the integer value to format.
        num = mp_obj_get_int(self_in);
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
    } else if (MP_OBJ_IS_TYPE(self_in, &mp_type_int)) {
        // Not a small int.
#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG
        const mp_obj_int_t *self = self_in;
        // Get the value to format; mp_obj_get_int truncates to mp_int_t.
        num = self->val;
#else
        // Delegate to the implementation for the long int.
        return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma);
#endif
#endif
    } else {
        // Not an int.
        **buf = '\0';
        *fmt_size = 0;
        return *buf;
    }

    char sign = '\0';
    if (num < 0) {
        num = -num;
        sign = '-';
    }

    uint needed_size = int_as_str_size_formatted(base, prefix, comma);
    if (needed_size > *buf_size) {
        *buf = m_new(char, needed_size);
        *buf_size = needed_size;
    }
    char *str = *buf;

    char *b = str + needed_size;
    *(--b) = '\0';
    char *last_comma = b;

    if (num == 0) {
        *(--b) = '0';
    } else {
        do {
            int c = num % base;
            num /= base;
            if (c >= 10) {
                c += base_char - 10;
            } else {
                c += '0';
            }
            *(--b) = c;
            if (comma && num != 0 && b > str && (last_comma - b) == 3) {
                *(--b) = comma;
                last_comma = b;
            }
        }
        while (b > str && num != 0);
    }
    if (prefix) {
        size_t prefix_len = strlen(prefix);
        char *p = b - prefix_len;
        if (p > str) {
            b = p;
            while (*prefix) {
                *p++ = *prefix++;
            }
        }
    }
    if (sign && b > str) {
        *(--b) = sign;
    }
    *fmt_size = *buf + needed_size - b - 1;

    return b;
}

#if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

int mp_obj_int_sign(mp_obj_t self_in) {
    mp_int_t val = mp_obj_get_int(self_in);
    if (val < 0) {
        return -1;
    } else if (val > 0) {
        return 1;
    } else {
        return 0;
    }
}

// This must handle int and bool types, and must raise a
// TypeError if the argument is not integral
mp_obj_t mp_obj_int_abs(mp_obj_t self_in) {
    mp_int_t val = mp_obj_get_int(self_in);
    if (val < 0) {
        val = -val;
    }
    return MP_OBJ_NEW_SMALL_INT(val);
}

// This is called for operations on SMALL_INT that are not handled by mp_unary_op
mp_obj_t mp_obj_int_unary_op(mp_uint_t op, mp_obj_t o_in) {
    return MP_OBJ_NULL; // op not supported
}

// This is called for operations on SMALL_INT that are not handled by mp_binary_op
mp_obj_t mp_obj_int_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in);
}

// This is called only with strings whose value doesn't fit in SMALL_INT
mp_obj_t mp_obj_new_int_from_str_len(const char **str, mp_uint_t len, bool neg, mp_uint_t base) {
    nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "long int not supported in this build"));
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ll(long long val) {
    nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
    return mp_const_none;
}

// This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT)
mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) {
    nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
    return mp_const_none;
}

mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) {
    // SMALL_INT accepts only signed numbers, so make sure the input
    // value fits completely in the small-int positive range.
    if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
    return mp_const_none;
}

#if MICROPY_PY_BUILTINS_FLOAT
mp_obj_t mp_obj_new_int_from_float(mp_float_t val) {
    int cl = fpclassify(val);
    if (cl == FP_INFINITE) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OverflowError, "can't convert inf to int"));
    } else if (cl == FP_NAN) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "can't convert NaN to int"));
    } else {
        mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val);
        if (icl == MP_FP_CLASS_FIT_SMALLINT) {
            return MP_OBJ_NEW_SMALL_INT((mp_int_t)val);
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "float too big"));
        }
    }
}
#endif

mp_obj_t mp_obj_new_int(mp_int_t value) {
    if (MP_SMALL_INT_FITS(value)) {
        return MP_OBJ_NEW_SMALL_INT(value);
    }
    nlr_raise(mp_obj_new_exception_msg(&mp_type_OverflowError, "small int overflow"));
    return mp_const_none;
}

mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}

#if MICROPY_PY_BUILTINS_FLOAT
mp_float_t mp_obj_int_as_float(mp_obj_t self_in) {
    return MP_OBJ_SMALL_INT_VALUE(self_in);
}
#endif

#endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE

// This dispatcher function is expected to be independent of the implementation of long int
// It handles the extra cases for integer-like arithmetic
mp_obj_t mp_obj_int_binary_op_extra_cases(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
    if (rhs_in == mp_const_false) {
        // false acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0));
    } else if (rhs_in == mp_const_true) {
        // true acts as 0
        return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1));
    } else if (op == MP_BINARY_OP_MULTIPLY) {
        if (MP_OBJ_IS_STR(rhs_in) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_bytes) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(rhs_in, &mp_type_list)) {
            // multiply is commutative for these types, so delegate to them
            return mp_binary_op(op, rhs_in, lhs_in);
        }
    }
    return MP_OBJ_NULL; // op not supported
}

// this is a classmethod
STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support long ints
    // TODO: Support byteorder param (assumes 'little' at the moment)
    // TODO: Support signed param (assumes signed=False at the moment)
    (void)n_args;

    // get the buffer info
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ);

    // convert the bytes to an integer
    mp_uint_t value = 0;
    for (const byte* buf = (const byte*)bufinfo.buf + bufinfo.len - 1; buf >= (byte*)bufinfo.buf; buf--) {
        value = (value << 8) | *buf;
    }

    return mp_obj_new_int_from_uint(value);
}

STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 2, 3, int_from_bytes);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj));

STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) {
    // TODO: Support byteorder param (assumes 'little')
    // TODO: Support signed param (assumes signed=False)
    (void)n_args;

    mp_uint_t len = MP_OBJ_SMALL_INT_VALUE(args[1]);

    vstr_t vstr;
    vstr_init_len(&vstr, len);
    byte *data = (byte*)vstr.buf;
    memset(data, 0, len);

    #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE
    if (!MP_OBJ_IS_SMALL_INT(args[0])) {
        mp_obj_int_to_bytes_impl(args[0], false, len, data);
    } else
    #endif
    {
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]);
        mp_binary_set_int(MIN((size_t)len, sizeof(val)), false, data, val);
    }

    return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 2, 4, int_to_bytes);

STATIC const mp_rom_map_elem_t int_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) },
    { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) },
};

STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table);

const mp_obj_type_t mp_type_int = {
    { &mp_type_type },
    .name = MP_QSTR_int,
    .print = mp_obj_int_print,
    .make_new = mp_obj_int_make_new,
    .unary_op = mp_obj_int_unary_op,
    .binary_op = mp_obj_int_binary_op,
    .locals_dict = (mp_obj_dict_t*)&int_locals_dict,
};