Port of MicroPython to the mbed platform. See micropython-repl for an interactive program.
This a port of MicroPython to the mbed Classic platform.
This provides an interpreter running on the board's USB serial connection.
Getting Started
Import the micropython-repl program into your IDE workspace on developer.mbed.org. Compile and download to your board. Connect to the USB serial port in your usual manner. You should get a startup message similar to the following:
MicroPython v1.7-155-gdddcdd8 on 2016-04-23; K64F with ARM Type "help()" for more information. >>>
Then you can start using micropython. For example:
>>> from mbed import DigitalOut >>> from pins import LED1 >>> led = DigitalOut(LED1) >>> led.write(1)
Requirements
You need approximately 100K of flash memory, so this will be no good for boards with smaller amounts of storage.
Caveats
This can be considered an alpha release of the port; things may not work; APIs may change in later releases. It is NOT an official part part the micropython project, so if anything doesn't work, blame me. If it does work, most of the credit is due to micropython.
- Only a few of the mbed classes are available in micropython so far, and not all methods of those that are.
- Only a few boards have their full range of pin names available; for others, only a few standard ones (USBTX, USBRX, LED1) are implemented.
- The garbage collector is not yet implemented. The interpreter will gradually consume memory and then fail.
- Exceptions from the mbed classes are not yet handled.
- Asynchronous processing (e.g. events on inputs) is not supported.
Credits
- Damien P. George and other contributors who created micropython.
- Colin Hogben, author of this port.
py/malloc.c
- Committer:
- Colin Hogben
- Date:
- 2016-04-27
- Revision:
- 10:33521d742af1
- Parent:
- 0:5868e8752d44
File content as of revision 10:33521d742af1:
/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include "py/mpconfig.h" #include "py/misc.h" #include "py/mpstate.h" #if 0 // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif #if MICROPY_MEM_STATS #define UPDATE_PEAK() { if (MP_STATE_MEM(current_bytes_allocated) > MP_STATE_MEM(peak_bytes_allocated)) MP_STATE_MEM(peak_bytes_allocated) = MP_STATE_MEM(current_bytes_allocated); } #endif #if MICROPY_ENABLE_GC #include "py/gc.h" // We redirect standard alloc functions to GC heap - just for the rest of // this module. In the rest of micropython source, system malloc can be // freely accessed - for interfacing with system and 3rd-party libs for // example. On the other hand, some (e.g. bare-metal) ports may use GC // heap as system heap, so, to avoid warnings, we do undef's first. #undef malloc #undef free #undef realloc #define malloc(b) gc_alloc((b), false) #define malloc_with_finaliser(b) gc_alloc((b), true) #define free gc_free #define realloc(ptr, n) gc_realloc(ptr, n, true) #define realloc_ext(ptr, n, mv) gc_realloc(ptr, n, mv) #else STATIC void *realloc_ext(void *ptr, size_t n_bytes, bool allow_move) { if (allow_move) { return realloc(ptr, n_bytes); } else { // We are asked to resize, but without moving the memory region pointed to // by ptr. Unless the underlying memory manager has special provision for // this behaviour there is nothing we can do except fail to resize. return NULL; } } #endif // MICROPY_ENABLE_GC void *m_malloc(size_t num_bytes) { void *ptr = malloc(num_bytes); if (ptr == NULL && num_bytes != 0) { return m_malloc_fail(num_bytes); } #if MICROPY_MEM_STATS MP_STATE_MEM(total_bytes_allocated) += num_bytes; MP_STATE_MEM(current_bytes_allocated) += num_bytes; UPDATE_PEAK(); #endif DEBUG_printf("malloc %d : %p\n", num_bytes, ptr); return ptr; } void *m_malloc_maybe(size_t num_bytes) { void *ptr = malloc(num_bytes); #if MICROPY_MEM_STATS MP_STATE_MEM(total_bytes_allocated) += num_bytes; MP_STATE_MEM(current_bytes_allocated) += num_bytes; UPDATE_PEAK(); #endif DEBUG_printf("malloc %d : %p\n", num_bytes, ptr); return ptr; } #if MICROPY_ENABLE_FINALISER void *m_malloc_with_finaliser(size_t num_bytes) { void *ptr = malloc_with_finaliser(num_bytes); if (ptr == NULL && num_bytes != 0) { return m_malloc_fail(num_bytes); } #if MICROPY_MEM_STATS MP_STATE_MEM(total_bytes_allocated) += num_bytes; MP_STATE_MEM(current_bytes_allocated) += num_bytes; UPDATE_PEAK(); #endif DEBUG_printf("malloc %d : %p\n", num_bytes, ptr); return ptr; } #endif void *m_malloc0(size_t num_bytes) { void *ptr = m_malloc(num_bytes); if (ptr == NULL && num_bytes != 0) { return m_malloc_fail(num_bytes); } memset(ptr, 0, num_bytes); return ptr; } #if MICROPY_MALLOC_USES_ALLOCATED_SIZE void *m_realloc(void *ptr, size_t old_num_bytes, size_t new_num_bytes) { #else void *m_realloc(void *ptr, size_t new_num_bytes) { #endif void *new_ptr = realloc(ptr, new_num_bytes); if (new_ptr == NULL && new_num_bytes != 0) { return m_malloc_fail(new_num_bytes); } #if MICROPY_MEM_STATS // At first thought, "Total bytes allocated" should only grow, // after all, it's *total*. But consider for example 2K block // shrunk to 1K and then grown to 2K again. It's still 2K // allocated total. If we process only positive increments, // we'll count 3K. size_t diff = new_num_bytes - old_num_bytes; MP_STATE_MEM(total_bytes_allocated) += diff; MP_STATE_MEM(current_bytes_allocated) += diff; UPDATE_PEAK(); #endif DEBUG_printf("realloc %p, %d, %d : %p\n", ptr, old_num_bytes, new_num_bytes, new_ptr); return new_ptr; } #if MICROPY_MALLOC_USES_ALLOCATED_SIZE void *m_realloc_maybe(void *ptr, size_t old_num_bytes, size_t new_num_bytes, bool allow_move) { #else void *m_realloc_maybe(void *ptr, size_t new_num_bytes, bool allow_move) { #endif void *new_ptr = realloc_ext(ptr, new_num_bytes, allow_move); #if MICROPY_MEM_STATS // At first thought, "Total bytes allocated" should only grow, // after all, it's *total*. But consider for example 2K block // shrunk to 1K and then grown to 2K again. It's still 2K // allocated total. If we process only positive increments, // we'll count 3K. // Also, don't count failed reallocs. if (!(new_ptr == NULL && new_num_bytes != 0)) { size_t diff = new_num_bytes - old_num_bytes; MP_STATE_MEM(total_bytes_allocated) += diff; MP_STATE_MEM(current_bytes_allocated) += diff; UPDATE_PEAK(); } #endif DEBUG_printf("realloc %p, %d, %d : %p\n", ptr, old_num_bytes, new_num_bytes, new_ptr); return new_ptr; } #if MICROPY_MALLOC_USES_ALLOCATED_SIZE void m_free(void *ptr, size_t num_bytes) { #else void m_free(void *ptr) { #endif free(ptr); #if MICROPY_MEM_STATS MP_STATE_MEM(current_bytes_allocated) -= num_bytes; #endif DEBUG_printf("free %p, %d\n", ptr, num_bytes); } #if MICROPY_MEM_STATS size_t m_get_total_bytes_allocated(void) { return MP_STATE_MEM(total_bytes_allocated); } size_t m_get_current_bytes_allocated(void) { return MP_STATE_MEM(current_bytes_allocated); } size_t m_get_peak_bytes_allocated(void) { return MP_STATE_MEM(peak_bytes_allocated); } #endif