Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.
This a port of MicroPython to the mbed Classic platform.
This provides an interpreter running on the board's USB serial connection.
Getting Started
Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:
MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM Type "help()" for more information. >>>
Then you can start using micropython. For example:
>>> from mbed import DigitalOut >>> from pins import LED1 >>> led = DigitalOut(LED1) >>> led.write(1)
Requirements
You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.
Caveats
This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.
- Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
- Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
- The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
- Exceptions from the mbed classes are not yet handled.
- Asynchronous processing (e.g. events on inputs) is not supported.
Credits
- Damien P. George and other contributors who created micropython.
- Colin Hogben, author of this port.
py/map.c
- Committer:
- Colin Hogben
- Date:
- 2016-04-27
- Revision:
- 10:33521d742af1
- Parent:
- 2:c89e95946844
File content as of revision 10:33521d742af1:
/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdint.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include "py/mpconfig.h" #include "py/misc.h" #include "py/runtime0.h" #include "py/runtime.h" // Fixed empty map. Useful when need to call kw-receiving functions // without any keywords from C, etc. const mp_map_t mp_const_empty_map = { .all_keys_are_qstrs = 0, .is_fixed = 1, .is_ordered = 1, .used = 0, .alloc = 0, .table = NULL, }; // This table of sizes is used to control the growth of hash tables. // The first set of sizes are chosen so the allocation fits exactly in a // 4-word GC block, and it's not so important for these small values to be // prime. The latter sizes are prime and increase at an increasing rate. STATIC uint16_t hash_allocation_sizes[] = { 0, 2, 4, 6, 8, 10, 12, // +2 17, 23, 29, 37, 47, 59, 73, // *1.25 97, 127, 167, 223, 293, 389, 521, 691, 919, 1223, 1627, 2161, // *1.33 3229, 4831, 7243, 10861, 16273, 24407, 36607, 54907, // *1.5 }; STATIC mp_uint_t get_hash_alloc_greater_or_equal_to(mp_uint_t x) { for (size_t i = 0; i < MP_ARRAY_SIZE(hash_allocation_sizes); i++) { if (hash_allocation_sizes[i] >= x) { return hash_allocation_sizes[i]; } } // ran out of primes in the table! // return something sensible, at least make it odd return (x + x / 2) | 1; } /******************************************************************************/ /* map */ void mp_map_init(mp_map_t *map, mp_uint_t n) { if (n == 0) { map->alloc = 0; map->table = NULL; } else { map->alloc = n; map->table = m_new0(mp_map_elem_t, map->alloc); } map->used = 0; map->all_keys_are_qstrs = 1; map->is_fixed = 0; map->is_ordered = 0; } void mp_map_init_fixed_table(mp_map_t *map, mp_uint_t n, const mp_obj_t *table) { map->alloc = n; map->used = n; map->all_keys_are_qstrs = 1; map->is_fixed = 1; map->is_ordered = 1; map->table = (mp_map_elem_t*)table; } mp_map_t *mp_map_new(mp_uint_t n) { mp_map_t *map = m_new(mp_map_t, 1); mp_map_init(map, n); return map; } // Differentiate from mp_map_clear() - semantics is different void mp_map_deinit(mp_map_t *map) { if (!map->is_fixed) { m_del(mp_map_elem_t, map->table, map->alloc); } map->used = map->alloc = 0; } void mp_map_free(mp_map_t *map) { mp_map_deinit(map); m_del_obj(mp_map_t, map); } void mp_map_clear(mp_map_t *map) { if (!map->is_fixed) { m_del(mp_map_elem_t, map->table, map->alloc); } map->alloc = 0; map->used = 0; map->all_keys_are_qstrs = 1; map->is_fixed = 0; map->table = NULL; } STATIC void mp_map_rehash(mp_map_t *map) { mp_uint_t old_alloc = map->alloc; mp_uint_t new_alloc = get_hash_alloc_greater_or_equal_to(map->alloc + 1); mp_map_elem_t *old_table = map->table; mp_map_elem_t *new_table = m_new0(mp_map_elem_t, new_alloc); // If we reach this point, table resizing succeeded, now we can edit the old map. map->alloc = new_alloc; map->used = 0; map->all_keys_are_qstrs = 1; map->table = new_table; for (mp_uint_t i = 0; i < old_alloc; i++) { if (old_table[i].key != MP_OBJ_NULL && old_table[i].key != MP_OBJ_SENTINEL) { mp_map_lookup(map, old_table[i].key, MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = old_table[i].value; } } m_del(mp_map_elem_t, old_table, old_alloc); } // MP_MAP_LOOKUP behaviour: // - returns NULL if not found, else the slot it was found in with key,value non-null // MP_MAP_LOOKUP_ADD_IF_NOT_FOUND behaviour: // - returns slot, with key non-null and value=MP_OBJ_NULL if it was added // MP_MAP_LOOKUP_REMOVE_IF_FOUND behaviour: // - returns NULL if not found, else the slot if was found in with key null and value non-null mp_map_elem_t *mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind) { if (map->is_fixed && lookup_kind != MP_MAP_LOOKUP) { // can't add/remove from a fixed array return NULL; } // Work out if we can compare just pointers bool compare_only_ptrs = map->all_keys_are_qstrs; if (compare_only_ptrs) { if (MP_OBJ_IS_QSTR(index)) { // Index is a qstr, so can just do ptr comparison. } else if (MP_OBJ_IS_TYPE(index, &mp_type_str)) { // Index is a non-interned string. // We can either intern the string, or force a full equality comparison. // We chose the latter, since interning costs time and potentially RAM, // and it won't necessarily benefit subsequent calls because these calls // most likely won't pass the newly-interned string. compare_only_ptrs = false; } else if (lookup_kind != MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { // If we are not adding, then we can return straight away a failed // lookup because we know that the index will never be found. return NULL; } } // if the map is an ordered array then we must do a brute force linear search if (map->is_ordered) { for (mp_map_elem_t *elem = &map->table[0], *top = &map->table[map->used]; elem < top; elem++) { if (elem->key == index || (!compare_only_ptrs && mp_obj_equal(elem->key, index))) { if (MP_UNLIKELY(lookup_kind == MP_MAP_LOOKUP_REMOVE_IF_FOUND)) { elem->key = MP_OBJ_SENTINEL; // keep elem->value so that caller can access it if needed } return elem; } } if (MP_LIKELY(lookup_kind != MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)) { return NULL; } // TODO shrink array down over any previously-freed slots if (map->used == map->alloc) { // TODO: Alloc policy map->alloc += 4; map->table = m_renew(mp_map_elem_t, map->table, map->used, map->alloc); mp_seq_clear(map->table, map->used, map->alloc, sizeof(*map->table)); } mp_map_elem_t *elem = map->table + map->used++; elem->key = index; if (!MP_OBJ_IS_QSTR(index)) { map->all_keys_are_qstrs = 0; } return elem; } // map is a hash table (not an ordered array), so do a hash lookup if (map->alloc == 0) { if (lookup_kind == MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { mp_map_rehash(map); } else { return NULL; } } // get hash of index, with fast path for common case of qstr mp_uint_t hash; if (MP_OBJ_IS_QSTR(index)) { hash = qstr_hash(MP_OBJ_QSTR_VALUE(index)); } else { hash = MP_OBJ_SMALL_INT_VALUE(mp_unary_op(MP_UNARY_OP_HASH, index)); } mp_uint_t pos = hash % map->alloc; mp_uint_t start_pos = pos; mp_map_elem_t *avail_slot = NULL; for (;;) { mp_map_elem_t *slot = &map->table[pos]; if (slot->key == MP_OBJ_NULL) { // found NULL slot, so index is not in table if (lookup_kind == MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { map->used += 1; if (avail_slot == NULL) { avail_slot = slot; } avail_slot->key = index; avail_slot->value = MP_OBJ_NULL; if (!MP_OBJ_IS_QSTR(index)) { map->all_keys_are_qstrs = 0; } return avail_slot; } else { return NULL; } } else if (slot->key == MP_OBJ_SENTINEL) { // found deleted slot, remember for later if (avail_slot == NULL) { avail_slot = slot; } } else if (slot->key == index || (!compare_only_ptrs && mp_obj_equal(slot->key, index))) { // found index // Note: CPython does not replace the index; try x={True:'true'};x[1]='one';x if (lookup_kind == MP_MAP_LOOKUP_REMOVE_IF_FOUND) { // delete element in this slot map->used--; if (map->table[(pos + 1) % map->alloc].key == MP_OBJ_NULL) { // optimisation if next slot is empty slot->key = MP_OBJ_NULL; } else { slot->key = MP_OBJ_SENTINEL; } // keep slot->value so that caller can access it if needed } return slot; } // not yet found, keep searching in this table pos = (pos + 1) % map->alloc; if (pos == start_pos) { // search got back to starting position, so index is not in table if (lookup_kind == MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { if (avail_slot != NULL) { // there was an available slot, so use that map->used++; avail_slot->key = index; avail_slot->value = MP_OBJ_NULL; if (!MP_OBJ_IS_QSTR(index)) { map->all_keys_are_qstrs = 0; } return avail_slot; } else { // not enough room in table, rehash it mp_map_rehash(map); // restart the search for the new element start_pos = pos = hash % map->alloc; } } else { return NULL; } } } } /******************************************************************************/ /* set */ #if MICROPY_PY_BUILTINS_SET void mp_set_init(mp_set_t *set, mp_uint_t n) { set->alloc = n; set->used = 0; set->table = m_new0(mp_obj_t, set->alloc); } STATIC void mp_set_rehash(mp_set_t *set) { mp_uint_t old_alloc = set->alloc; mp_obj_t *old_table = set->table; set->alloc = get_hash_alloc_greater_or_equal_to(set->alloc + 1); set->used = 0; set->table = m_new0(mp_obj_t, set->alloc); for (mp_uint_t i = 0; i < old_alloc; i++) { if (old_table[i] != MP_OBJ_NULL && old_table[i] != MP_OBJ_SENTINEL) { mp_set_lookup(set, old_table[i], MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); } } m_del(mp_obj_t, old_table, old_alloc); } mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind) { // Note: lookup_kind can be MP_MAP_LOOKUP_ADD_IF_NOT_FOUND_OR_REMOVE_IF_FOUND which // is handled by using bitwise operations. if (set->alloc == 0) { if (lookup_kind & MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { mp_set_rehash(set); } else { return MP_OBJ_NULL; } } mp_uint_t hash = MP_OBJ_SMALL_INT_VALUE(mp_unary_op(MP_UNARY_OP_HASH, index)); mp_uint_t pos = hash % set->alloc; mp_uint_t start_pos = pos; mp_obj_t *avail_slot = NULL; for (;;) { mp_obj_t elem = set->table[pos]; if (elem == MP_OBJ_NULL) { // found NULL slot, so index is not in table if (lookup_kind & MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { if (avail_slot == NULL) { avail_slot = &set->table[pos]; } set->used++; *avail_slot = index; return index; } else { return MP_OBJ_NULL; } } else if (elem == MP_OBJ_SENTINEL) { // found deleted slot, remember for later if (avail_slot == NULL) { avail_slot = &set->table[pos]; } } else if (mp_obj_equal(elem, index)) { // found index if (lookup_kind & MP_MAP_LOOKUP_REMOVE_IF_FOUND) { // delete element set->used--; if (set->table[(pos + 1) % set->alloc] == MP_OBJ_NULL) { // optimisation if next slot is empty set->table[pos] = MP_OBJ_NULL; } else { set->table[pos] = MP_OBJ_SENTINEL; } } return elem; } // not yet found, keep searching in this table pos = (pos + 1) % set->alloc; if (pos == start_pos) { // search got back to starting position, so index is not in table if (lookup_kind & MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) { if (avail_slot != NULL) { // there was an available slot, so use that set->used++; *avail_slot = index; return index; } else { // not enough room in table, rehash it mp_set_rehash(set); // restart the search for the new element start_pos = pos = hash % set->alloc; } } else { return MP_OBJ_NULL; } } } } mp_obj_t mp_set_remove_first(mp_set_t *set) { for (mp_uint_t pos = 0; pos < set->alloc; pos++) { if (MP_SET_SLOT_IS_FILLED(set, pos)) { mp_obj_t elem = set->table[pos]; // delete element set->used--; if (set->table[(pos + 1) % set->alloc] == MP_OBJ_NULL) { // optimisation if next slot is empty set->table[pos] = MP_OBJ_NULL; } else { set->table[pos] = MP_OBJ_SENTINEL; } return elem; } } return MP_OBJ_NULL; } void mp_set_clear(mp_set_t *set) { m_del(mp_obj_t, set->table, set->alloc); set->alloc = 0; set->used = 0; set->table = NULL; } #endif // MICROPY_PY_BUILTINS_SET #if defined(DEBUG_PRINT) && DEBUG_PRINT void mp_map_dump(mp_map_t *map) { for (mp_uint_t i = 0; i < map->alloc; i++) { if (map->table[i].key != NULL) { mp_obj_print(map->table[i].key, PRINT_REPR); } else { printf("(nil)"); } printf(": %p\n", map->table[i].value); } printf("---\n"); } #endif