Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.
This a port of MicroPython to the mbed Classic platform.
This provides an interpreter running on the board's USB serial connection.
Getting Started
Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:
MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM Type "help()" for more information. >>>
Then you can start using micropython. For example:
>>> from mbed import DigitalOut >>> from pins import LED1 >>> led = DigitalOut(LED1) >>> led.write(1)
Requirements
You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.
Caveats
This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.
- Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
- Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
- The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
- Exceptions from the mbed classes are not yet handled.
- Asynchronous processing (e.g. events on inputs) is not supported.
Credits
- Damien P. George and other contributors who created micropython.
- Colin Hogben, author of this port.
py/modmath.c
- Committer:
- Colin Hogben
- Date:
- 2016-04-27
- Revision:
- 10:33521d742af1
- Parent:
- 0:5868e8752d44
File content as of revision 10:33521d742af1:
/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/builtin.h" #include "py/nlr.h" #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH #include <math.h> /// \module math - mathematical functions /// /// The `math` module provides some basic mathematical funtions for /// working with floating-point numbers. STATIC NORETURN void math_error(void) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "math domain error")); } #define MATH_FUN_1(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_2(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_1_TO_BOOL(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_1_TO_INT(py_name, c_name) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \ STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \ mp_float_t x = mp_obj_get_float(x_obj); \ if (error_condition) { \ math_error(); \ } \ return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \ } \ STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name); #if MP_NEED_LOG2 // 1.442695040888963407354163704 is 1/_M_LN2 #define log2(x) (log(x) * 1.442695040888963407354163704) #endif /// \function sqrt(x) /// Returns the square root of `x`. MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0)) /// \function pow(x, y) /// Returns `x` to the power of `y`. MATH_FUN_2(pow, pow) /// \function exp(x) MATH_FUN_1(exp, exp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS /// \function expm1(x) MATH_FUN_1(expm1, expm1) /// \function log2(x) MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0)) /// \function log10(x) MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0)) /// \function cosh(x) MATH_FUN_1(cosh, cosh) /// \function sinh(x) MATH_FUN_1(sinh, sinh) /// \function tanh(x) MATH_FUN_1(tanh, tanh) /// \function acosh(x) MATH_FUN_1(acosh, acosh) /// \function asinh(x) MATH_FUN_1(asinh, asinh) /// \function atanh(x) MATH_FUN_1(atanh, atanh) #endif /// \function cos(x) MATH_FUN_1(cos, cos) /// \function sin(x) MATH_FUN_1(sin, sin) /// \function tan(x) MATH_FUN_1(tan, tan) /// \function acos(x) MATH_FUN_1(acos, acos) /// \function asin(x) MATH_FUN_1(asin, asin) /// \function atan(x) MATH_FUN_1(atan, atan) /// \function atan2(y, x) MATH_FUN_2(atan2, atan2) /// \function ceil(x) MATH_FUN_1_TO_INT(ceil, ceil) /// \function copysign(x, y) MATH_FUN_2(copysign, copysign) /// \function fabs(x) MATH_FUN_1(fabs, fabs) /// \function floor(x) MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float /// \function fmod(x, y) MATH_FUN_2(fmod, fmod) /// \function isfinite(x) MATH_FUN_1_TO_BOOL(isfinite, isfinite) /// \function isinf(x) MATH_FUN_1_TO_BOOL(isinf, isinf) /// \function isnan(x) MATH_FUN_1_TO_BOOL(isnan, isnan) /// \function trunc(x) MATH_FUN_1_TO_INT(trunc, trunc) /// \function ldexp(x, exp) MATH_FUN_2(ldexp, ldexp) #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS /// \function erf(x) /// Return the error function of `x`. MATH_FUN_1(erf, erf) /// \function erfc(x) /// Return the complementary error function of `x`. MATH_FUN_1(erfc, erfc) /// \function gamma(x) /// Return the gamma function of `x`. MATH_FUN_1(gamma, tgamma) /// \function lgamma(x) /// return the natural logarithm of the gamma function of `x`. MATH_FUN_1(lgamma, lgamma) #endif //TODO: factorial, fsum // Function that takes a variable number of arguments // log(x[, base]) STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) { mp_float_t x = mp_obj_get_float(args[0]); if (x <= (mp_float_t)0.0) { math_error(); } mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x); if (n_args == 1) { return mp_obj_new_float(l); } else { mp_float_t base = mp_obj_get_float(args[1]); if (base <= (mp_float_t)0.0) { math_error(); } return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base)); } } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log); // Functions that return a tuple /// \function frexp(x) /// Converts a floating-point number to fractional and integral components. STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) { int int_exponent = 0; mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(significand); tuple[1] = mp_obj_new_int(int_exponent); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp); /// \function modf(x) STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) { mp_float_t int_part = 0.0; mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part); mp_obj_t tuple[2]; tuple[0] = mp_obj_new_float(fractional_part); tuple[1] = mp_obj_new_float(int_part); return mp_obj_new_tuple(2, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf); // Angular conversions /// \function radians(x) STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians); /// \function degrees(x) STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) { return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees); STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = { { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) }, { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) }, { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) }, { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) }, { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) }, { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) }, { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) }, { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) }, { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) }, { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) }, { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) }, { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) }, { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) }, { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) }, { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) }, { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) }, { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) }, { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) }, { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) }, { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) }, { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) }, { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) }, { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) }, { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) }, { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) }, { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) }, { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) }, { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) }, { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) }, { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) }, { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) }, #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) }, { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) }, { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) }, { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) }, #endif }; STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table); const mp_obj_module_t mp_module_math = { .base = { &mp_type_module }, .name = MP_QSTR_math, .globals = (mp_obj_dict_t*)&mp_module_math_globals, }; #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH