this is 2/2 of the progect this is the master board which has a wifi module ESP8266, an RF transiever nrf module , and an LCD screen with an I2C back pack all communicating with the slave board
Fork of TextLCD by
TextLCD.cpp
- Committer:
- wim
- Date:
- 2014-08-28
- Revision:
- 33:900a94bc7585
- Parent:
- 32:59c4b8f648d4
- Child:
- 34:e5a0dcb43ecc
File content as of revision 33:900a94bc7585:
/* mbed TextLCD Library, for a 4-bit LCD based on HD44780 * Copyright (c) 2007-2010, sford, http://mbed.org * 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs * 2013, v02: WH, Added I2C and SPI bus interfaces * 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers * 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess * 2013, v05: WH, Added support for 8x2B, added some UDCs * 2013, v06: WH, Added support for devices that use internal DC/DC converters * 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT * 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins * 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032 * 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers * 2014, v12: WH, Added support for native I2C controller PCF2119 and native I2C/SPI controllers SSD1803, ST7036, added setContrast method (by JH1PJL) for supported devices (eg ST7032i) * 2014, v13: WH, Added support for controllers US2066/SSD1311 (OLED), added setUDCBlink method for supported devices (eg SSD1803), fixed issue in setPower() *@Todo Add AC780S/KS0066i * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "TextLCD.h" #include "mbed.h" //For Testing only //DigitalOut led1(LED1); //DigitalOut led2(LED2); // led2=!led2; // User Defined Characters (UDCs) are defined by an 8 byte bitpattern. The P0..P5 form the character pattern. // P7 P6 P5 P4 P3 P2 P1 P0 // 0 B1 B0 x 0 1 1 1 0 // 1 B1 B0 x 1 0 0 0 1 // . ............. // 7 B1 B0 x 1 0 0 0 1 // // Blinking UDCs are enabled when a specific controlbit (BE) is set. // The blinking pixels in the UDC can be controlled by setting additional bits in the UDC bitpattern. // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE. // B1 B0 Mode // 0 0 No Blinking in this row of the UDC // 0 1 Enabled pixels in P4 will blink // 1 x Enabled pixels in P0..P4 will blink /** Some sample User Defined Chars 5x7 dots */ //const char udc_ae[] = {0x00, 0x00, 0x1B, 0x05, 0x1F, 0x14, 0x1F, 0x00}; //æ //const char udc_0e[] = {0x00, 0x00, 0x0E, 0x13, 0x15, 0x19, 0x0E, 0x00}; //ø //const char udc_ao[] = {0x0E, 0x0A, 0x0E, 0x01, 0x0F, 0x11, 0x0F, 0x00}; //å //const char udc_AE[] = {0x0F, 0x14, 0x14, 0x1F, 0x14, 0x14, 0x17, 0x00}; //Æ //const char udc_0E[] = {0x0E, 0x13, 0x15, 0x15, 0x15, 0x19, 0x0E, 0x00}; //Ø //const char udc_Ao[] = {0x0E, 0x0A, 0x0E, 0x11, 0x1F, 0x11, 0x11, 0x00}; //Å //const char udc_PO[] = {0x04, 0x0A, 0x0A, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Open //const char udc_PC[] = {0x1C, 0x10, 0x08, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Closed //const char udc_alpha[] = {0x00, 0x00, 0x0D, 0x12, 0x12, 0x12, 0x0D, 0x00}; //alpha //const char udc_ohm[] = {0x0E, 0x11, 0x11, 0x11, 0x0A, 0x0A, 0x1B, 0x00}; //ohm //const char udc_sigma[] = {0x1F, 0x08, 0x04, 0x02, 0x04, 0x08, 0x1F, 0x00}; //sigma //const char udc_pi[] = {0x1F, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x00}; //pi //const char udc_root[] = {0x07, 0x04, 0x04, 0x04, 0x14, 0x0C, 0x04, 0x00}; //root const char udc_0[] = {0x18, 0x14, 0x12, 0x11, 0x12, 0x14, 0x18, 0x00}; // |> const char udc_1[] = {0x03, 0x05, 0x09, 0x11, 0x09, 0x05, 0x03, 0x00}; // <| const char udc_2[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // | const char udc_3[] = {0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00}; // || const char udc_4[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00}; // ||| const char udc_5[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x00}; // = const char udc_6[] = {0x15, 0x0a, 0x15, 0x0a, 0x15, 0x0a, 0x15, 0x00}; // checkerboard const char udc_7[] = {0x10, 0x08, 0x04, 0x02, 0x01, 0x00, 0x10, 0x00}; // \ const char udc_degr[] = {0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00, 0x00}; // Degree symbol const char udc_TM_T[] = {0x1F, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00}; // Trademark T const char udc_TM_M[] = {0x11, 0x1B, 0x15, 0x11, 0x00, 0x00, 0x00, 0x00}; // Trademark M //const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full //const char udc_Bat_Ha[] = {0x0E, 0x11, 0x13, 0x17, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half //const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x00}; // Battery Low //const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full //const char udc_Bat_Ha[] = {0x0E, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half //const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x00}; // Battery Low const char udc_Bat_Hi[] = {0x8E, 0x9F, 0x9F, 0x9F, 0x9F, 0x9F, 0x9F, 0x00}; // Battery Full, Blink const char udc_Bat_Ha[] = {0x8E, 0x91, 0x91, 0x9F, 0x9F, 0x9F, 0x9F, 0x00}; // Battery Half, Blink const char udc_Bat_Lo[] = {0x8E, 0x91, 0x91, 0x91, 0x91, 0x9F, 0x9F, 0x00}; // Battery Low, Blink const char udc_AC[] = {0x0A, 0x0A, 0x1F, 0x11, 0x0E, 0x04, 0x04, 0x00}; // AC Power //const char udc_smiley[] = {0x00, 0x0A, 0x00, 0x04, 0x11, 0x0E, 0x00, 0x00}; // Smiley //const char udc_droopy[] = {0x00, 0x0A, 0x00, 0x04, 0x00, 0x0E, 0x11, 0x00}; // Droopey //const char udc_note[] = {0x01, 0x03, 0x05, 0x09, 0x0B, 0x1B, 0x18, 0x00}; // Note //const char udc_bar_1[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // Bar 1 //const char udc_bar_2[] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x00}; // Bar 11 //const char udc_bar_3[] = {0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x00}; // Bar 111 //const char udc_bar_4[] = {0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x00}; // Bar 1111 //const char udc_bar_5[] = {0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Bar 11111 //const char udc_ch_1[] = {0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00}; // Hor bars 4 //const char udc_ch_2[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f}; // Hor bars 4 (inverted) //const char udc_ch_3[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15}; // Ver bars 3 //const char udc_ch_4[] = {0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a}; // Ver bars 3 (inverted) //const char udc_ch_yr[] = {0x08, 0x0f, 0x12, 0x0f, 0x0a, 0x1f, 0x02, 0x02}; // Year (kana) //const char udc_ch_mo[] = {0x0f, 0x09, 0x0f, 0x09, 0x0f, 0x09, 0x09, 0x13}; // Month (kana) //const char udc_ch_dy[] = {0x1f, 0x11, 0x11, 0x1f, 0x11, 0x11, 0x11, 0x1F}; // Day (kana) //const char udc_ch_mi[] = {0x0C, 0x0a, 0x11, 0x1f, 0x09, 0x09, 0x09, 0x13}; // minute (kana) //const char udc_bell[] = {0x04,0x0E,0x0E,0x0E,0x1F,0x00,0x04}; //const char udc_note[] = {0x02,0x03,0x02,0x0E,0x1E,0x0C,0x00}; //const char udc_clock[] = {0x00,0x0E,0x15,0x17,0x11,0x0E,0x00}; //const char udc_heart[] = {0x00,0x0a,0x1F,0x1F,0x0E,0x04,0x00}; //const char udc_duck[] = {0x00,0x0c,0x1D,0x0F,0x0F,0x06,0x00}; //const char udc_check[] = {0x00,0x01,0x03,0x16,0x1C,0x08,0x00}; //const char udc_cross[] = {0x00,0x1B,0x0E,0x04,0x0E,0x1B,0x00}; //const char udc_retarrow[] = {0x01,0x01,0x05,0x09,0x1f,0x08,0x04}; const char udc_None[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; const char udc_All[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; /** Create a TextLCD_Base interface * * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param ctrl LCD controller (default = HD44780) */ TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) { // Extract LCDType data // Columns encoded in b7..b0 _nr_cols = (_type & 0xFF); // Rows encoded in b15..b8 _nr_rows = ((_type >> 8) & 0xFF); // Addressing mode encoded in b19..b16 _addr_mode = _type & LCD_T_ADR_MSK; } /** Init the LCD Controller(s) * Clear display */ void TextLCD_Base::_init() { // Select and configure second LCD controller when needed if(_type==LCD40x4) { _ctrl_idx=_LCDCtrl_1; // Select 2nd controller _initCtrl(); // Init 2nd controller } // Select and configure primary LCD controller _ctrl_idx=_LCDCtrl_0; // Select primary controller _initCtrl(); // Init primary controller // Clear whole display and Reset Cursor location // Note: This will make sure that some 3-line displays that skip topline of a 4-line configuration // are cleared and init cursor correctly. cls(); } /** Init the LCD controller * 4-bit mode, number of lines, fonttype, no cursor etc * * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ void TextLCD_Base::_initCtrl() { int _bias_lines=0; // Set Bias and lines (Instr Set 1), temporary variable. int _lines=0; // Set lines (Ext Instr Set), temporary variable. this->_setRS(false); // command mode wait_ms(20); // Wait 20ms to ensure powered up // The Controller could be in 8 bit mode (power-on reset) or in 4 bit mode (warm reboot) at this point. // Follow this procedure to make sure the Controller enters the correct state. The hardware interface // between the uP and the LCD can only write the 4 most significant bits (Most Significant Nibble, MSN). // In 4 bit mode the LCD expects the MSN first, followed by the LSN. // // Current state: 8 bit mode | 4 bit mode, MSN is next | 4 bit mode, LSN is next //------------------------------------------------------------------------------------------------- _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN), | set dummy LSN, // remains in 8 bit mode | change to 8 bit mode | remains in 4 bit mode wait_ms(15); // _writeNibble(0x3); // set 8 bit mode and dummy LSN, | set 8 bit mode and dummy LSN, | set 8bit mode (MSN), // remains in 8 bit mode | remains in 8 bit mode | remains in 4 bit mode wait_ms(15); // _writeNibble(0x3); // set 8 bit mode and dummy LSN, | set 8 bit mode and dummy LSN, | set dummy LSN, // remains in 8 bit mode | remains in 8 bit mode | change to 8 bit mode wait_ms(15); // // Controller is now in 8 bit mode _writeNibble(0x2); // Change to 4-bit mode (MSN), the LSN is undefined dummy wait_us(40); // most instructions take 40us // Display is now in 4-bit mode // Note: 4/8 bit mode is ignored for most native SPI and I2C devices. They dont use the parallel bus. // However, _writeNibble() method is void anyway for native SPI and I2C devices. // Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc switch (_ctrl) { case KS0078: // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: // case LCD20x1: case LCD24x1: _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs) // DL=0 (4 bits bus) // N=0 (1 line mode), N=1 (2 line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) // DH=1 (Disp shift enable, special mode for KS0078) // REV=0 (Reverse normal, special mode for KS0078) _function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs) // DL=0 (4 bits bus) // N=0 (1 line mode), N=1 (2 line mode) // RE=1 (Ena Extended Regs, special mode for KS0078) // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078) // 0 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs) // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078) break; // case LCD12x3D: // Special mode for KS0078 and PCF21XX // case LCD12x3D1: // Special mode for KS0078 and PCF21XX // case LCD12x4D: // Special mode for KS0078 and PCF21XX // case LCD16x3D: // Special mode for KS0078 // case LCD16x4D: // Special mode for KS0078 // case LCD24x3D: // Special mode for KS0078 // case LCD24x3D1: // Special mode for KS0078 case LCD24x4D: // Special mode for KS0078 _function = 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs) // DL=0 (4 bits bus) // N=0 (dont care for 4 line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) // DH=1 (Disp shift enable, special mode for KS0078) // REV=0 (Reverse normal, special mode for KS0078) _function_1 = 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs) // DL=0 (4 bits bus) // N=0 (1 line mode), N=1 (2 line mode) // RE=1 (Ena Extended Regs, special mode for KS0078) // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078) // 0 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs) // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078) break; case LCD16x3G: // Special mode for ST7036 error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) _function = 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs) // DL=0 (4 bits bus) // N=1 (1 line mode), N=1 (2 line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) // DH=1 (Disp shift enable, special mode for KS0078) // REV=0 (Reverse normal, special mode for KS0078) _function_1 = 0x0C; // Function set 001 DL N RE(1) BE 0 (Ext Regs) // DL=0 (4 bits bus) // N=1 (1 line mode), N=1 (2 line mode) // RE=1 (Ena Extended Regs, special mode for KS0078) // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078) // 0 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs) // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078) break; } // switch type // init special features _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE 0 (Ext Regs) // DL=0 (4 bits bus), DL=1 (8 bits mode) // N=0 (1 line mode), N=1 (2 line mode) // RE=1 (Ena Extended Regs, special mode for KS0078) // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0078) // 0 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs) // FW=0 (5-dot font, special mode for KS0078) // BW=0 (Cur BW invert disable, special mode for KS0078) // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0078) _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs) // Dotscroll/Display shift enable (Special mode for KS0078) _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs) // Scroll quantity (Special mode for KS0078) _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs) // DL=0 (4 bits bus), DL=1 (8 bits mode) // N=0 (1 line mode), N=1 (2 line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) // DH=1 (Disp shift enable/disable, special mode for KS0078) // REV=0 (Reverse/Normal, special mode for KS0078) break; // case KS0078 Controller case ST7032_3V3: // ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3 case ST7032_5V: // ST7032 controller: Disable Voltage booster for VLCD. VDD=5V // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: // case LCD20x1: case LCD24x1: _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS // Note: 4 bit mode is ignored for native SPI and I2C devices // Saved to allow switch between Instruction sets at later time break; case LCD12x3D: // Special mode for KS0078 and PCF21XX case LCD12x3D1: // Special mode for KS0078 and PCF21XX case LCD12x4D: // Special mode for KS0078 and PCF21XX case LCD16x3G: // Special mode for ST7036 case LCD24x4D: // Special mode for KS0078 error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS // Note: 4 bit mode is ignored for native SPI and I2C devices // Saved to allow switch between Instruction sets at later time break; } // switch type // init special features _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1 _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1) _contrast = LCD_ST7032_CONTRAST; _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1) if (_ctrl == ST7032_3V3) { _icon_power = 0x04; // Icon display off, Booster circuit is turned on (IS=1) // Saved to allow contrast change at later time } else { _icon_power = 0x00; // Icon display off, Booster circuit is turned off (IS=1) // Saved to allow contrast change at later time } _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x68 | (LCD_ST7032_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x20 | _function); // Select Instruction Set = 0 break; // case ST7032_3V3 Controller // case ST7032_5V Controller case ST7036_3V3: // ST7036 controller: Initialise Voltage booster for VLCD. VDD=3V3 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G) case ST7036_5V: // ST7036 controller: Disable Voltage booster for VLCD. VDD=5V // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G) // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2D is a special case of 16x1 // case LCD12x1: case LCD16x1: case LCD24x1: _function = 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), DH=0 (5x7font), IS2, IS1 (Select Instruction Set) // Note: 4 bit mode is ignored for native SPI and I2C devices // Saved to allow switch between Instruction sets at later time _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD break; // case LCD12x3G: // Special mode for ST7036 case LCD16x3G: // Special mode for ST7036 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set) // Note: 4 bit mode is ignored for native SPI and I2C devices // Saved to allow switch between Instruction sets at later time _bias_lines = 0x05; // Bias: 1/5, 3-Lines LCD break; // case LCD12x3D1: // Special mode for KS0078 and PCF21XX // case LCD16x3D1: // Special mode for SSD1803 case LCD12x4D: // Special mode for PCF2116 case LCD24x4D: // Special mode for KS0078 error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set) // Note: 4 bit mode is ignored for native SPI and I2C devices // Saved to allow switch between Instruction sets at later time _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD break; } // switch type // init special features _writeCommand(0x20 | _function | 0x01); // Set function, IS2,IS1 = 01 (Select Instr Set = 1) _writeCommand(0x10 | _bias_lines); // Set Bias and 1,2 or 3 lines (Instr Set 1) _contrast = LCD_ST7036_CONTRAST; _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast, 0 1 1 1 C3 C2 C1 C0 (Instr Set 1) if (_ctrl == ST7036_3V3) { _icon_power = 0x04; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=1 C5 C4 (Instr Set 1) // Saved to allow contrast change at later time } else { _icon_power = 0x00; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=0 C5 C4 (Instr Set 1) } _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Contrast C5, C4 (Instr Set 1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x68 | (LCD_ST7036_RAB & 0x07)); // Voltagefollower On = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 0 1 (Instr Set 1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instruction Set = 0) break; // case ST7036_3V3 Controller // case ST7036_5V Controller case SSD1803_3V3: // SSD1803 controller: Initialise Voltage booster for VLCD. VDD=3V3 // Note: supports 1,2, 3 or 4 lines // case SSD1803_5V: // SSD1803 controller: No Voltage booster for VLCD. VDD=5V // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2D is a special case of 16x1 // case LCD12x1: case LCD16x1: case LCD24x1: _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=0 1 Line / 3 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=0 1 Line / 3 Line // BE=0 Blink Enable off, special feature of SSD1803 // REV=0 Reverse off, special feature of SSD1803 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=0 1-Line LCD (N=0) break; case LCD12x3D: // Special mode for KS0078 and PCF21XX // case LCD12x3D1: // Special mode for KS0078 and PCF21XX case LCD16x3D: // Special mode for KS0078 // case LCD16x3D1: // Special mode for SSD1803 // case LCD20x3D: // Special mode for SSD1803 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=0 1 Line / 3 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=0 1 Line / 3 Line // BE=0 Blink Enable off, special feature of SSD1803 // REV=0 Reverse off, special feature of SSD1803 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=1 3-Line LCD (N=0) break; case LCD20x4D: // Special mode for SSD1803 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=1 4 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=1 4 Line // BE=0 Blink Enable off, special feature of SSD1803 // REV=0 Reverse off, special feature of SSD1803 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW // NW=1 4-Line LCD (N=1) break; case LCD16x3G: // Special mode for ST7036 case LCD24x4D: // Special mode for KS0078 error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=1 2 line / 4 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=0 4-bit Databus, // Note: 4 bit mode is ignored for native SPI and I2C devices // N=1 2 line / 4 Line // BE=0 Blink Enable off, special feature of SSD1803 // REV=0 Reverse off, special feature of SSD1803 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=0 2-Line LCD (N=1) break; } // switch type // init special features _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV // Select Extended Instruction Set _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set) // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set) wait_ms(5); // Wait to ensure completion or SSD1803 fails to set Top/Bottom after reset.. _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set) _writeCommand(0x10); // Double Height and Bias, 0 0 0 1 UD2=0, UD1=0, BS1=0 Bias 1/5, DH=0 (Ext Instr Set) // _writeCommand(0x76); // Set TC Control, 0 1 1 1 0 1 1 0 (Ext Instr Set) // _writeData(0x02); // Set TC data, 0 0 0 0 0 TC2,TC1,TC0 = 0 1 0 (Ext Instr Set) _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS=1 Select Instruction Set 1 // Select Std Instr set, Select IS=1 _contrast = LCD_SSD1_CONTRAST; _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast 0 1 1 1 C3, C2, C1, C0 (Instr Set 1) _icon_power = 0x04; // Icon off, Booster on (Instr Set 1) // Saved to allow contrast change at later time _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Power, Icon and Contrast, 0 1 0 1 Ion Bon C5 C4 (Instr Set 1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x68 | (LCD_SSD1_RAB & 0x07)); // Set Voltagefollower 0 1 1 0 Don = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 1 0 (Instr Set 1) wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV // Select Extended Instruction Set 1 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set 1) _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; // case SSD1803 Controller // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD. // You must supply this LCD voltage externally and not try to enable VGen. // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3. // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen. // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3. // Note3: See datasheet, PCF2116 and other types provide a V0 pin to control the LCD contrast voltage that is provided by VGen. This pins allows // contrast control similar to that of pin 3 on the standard 14pin LCD module connector. // You can disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage. // Note4: PCF2113 and PCF2119 are different wrt to VLCD generator! There is no V0 pin. The contrast voltage is software controlled by setting the VA and VB registers. // Vgen is automatically switched off when the contrast voltage VA or VB is set to 0x00. Note that certain limits apply to allowed values for VA and VB. // Note5: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows. // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange looking text when not corrected.. case PCF2113_3V3: // PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast. // Initialise Display configuration switch (_type) { // case LCD12x1: // _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/12 chars display mode, SL=1, IS=0 // Note: 4 bit mode is ignored for I2C mode case LCD24x1: _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/24 chars display mode, SL=0, IS=0 // Note: 4 bit mode is ignored for I2C mode break; //Tested OK for PCF2113 case LCD12x2: _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=1 2-line/12 chars display mode, SL=0, IS=0 break; default: error("Error: LCD Controller type does not support this Display type\n\r"); break; } // switch type // Init special features _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1) _writeCommand(0x10); // Temp Compensation Set 0001 0, 0, TC1=0, TC2=0 (Instr. Set 1) // _writeCommand(0x42); // HV GEN 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1) _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV Gen 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1) _contrast = LCD_PCF2_CONTRAST; _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=0, VA=contrast _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=1, VB=contrast wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1) _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no icon blink) DM=0 (no direct mode) (Instr. Set 1) _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0 break; // case PCF2113_3V3 Controller // case PCF2113_5V: // PCF2113 controller: No Voltage generator for VLCD. VDD=5V. Contrast voltage controlled by VA or VB. //@TODO case PCF2116_3V3: // PCF2116 controller: Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage. // Initialise Display configuration switch (_type) { // case LCD12x1: // case LCD12x2: case LCD24x1: _writeCommand(0x22); //FUNCTION SET 4 bit, N/M=0 1-line/24 chars display mode, G=1 Vgen on //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; case LCD12x3D: // Special mode for KS0078 and PCF21XX case LCD12x3D1: // Special mode for PCF21XX case LCD12x4D: // Special mode for PCF21XX: _writeCommand(0x2E); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; case LCD24x2: _writeCommand(0x2A); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; default: error("Error: LCD Controller type does not support this Display type\n\r"); break; } // switch type break; // case PCF2116_3V3 Controller //Experimental for cellphone 3-line display, SA=0x74, No Ack supported, Character set C or K, DL = 8 bit, N=0,M=1 (reserved mode !!), external VLCD -2V5 //@TODO case PCF2116_5V: // PCF2116 controller: No Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage. // Initialise Display configuration switch (_type) { // case LCD12x1: // case LCD12x2: // case LCD24x1: // _writeCommand(0x20); //FUNCTION SET 4 bit, N/M=0 1-line/24 chars display mode //Note: 4 bit mode is ignored for I2C mode // wait_ms(10); // Wait 10ms to ensure powered up // break; case LCD12x3D: // Special mode for KS0078 and PCF21XX case LCD12x3D1: // Special mode for PCF21XX case LCD12x4D: // Special mode for PCF21XX: // _writeCommand(0x34); //FUNCTION SET 8 bit, N=0/M=1 4-line/12 chars display mode OK // _writeCommand(0x24); //FUNCTION SET 4 bit, N=0/M=1 4-line/12 chars display mode OK _writeCommand(0x2C); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode OK //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; // case LCD24x2: // _writeCommand(0x28); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode //Note: 4 bit mode is ignored for I2C mode // wait_ms(10); // Wait 10ms to ensure powered up // break; default: error("Error: LCD Controller type does not support this Display type\n\r"); break; } // switch type break; // case PCF2116_5V Controller case PCF2119_3V3: // PCF2119 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast. // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters. // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00. //POR or Hardware Reset should be applied wait_ms(10); // Wait 10ms to ensure powered up // Initialise Display configuration switch (_type) { case LCD8x1: // case LCD12x1: case LCD16x1: _function = 0x02; // FUNCTION SET DL=0 4 bit, 0 , M=0 1-line/16 chars display mode, SL=1 // Note: 4 bit mode is ignored for I2C mode break; case LCD24x1: // case LCD32x1: _function = 0x00; // FUNCTION SET DL=0 4 bit, 0 , M=0 1-line/32 chars display mode, SL=0 // Note: 4 bit mode is ignored for I2C mode break; case LCD8x2: // case LCD12x2: case LCD16x2: _function = 0x04; // FUNCTION SET DL=0 4 bit, 0, M=1 2-line/16 chars display mode, SL=0 // Note: 4 bit mode is ignored for I2C mode break; default: error("Error: LCD Controller type does not support this Display type\n\r"); break; } // switch type // Init special features _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1 _writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000, 0, 1, P=0, Q=0 _writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001, 0, 0, TC1=0, TC2=0 // _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier) _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier) _contrast = LCD_PCF2_CONTRAST; _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast wait_ms(10); // Wait 10ms to ensure powered up _writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0 _writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode) _writeCommand(0x20 | _function); // Select Instruction Set = 0 break; // case PCF2119_3V3 Controller // case PCF2119_5V: // PCF2119 controller: No Voltage booster for VLCD. VDD=3V3. VA and VB control contrast. // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters. // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00. //@TODO case WS0010: // WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs // Note1: Identical to RS0010 // Note2: supports 1 or 2 lines (and 16x100 graphics) // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II) // Cursor/Disp shift set 0001 SC RL 0 0 // // Mode and Power set 0001 GC PWR 1 1 // GC = 0 (Graph Mode=1, Char Mode=0) // PWR = 1 (DC/DC On/Off) //@Todo: This may be needed to enable a warm reboot //_writeCommand(0x13); // Char mode, DC/DC off //wait_ms(10); // Wait 10ms to ensure powered down _writeCommand(0x17); // Char mode, DC/DC on wait_ms(10); // Wait 10ms to ensure powered up // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: case LCD24x1: _writeCommand(0x20); // Function set 001 DL N F FT1 FT0 // DL=0 (4 bits bus) // N=0 (1 line) // F=0 (5x7 dots font) // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2 break; case LCD12x3D: // Special mode for KS0078 and PCF21XX case LCD12x3D1: // Special mode for PCF21XX case LCD12x4D: // Special mode for PCF21XX: case LCD16x3G: // Special mode for ST7036 case LCD24x4D: // Special mode for KS0078 error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) _writeCommand(0x28); // Function set 001 DL N F FT1 FT0 // DL=0 (4 bits bus) // N=1 (2 lines) // F=0 (5x7 dots font) // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2 break; } // switch type break; // case WS0010 Controller case US2066_3V3: // US2066/SSD1311 OLED controller, Initialise for VDD=3V3 // Note: supports 1,2, 3 or 4 lines // case USS2066_5V: // US2066 controller, VDD=5V // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2D is a special case of 16x1 // case LCD12x1: case LCD16x1: // case LCD20x1: _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=0 1 Line / 3 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=0 1 Line / 3 Line // BE=0 Blink Enable off, special feature of SSD1803, US2066 // REV=0 Reverse off, special feature of SSD1803, US2066 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=0 1-Line LCD (N=0) break; case LCD16x1C: case LCD8x2: case LCD16x2: case LCD20x2: _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=1 2 line / 4 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x0A; // Set function, 0 0 1 X N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=1 2 line / 4 Line // BE=0 Blink Enable off, special feature of SSD1803, US2066 // REV=0 Reverse off, special feature of SSD1803, US2066 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=0 2-Line LCD (N=1) break; case LCD12x3D: // Special mode for KS0078 and PCF21XX // case LCD12x3D1: // Special mode for KS0078 and PCF21XX case LCD16x3D: // Special mode for KS0078, SSD1803 and US2066 // case LCD16x3D1: // Special mode for SSD1803, US2066 // case LCD20x3D: // Special mode for SSD1803, US2066 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=0 1 Line / 3 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=0 1 Line / 3 Line // BE=0 Blink Enable off, special feature of SSD1803, US2066 // REV=0 Reverse off, special feature of SSD1803, US2066 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW // NW=1 3-Line LCD (N=0) break; case LCD20x4D: // Special mode for SSD1803, US2066 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS // Saved to allow switch between Instruction sets at later time // DL=X bit is ignored for US2066. Uses hardwired pins instead // N=1 2 line / 4 Line // DH=0 Double Height disable // IS=0 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV // Saved to allow switch between Instruction sets at later time // DL=0 bit is ignored for US2066. Uses hardwired pins instead // N=1 2 line / 4 Line // BE=0 Blink Enable off, special feature of SSD1803, US2066 // REV=0 Reverse off, special feature of SSD1803, US2066 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW // NW=1 4-Line LCD (N=1) break; // case LCD24x1: // case LCD16x3G: // Special mode for ST7036 // case LCD24x4D: // Special mode for KS0078 default: error("Error: LCD Controller type does not support this Display type\n\r"); break; } // switch type // init special features _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV // Select Extended Instruction Set _writeCommand(0x71); // Function Select A: 0 1 1 1 0 0 0 1 (Ext Instr Set) _writeData(0x00); // Disable Internal VDD _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set) _writeCommand(0xD5); // Display Clock Divide Ratio: 1 1 0 1 0 1 0 1 (Ext Instr Set, OLED Instr Set) _writeCommand(0x70); // Display Clock Divide Ratio value: 0 1 1 1 0 0 0 0 (Ext Instr Set, OLED Instr Set) _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set) // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set) _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set) _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set) // _writeCommand(0x1C); // Double Height and Bias, 0 0 0 1 UD2=1, UD1=1, X, DH=0 (Ext Instr Set) // // Default _writeCommand(0x72); // Function Select B: 0 1 1 1 0 0 1 0 (Ext Instr Set) _writeData(0x01); // Select ROM A (CGRAM 8, CGROM 248) _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set) _writeCommand(0xDA); // Set Segm Pins Config: 1 1 0 1 1 0 1 0 (Ext Instr Set, OLED) _writeCommand(0x10); // Set Segm Pins Config value: Altern Odd/Even, Disable Remap (Ext Instr Set, OLED) _writeCommand(0xDC); // Function Select C: 1 1 0 1 1 1 0 0 (Ext Instr Set, OLED) // _writeCommand(0x00); // Set internal VSL, GPIO pin HiZ (always read low) _writeCommand(0x80); // Set external VSL, GPIO pin HiZ (always read low) _contrast = LCD_US20_CONTRAST; _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED) _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits, use 6 bits for compatibility _writeCommand(0xD9); // Set Phase Length: 1 1 0 1 1 0 0 1 (Ext Instr Set, OLED) _writeCommand(0xF1); // Set Phase Length Value: _writeCommand(0xDB); // Set VCOMH Deselect Lvl: 1 1 0 1 1 0 1 1 (Ext Instr Set, OLED) _writeCommand(0x30); // Set VCOMH Deselect Value: 0.83 x VCC wait_ms(10); // Wait 10ms to ensure powered up //Test Fade/Blinking. Hard Blink on/off, No fade in/out ?? // _writeCommand(0x23); // Set (Ext Instr Set, OLED) // _writeCommand(0x3F); // Set interval 128 frames //End Test Blinking _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set) _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 X N DH RE(0) IS=1 Select Instruction Set 1 // Select Std Instr set, Select IS=1 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV // Select Ext Instr Set, IS=1 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set, IS=1) _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; // case US2066/SSD1311 Controller default: // Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD, no icons etc // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: // case LCD20x1: case LCD24x1: // case LCD40x1: _function = 0x00; // Function set 001 DL N F - - // DL=0 (4 bits bus) // N=0 (1 line) // F=0 (5x7 dots font) _writeCommand(0x20 | _function); break; case LCD12x3D: // Special mode for KS0078 and PCF21XX case LCD12x3D1: // Special mode for KS0078 and PCF21XX case LCD12x4D: // Special mode for KS0078 and PCF21XX: case LCD16x3D: // Special mode for KS0078 // case LCD16x3D1: // Special mode for KS0078 // case LCD24x3D: // Special mode for KS0078 // case LCD24x3D1: // Special mode for KS0078 case LCD24x4D: // Special mode for KS0078 error("Error: LCD Controller type does not support this Display type\n\r"); break; // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) default: _function = 0x08; // Function set 001 DL N F - - // DL=0 (4 bits bus) // Note: 4 bit mode is ignored for native SPI and I2C devices // N=1 (2 lines) // F=0 (5x7 dots font, only option for 2 line display) // - (Don't care) _writeCommand(0x20 | _function); break; } // switch type break; // case default Controller } // switch Controller specific initialisations // Controller general initialisations // _writeCommand(0x01); // cls, and set cursor to 0 // wait_ms(10); // The CLS command takes 1.64 ms. // // Since we are not using the Busy flag, Lets be safe and take 10 ms _writeCommand(0x02); // Return Home // Cursor Home, DDRAM Address to Origin _writeCommand(0x06); // Entry Mode 0000 0 1 I/D S // Cursor Direction and Display Shift // I/D=1 (Cur incr) // S=0 (No display shift) _writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x // S/C=0 Cursor moves // R/L=1 Right // // _writeCommand(0x0C); // Display Ctrl 0000 1 D C B // // Display On, Cursor Off, Blink Off setCursor(CurOff_BlkOff); setMode(DispOn); } /** Clear the screen, Cursor home. */ void TextLCD_Base::cls() { // Select and configure second LCD controller when needed if(_type==LCD40x4) { _ctrl_idx=_LCDCtrl_1; // Select 2nd controller // Second LCD controller Cursor always Off _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); // Second LCD controller Clearscreen _writeCommand(0x01); // cls, and set cursor to 0 wait_ms(10); // The CLS command takes 1.64 ms. // Since we are not using the Busy flag, Lets be safe and take 10 ms _ctrl_idx=_LCDCtrl_0; // Select primary controller } // Primary LCD controller Clearscreen _writeCommand(0x01); // cls, and set cursor to 0 wait_ms(10); // The CLS command takes 1.64 ms. // Since we are not using the Busy flag, Lets be safe and take 10 ms // Restore cursormode on primary LCD controller when needed if(_type==LCD40x4) { _setCursorAndDisplayMode(_currentMode,_currentCursor); } setAddress(0, 0); // Reset Cursor location // Note: This is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode. } /** Locate cursor to a screen column and row * * @param column The horizontal position from the left, indexed from 0 * @param row The vertical position from the top, indexed from 0 */ void TextLCD_Base::locate(int column, int row) { // setAddress() does all the heavy lifting: // check column and row sanity, // switch controllers for LCD40x4 if needed // switch cursor for LCD40x4 if needed // set the new memory address to show cursor at correct location setAddress(column, row); } /** Write a single character (Stream implementation) */ int TextLCD_Base::_putc(int value) { int addr; if (value == '\n') { //No character to write //Update Cursor _column = 0; _row++; if (_row >= rows()) { _row = 0; } } else { //Character to write _writeData(value); //Update Cursor _column++; if (_column >= columns()) { _column = 0; _row++; if (_row >= rows()) { _row = 0; } } } //else //Set next memoryaddress, make sure cursor blinks at next location addr = getAddress(_column, _row); _writeCommand(0x80 | addr); return value; } // get a single character (Stream implementation) int TextLCD_Base::_getc() { return -1; } // Write a nibble using the 4-bit interface void TextLCD_Base::_writeNibble(int value) { // Enable is Low this->_setEnable(true); this->_setData(value & 0x0F); // Low nibble wait_us(1); // Data setup time this->_setEnable(false); wait_us(1); // Datahold time // Enable is Low } // Write a byte using the 4-bit interface void TextLCD_Base::_writeByte(int value) { // Enable is Low this->_setEnable(true); this->_setData(value >> 4); // High nibble wait_us(1); // Data setup time this->_setEnable(false); wait_us(1); // Data hold time this->_setEnable(true); this->_setData(value >> 0); // Low nibble wait_us(1); // Data setup time this->_setEnable(false); wait_us(1); // Datahold time // Enable is Low } // Write a command byte to the LCD controller void TextLCD_Base::_writeCommand(int command) { this->_setRS(false); wait_us(1); // Data setup time for RS this->_writeByte(command); wait_us(40); // most instructions take 40us } // Write a data byte to the LCD controller void TextLCD_Base::_writeData(int data) { this->_setRS(true); wait_us(1); // Data setup time for RS this->_writeByte(data); wait_us(40); // data writes take 40us } // This replaces the original _address() method. // It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80. // Left it in here for compatibility with older code. New applications should use getAddress() instead. int TextLCD_Base::_address(int column, int row) { return 0x80 | getAddress(column, row); } // This is new method to return the memory address based on row, column and displaytype. // /** Return the memoryaddress of screen column and row location * * @param column The horizontal position from the left, indexed from 0 * @param row The vertical position from the top, indexed from 0 * @param return The memoryaddress of screen column and row location * */ int TextLCD_Base::getAddress(int column, int row) { switch (_addr_mode) { case LCD_T_A: //Default addressing mode for 1, 2 and 4 rows (except 40x4) //The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split. //Displays top rows when less than four are used. switch (row) { case 0: return 0x00 + column; case 1: return 0x40 + column; case 2: return 0x00 + _nr_cols + column; case 3: return 0x40 + _nr_cols + column; // Should never get here. default: return 0x00; } case LCD_T_B: // LCD8x2B is a special layout of LCD16x1 if (row==0) return 0x00 + column; else // return _nr_cols + column; return 0x08 + column; case LCD_T_C: // LCD16x1C is a special layout of LCD8x2 // LCD32x1C is a special layout of LCD16x2 // LCD40x1C is a special layout of LCD20x2 #if(0) if (column < 8) return 0x00 + column; else return 0x40 + (column - 8); #else if (column < (_nr_cols >> 1)) return 0x00 + column; else return 0x40 + (column - (_nr_cols >> 1)); #endif // Not sure about this one, seems wrong. // Left in for compatibility with original library // case LCD16x2B: // return 0x00 + (row * 40) + column; case LCD_T_D: //Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0078, SSD1803 //The 4 available rows start at a hardcoded address. //Displays top rows when less than four are used. switch (row) { case 0: return 0x00 + column; case 1: return 0x20 + column; case 2: return 0x40 + column; case 3: return 0x60 + column; // Should never get here. default: return 0x00; } case LCD_T_D1: //Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0078, SSD1803 //The 4 available rows start at a hardcoded address. //Skips top row of 4 row display and starts display at row 1 switch (row) { case 0: return 0x20 + column; case 1: return 0x40 + column; case 2: return 0x60 + column; // Should never get here. default: return 0x00; } case LCD_T_E: // LCD40x4 is a special case since it has 2 controllers. // Each controller is configured as 40x2 (Type A) if (row<2) { // Test to see if we need to switch between controllers if (_ctrl_idx != _LCDCtrl_0) { // Second LCD controller Cursor Off _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); // Select primary controller _ctrl_idx = _LCDCtrl_0; // Restore cursormode on primary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); } return 0x00 + (row * 0x40) + column; } else { // Test to see if we need to switch between controllers if (_ctrl_idx != _LCDCtrl_1) { // Primary LCD controller Cursor Off _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); // Select secondary controller _ctrl_idx = _LCDCtrl_1; // Restore cursormode on secondary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); } return 0x00 + ((row-2) * 0x40) + column; } case LCD_T_F: //Alternate addressing mode for 3 row displays. //The first half of 3rd row continues from 1st row, the second half continues from 2nd row. switch (row) { case 0: return 0x00 + column; case 1: return 0x40 + column; case 2: if (column < (_nr_cols >> 1)) // check first or second half of line return (0x00 + _nr_cols + column); else return (0x40 + _nr_cols + (column - (_nr_cols >> 1))); // Should never get here. default: return 0x00; } case LCD_T_G: //Alternate addressing mode for 3 row displays. Used by ST7036 switch (row) { case 0: return 0x00 + column; case 1: return 0x10 + column; case 2: return 0x20 + column; // Should never get here. default: return 0x00; } // Should never get here. default: return 0x00; } // switch _addr_mode } /** Set the memoryaddress of screen column and row location * * @param column The horizontal position from the left, indexed from 0 * @param row The vertical position from the top, indexed from 0 */ void TextLCD_Base::setAddress(int column, int row) { // Sanity Check column if (column < 0) { _column = 0; } else if (column >= columns()) { _column = columns() - 1; } else _column = column; // Sanity Check row if (row < 0) { _row = 0; } else if (row >= rows()) { _row = rows() - 1; } else _row = row; // Compute the memory address // For LCD40x4: switch controllers if needed // switch cursor if needed int addr = getAddress(_column, _row); _writeCommand(0x80 | addr); } /** Return the number of columns * * @param return The number of columns * * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ int TextLCD_Base::columns() { // Columns encoded in b7..b0 //return (_type & 0xFF); return _nr_cols; } /** Return the number of rows * * @param return The number of rows * * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ int TextLCD_Base::rows() { // Rows encoded in b15..b8 //return ((_type >> 8) & 0xFF); return _nr_rows; } /** Set the Cursormode * * @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn) */ void TextLCD_Base::setCursor(LCDCursor cursorMode) { // Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on _currentCursor = cursorMode; // Configure only current LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); } /** Set the Displaymode * * @param displayMode The Display mode (DispOff, DispOn) */ void TextLCD_Base::setMode(LCDMode displayMode) { // Save new displayMode, needed when 2 controllers are in use or when cursor is changed _currentMode = displayMode; // Select and configure second LCD controller when needed if(_type==LCD40x4) { if (_ctrl_idx==_LCDCtrl_0) { // Configure primary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); // Select 2nd controller _ctrl_idx=_LCDCtrl_1; // Configure secondary LCD controller _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); // Restore current controller _ctrl_idx=_LCDCtrl_0; } else { // Select primary controller _ctrl_idx=_LCDCtrl_0; // Configure primary LCD controller _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); // Restore current controller _ctrl_idx=_LCDCtrl_1; // Configure secondary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); } } else { // Configure primary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); } } /** Low level method to restore the cursortype and display mode for current controller */ void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) { // Configure current LCD controller _writeCommand(0x08 | displayMode | cursorType); } /** Set the Backlight mode * * @param backlightMode The Backlight mode (LightOff, LightOn) */ void TextLCD_Base::setBacklight(LCDBacklight backlightMode) { if (backlightMode == LightOn) { this->_setBL(true); } else { this->_setBL(false); } } /** Set User Defined Characters * * @param unsigned char c The Index of the UDC (0..7) * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits) */ void TextLCD_Base::setUDC(unsigned char c, char *udc_data) { // Select and configure second LCD controller when needed if(_type==LCD40x4) { _LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller // Select primary controller _ctrl_idx=_LCDCtrl_0; // Configure primary LCD controller _setUDC(c, udc_data); // Select 2nd controller _ctrl_idx=_LCDCtrl_1; // Configure secondary LCD controller _setUDC(c, udc_data); // Restore current controller _ctrl_idx=current_ctrl_idx; } else { // Configure primary LCD controller _setUDC(c, udc_data); } } /** Low level method to store user defined characters for current controller */ void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) { // Select CG RAM for current LCD controller _writeCommand(0x40 + ((c & 0x07) << 3)); //Set CG-RAM address, //8 sequential locations needed per UDC // Store UDC pattern for (int i=0; i<8; i++) { _writeData(*udc_data++); } //Select DD RAM again for current LCD controller int addr = getAddress(_column, _row); _writeCommand(0x80 | addr); } /** Set UDC Blink * setUDCBlink method is supported by some compatible devices (eg SSD1803) * * @param blinkMode The Blink mode (BlinkOff, BlinkOn) */ void TextLCD_Base::setUDCBlink(LCDBlink blinkMode){ // Blinking UDCs are enabled when a specific controlbit (BE) is set. // The blinking pixels in the UDC can be controlled by setting additional bits in the UDC bitpattern. // UDCs are defined by an 8 byte bitpattern. The P0..P5 form the character pattern. // P7 P6 P5 P4 P3 P2 P1 P0 // 0 B1 B0 x 0 1 1 1 0 // 1 B1 B0 x 1 0 0 0 1 // ............. // 7 B1 B0 x 1 0 0 0 1 // // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE. // B1 B0 Mode // 0 0 No Blinking in this row of the UDC // 0 1 Enabled pixels in P4 will blink // 1 x Enabled pixels in P0..P4 will blink switch (blinkMode) { case BlinkOn: // Controllers that support UDC Blink switch (_ctrl) { case KS0078 : _function_1 |= 0x02; // Enable UDC Blink _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0 (Ext Regs) _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs) break; // case KS0078 Controller case US2066_3V3 : case SSD1803_3V3 : _function_1 |= 0x04; // Enable UDC Blink _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV // Select Ext Instr Set _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; // case SSD1803, US2066 default: //Unsupported feature for other controllers break; } //switch _ctrl break; case BlinkOff: // Controllers that support UDC Blink switch (_ctrl) { case KS0078 : _function_1 &= ~0x02; // Disable UDC Blink _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0 (Ext Regs) _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs) break; // case KS0078 Controller case US2066_3V3 : case SSD1803_3V3 : _function_1 &= ~0x04; // Disable UDC Blink _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV // Select Ext Instr Set _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; // case SSD1803, US2066 default: //Unsupported feature for other controllers break; } //switch _ctrl break; default: break; } // blinkMode } // setUDCBlink() /** Set Contrast * setContrast method is supported by some compatible devices (eg ST7032i) that have onboard LCD voltage generation * Initial code for ST70XX imported from fork by JH1PJL * * @param unsigned char c contrast data (6 significant bits, valid range 0..63, Value 0 will disable the Vgen) * @return none */ //@TODO Add support for 40x4 dual controller void TextLCD_Base::setContrast(unsigned char c) { // Function set mode stored during Init. Make sure we dont accidentally switch between 1-line and 2-line mode! // Icon/Booster mode stored during Init. Make sure we dont accidentally change this! _contrast = c & 0x3F; // Sanity check switch (_ctrl) { case PCF2113_3V3 : case PCF2119_3V3 : if (_contrast < 5) _contrast = 0; // See datasheet. Sanity check for PCF2113/PCF2119 if (_contrast > 55) _contrast = 55; _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast _writeCommand(0x20 | _function); // Select Instruction Set = 0 break; case ST7032_3V3 : case ST7032_5V : case ST7036_3V3 : // case ST7036_5V : case SSD1803_3V3 : _writeCommand(0x20 | _function | 0x01); // Select Instruction Set = 1 _writeCommand(0x70 | (_contrast & 0x0F)); // Contrast Low bits _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Contrast High bits _writeCommand(0x20 | _function); // Select Instruction Set = 0 break; case US2066_3V3 : _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV // Select Extended Instruction Set _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set) _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED) _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits. Use 6 bits for compatibility _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set) _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; #if(0) //not yet tested case PT6314 : // Only 2 significant bits // 0x00 = 100% // 0x01 = 75% // 0x02 = 50% // 0x03 = 25% _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs break; #endif default: //Unsupported feature for other controllers break; } // end switch } // end setContrast() /** Set Power * setPower method is supported by some compatible devices (eg SSD1803) that have power down modes * * @param bool powerOn Power on/off * @return none */ //@TODO Add support for 40x4 dual controller void TextLCD_Base::setPower(bool powerOn) { if (powerOn) { // Switch on setMode(DispOn); // Controllers that supports specific Power Down mode switch (_ctrl) { // case PCF2113_3V3 : // case PCF2119_3V3 : // case ST7032_3V3 : //@todo // enable Booster Bon case WS0010: _writeCommand(0x17); // Char mode, DC/DC on wait_ms(10); // Wait 10ms to ensure powered up break; case KS0078: case SSD1803_3V3 : // case SSD1803_5V : _writeCommand(0x20 | _function_1); // Select Ext Instr Set _writeCommand(0x02); // Power On _writeCommand(0x20 | _function); // Select Std Instr Set break; default: //Unsupported feature for other controllers break; } // end switch } else { // Switch off setMode(DispOff); // Controllers that support specific Power Down mode switch (_ctrl) { // case PCF2113_3V3 : // case PCF2119_3V3 : // case ST7032_3V3 : //@todo // disable Booster Bon case WS0010: _writeCommand(0x13); // Char mode, DC/DC off break; case KS0078: case SSD1803_3V3 : // case SSD1803_5V : _writeCommand(0x20 | _function_1); // Select Ext Instr Set _writeCommand(0x03); // Power Down _writeCommand(0x20 | _function); // Select Std Instr Set break; default: //Unsupported feature for other controllers break; } // end switch } } // end setPower() /** Set Orient * setOrient method is supported by some compatible devices (eg SSD1803, US2066) that have top/bottom view modes * * @param LCDOrient orient Orientation * @return none */ void TextLCD_Base::setOrient(LCDOrient orient){ switch (orient) { case Top: switch (_ctrl) { case SSD1803_3V3 : // case SSD1803_5V : case US2066_3V3 : _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV // Select Extended Instruction Set // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set) _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set) _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; default: //Unsupported feature for other controllers break; } // end switch _ctrl break; // end Top case Bottom: switch (_ctrl) { case SSD1803_3V3 : // case SSD1803_5V : case US2066_3V3 : _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV // Select Extended Instruction Set _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set) // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set) _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0 // Select Std Instr set, Select IS=0 break; default: //Unsupported feature for other controllers break; } // end switch _ctrl break; // end Bottom } // end switch orient } // end setOrient() //--------- End TextLCD_Base ----------- //--------- Start TextLCD Bus ----------- /* Create a TextLCD interface for using regular mbed pins * * @param rs Instruction/data control line * @param e Enable line (clock) * @param d4-d7 Data lines for using as a 4-bit interface * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param e2 Enable2 line (clock for second controller, LCD40x4 only) * @param ctrl LCD controller (default = HD44780) */ TextLCD::TextLCD(PinName rs, PinName e, PinName d4, PinName d5, PinName d6, PinName d7, LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _rs(rs), _e(e), _d(d4, d5, d6, d7) { // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } // The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access. if (e2 != NC) { _e2 = new DigitalOut(e2); //Construct new pin _e2->write(0); //Deactivate } else { // No Hardware Enable pin _e2 = NULL; //Construct dummy pin } _init(); } /** Destruct a TextLCD interface for using regular mbed pins * * @param none * @return none */ TextLCD::~TextLCD() { if (_bl != NULL) {delete _bl;} // BL pin if (_e2 != NULL) {delete _e2;} // E2 pin } /** Set E pin (or E2 pin) * Used for mbed pins, I2C bus expander or SPI shiftregister * Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins * @param value true or false * @return none */ void TextLCD::_setEnable(bool value) { if(_ctrl_idx==_LCDCtrl_0) { if (value) { _e = 1; // Set E bit } else { _e = 0; // Reset E bit } } else { if (value) { if (_e2 != NULL) {_e2->write(1);} //Set E2 bit } else { if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit } } } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD::_setRS(bool value) { if (value) { _rs = 1; // Set RS bit } else { _rs = 0; // Reset RS bit } } /** Set BL pin * Used for mbed pins, I2C bus expander or SPI shiftregister * Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins * @param value true or false * @return none */ void TextLCD::_setBL(bool value) { if (value) { if (_bl != NULL) {_bl->write(1);} //Set BL bit } else { if (_bl != NULL) {_bl->write(0);} //Reset BL bit } } // Place the 4bit data on the databus // Used for mbed pins, I2C bus expander or SPI shifregister void TextLCD::_setData(int value) { _d = value & 0x0F; // Write Databits } //----------- End TextLCD --------------- //--------- Start TextLCD_I2C ----------- /** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 portexpander * * @param i2c I2C Bus * @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008, default = 0x40) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param ctrl LCD controller (default = HD44780) */ TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _i2c(i2c){ _slaveAddress = deviceAddress & 0xFE; // Setup the I2C bus // The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit, _i2c->frequency(100000); #if (MCP23008==1) // MCP23008 portexpander Init _write_register(IODIR, 0x00); // All outputs _write_register(IPOL, 0x00); // No reverse polarity _write_register(GPINTEN, 0x00); // No interrupt _write_register(DEFVAL, 0x00); // Default value to compare against for interrupts _write_register(INTCON, 0x00); // No interrupt on changes _write_register(IOCON, 0x00); // Interrupt polarity _write_register(GPPU, 0x00); // No Pullup _write_register(INTF, 0x00); // _write_register(INTCAP, 0x00); // _write_register(GPIO, 0x00); // Output/Input pins _write_register(OLAT, 0x00); // Output Latch // Init the portexpander bus _lcd_bus = D_LCD_BUS_DEF; // write the new data to the portexpander _write_register(GPIO, _lcd_bus); #else // PCF8574 of PCF8574A portexpander // Init the portexpander bus _lcd_bus = D_LCD_BUS_DEF; // write the new data to the portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif _init(); } // Set E pin (or E2 pin) // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_I2C::_setEnable(bool value) { if(_ctrl_idx==_LCDCtrl_0) { if (value) { _lcd_bus |= D_LCD_E; // Set E bit } else { _lcd_bus &= ~D_LCD_E; // Reset E bit } } else { if (value) { _lcd_bus |= D_LCD_E2; // Set E2 bit } else { _lcd_bus &= ~D_LCD_E2; // Reset E2bit } } #if (MCP23008==1) // MCP23008 portexpander // write the new data to the portexpander _write_register(GPIO, _lcd_bus); #else // PCF8574 of PCF8574A portexpander // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_I2C::_setRS(bool value) { if (value) { _lcd_bus |= D_LCD_RS; // Set RS bit } else { _lcd_bus &= ~D_LCD_RS; // Reset RS bit } #if (MCP23008==1) // MCP23008 portexpander // write the new data to the portexpander _write_register(GPIO, _lcd_bus); #else // PCF8574 of PCF8574A portexpander // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif } // Set BL pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_I2C::_setBL(bool value) { #if (DFROBOT==1) value = !value; // The DFRobot module uses PNP transistor to drive the Backlight. Reverse logic level. #endif if (value) { _lcd_bus |= D_LCD_BL; // Set BL bit } else { _lcd_bus &= ~D_LCD_BL; // Reset BL bit } #if (MCP23008==1) // MCP23008 portexpander // write the new data to the portexpander _write_register(GPIO, _lcd_bus); #else // PCF8574 of PCF8574A portexpander // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif } // Place the 4bit data on the databus // Used for mbed pins, I2C bus expander or SPI shifregister void TextLCD_I2C::_setData(int value) { int data; // Set bit by bit to support any mapping of expander portpins to LCD pins data = value & 0x0F; if (data & 0x01){ _lcd_bus |= D_LCD_D4; // Set Databit } else { _lcd_bus &= ~D_LCD_D4; // Reset Databit } if (data & 0x02){ _lcd_bus |= D_LCD_D5; // Set Databit } else { _lcd_bus &= ~D_LCD_D5; // Reset Databit } if (data & 0x04) { _lcd_bus |= D_LCD_D6; // Set Databit } else { _lcd_bus &= ~D_LCD_D6; // Reset Databit } if (data & 0x08) { _lcd_bus |= D_LCD_D7; // Set Databit } else { _lcd_bus &= ~D_LCD_D7; // Reset Databit } #if (MCP23008==1) // MCP23008 portexpander // write the new data to the portexpander _write_register(GPIO, _lcd_bus); #else // PCF8574 of PCF8574A portexpander // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif } // Write data to MCP23008 I2C portexpander void TextLCD_I2C::_write_register (int reg, int value) { char data[] = {reg, value}; _i2c->write(_slaveAddress, data, 2); } //---------- End TextLCD_I2C ------------ //--------- Start TextLCD_I2C_N --------- /** Create a TextLCD interface using a controller with native I2C interface * * @param i2c I2C Bus * @param deviceAddress I2C slave address (default = 0x7C) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = ST7032_3V3) */ TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _i2c(i2c){ _slaveAddress = deviceAddress & 0xFE; // Setup the I2C bus // The max bitrate for ST7032i is 400kbit, lets stick to default here _i2c->frequency(100000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_I2C) { _init(); } else { error("Error: LCD Controller type does not support native I2C interface\n\r"); } } TextLCD_I2C_N::~TextLCD_I2C_N() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_I2C_N::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI void TextLCD_I2C_N::_setRS(bool value) { // The controlbyte defines the meaning of the next byte. This next byte can either be data or command. // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop // Co RS RW 0 0 0 0 0 command or data // // C0=1 indicates that another controlbyte will follow after the next data or command byte // RS=1 means that next byte is data, RS=0 means that next byte is command // RW=0 means write to controller. RW=1 means that controller will be read from after the next command. // Many native I2C controllers dont support this option and it is not used by this lib. // if (value) { _controlbyte = 0x40; // Next byte is data, No more control bytes will follow } else { _controlbyte = 0x00; // Next byte is command, No more control bytes will follow } } // Set BL pin void TextLCD_I2C_N::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_I2C_N::_setData(int value) { } // Write a byte using I2C void TextLCD_I2C_N::_writeByte(int value) { // The controlbyte defines the meaning of the next byte. This next byte can either be data or command. // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop // Co RS RW 0 0 0 0 0 command or data // // C0=1 indicates that another controlbyte will follow after the next data or command byte // RS=1 means that next byte is data, RS=0 means that next byte is command // RW=0 means write to controller. RW=1 means that controller will be read from after the next command. // Many native I2C controllers dont support this option and it is not used by this lib. // char data[] = {_controlbyte, value}; #if(LCD_I2C_ACK==1) //Controllers that support ACK _i2c->write(_slaveAddress, data, 2); #else //Controllers that dont support ACK _i2c->start(); _i2c->write(_slaveAddress); _i2c->write(data[0]); _i2c->write(data[1]); _i2c->stop(); #endif } //-------- End TextLCD_I2C_N ------------ //--------- Start TextLCD_SPI ----------- /** Create a TextLCD interface using an SPI 74595 portexpander * * @param spi SPI Bus * @param cs chip select pin (active low) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param ctrl LCD controller (default = HD44780) */ TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs) { // Init cs _setCS(true); // Setup the spi for 8 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate _spi->format(8,0); _spi->frequency(500000); //_spi.frequency(1000000); // Init the portexpander bus _lcd_bus = D_LCD_BUS_DEF; // write the new data to the portexpander _setCS(false); _spi->write(_lcd_bus); _setCS(true); _init(); } // Set E pin (or E2 pin) // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI::_setEnable(bool value) { if(_ctrl_idx==_LCDCtrl_0) { if (value) { _lcd_bus |= D_LCD_E; // Set E bit } else { _lcd_bus &= ~D_LCD_E; // Reset E bit } } else { if (value) { _lcd_bus |= D_LCD_E2; // Set E2 bit } else { _lcd_bus &= ~D_LCD_E2; // Reset E2 bit } } // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); _setCS(true); } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI::_setRS(bool value) { if (value) { _lcd_bus |= D_LCD_RS; // Set RS bit } else { _lcd_bus &= ~D_LCD_RS; // Reset RS bit } // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); _setCS(true); } // Set BL pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI::_setBL(bool value) { if (value) { _lcd_bus |= D_LCD_BL; // Set BL bit } else { _lcd_bus &= ~D_LCD_BL; // Reset BL bit } // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); _setCS(true); } // Place the 4bit data on the databus // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI::_setData(int value) { int data; // Set bit by bit to support any mapping of expander portpins to LCD pins data = value & 0x0F; if (data & 0x01) { _lcd_bus |= D_LCD_D4; // Set Databit } else { _lcd_bus &= ~D_LCD_D4; // Reset Databit } if (data & 0x02) { _lcd_bus |= D_LCD_D5; // Set Databit } else { _lcd_bus &= ~D_LCD_D5; // Reset Databit } if (data & 0x04) { _lcd_bus |= D_LCD_D6; // Set Databit } else { _lcd_bus &= ~D_LCD_D6; // Reset Databit } if (data & 0x08) { _lcd_bus |= D_LCD_D7; // Set Databit } else { _lcd_bus &= ~D_LCD_D7; // Reset Databit } // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); _setCS(true); } // Set CS line. // Only used for SPI bus void TextLCD_SPI::_setCS(bool value) { if (value) { _cs = 1; // Set CS pin } else { _cs = 0; // Reset CS pin } } //---------- End TextLCD_SPI ------------ //--------- Start TextLCD_SPI_N --------- /** Create a TextLCD interface using a controller with a native SPI4 interface * * @param spi SPI Bus * @param cs chip select pin (active low) * @param rs Instruction/data control line * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = ST7032_3V3) */ TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs), _rs(rs) { // Init CS _cs = 1; // Setup the spi for 8 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate _spi->format(8,0); _spi->frequency(1000000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_SPI4) { _init(); } else { error("Error: LCD Controller type does not support native SPI4 interface\n\r"); } } TextLCD_SPI_N::~TextLCD_SPI_N() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_SPI_N::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI_N::_setRS(bool value) { _rs = value; } // Set BL pin void TextLCD_SPI_N::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_SPI_N::_setData(int value) { } // Write a byte using SPI void TextLCD_SPI_N::_writeByte(int value) { _cs = 0; wait_us(1); _spi->write(value); wait_us(1); _cs = 1; } //-------- End TextLCD_SPI_N ------------ #if(1) //Code checked out on logic analyser. Not yet tested on hardware.. //-------- Start TextLCD_SPI_N_3_9 -------- /** Create a TextLCD interface using a controller with a native SPI3 9 bits interface * * @param spi SPI Bus * @param cs chip select pin (active low) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = AIP31068) */ TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs) { // Init CS _cs = 1; // Setup the spi for 9 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate // _spi->format(9,0); _spi->format(9,3); _spi->frequency(1000000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_SPI3_9) { _init(); } else { error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r"); } } TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_SPI_N_3_9::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI_N_3_9::_setRS(bool value) { // The controlbits define the meaning of the next byte. This next byte can either be data or command. // b8 b7...........b0 // RS command or data // // RS=1 means that next byte is data, RS=0 means that next byte is command // if (value) { _controlbyte = 0x01; // Next byte is data } else { _controlbyte = 0x00; // Next byte is command } } // Set BL pin void TextLCD_SPI_N_3_9::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_SPI_N_3_9::_setData(int value) { } // Write a byte using SPI3 9 bits mode void TextLCD_SPI_N_3_9::_writeByte(int value) { _cs = 0; wait_us(1); _spi->write( (_controlbyte << 8) | (value & 0xFF)); wait_us(1); _cs = 1; } //------- End TextLCD_SPI_N_3_9 ----------- #endif #if(1) //------- Start TextLCD_SPI_N_3_10 -------- /** Create a TextLCD interface using a controller with a native SPI3 10 bits interface * * @param spi SPI Bus * @param cs chip select pin (active low) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = AIP31068) */ TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs) { // Init CS _cs = 1; // Setup the spi for 10 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate _spi->format(10,0); _spi->frequency(1000000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_SPI3_10) { _init(); } else { error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r"); } } TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_SPI_N_3_10::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI_N_3_10::_setRS(bool value) { // The controlbits define the meaning of the next byte. This next byte can either be data or command. // b9 b8 b7...........b0 // RS RW command or data // // RS=1 means that next byte is data, RS=0 means that next byte is command // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib) // if (value) { _controlbyte = 0x02; // Next byte is data } else { _controlbyte = 0x00; // Next byte is command } } // Set BL pin void TextLCD_SPI_N_3_10::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_SPI_N_3_10::_setData(int value) { } // Write a byte using SPI3 10 bits mode void TextLCD_SPI_N_3_10::_writeByte(int value) { _cs = 0; wait_us(1); _spi->write( (_controlbyte << 8) | (value & 0xFF)); wait_us(1); _cs = 1; } //------- End TextLCD_SPI_N_3_10 ---------- #endif #if(0) //Code to be checked out on logic analyser. Not yet tested on hardware.. //------- Start TextLCD_SPI_N_3_16 -------- /** Create a TextLCD interface using a controller with a native SPI3 16 bits interface * * @param spi SPI Bus * @param cs chip select pin (active low) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = PT6314) */ TextLCD_SPI_N_3_16::TextLCD_SPI_N_3_16(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs) { // Init CS _cs = 1; // Setup the spi for 8 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate _spi->format(8,0); _spi->frequency(1000000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_SPI3_16) { _init(); } else { error("Error: LCD Controller type does not support native SPI3 16 bits interface\n\r"); } } TextLCD_SPI_N_3_16::~TextLCD_SPI_N_3_16() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_SPI_N_3_16::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI_N_3_16::_setRS(bool value) { // The 16bit mode is split in 2 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next byte. // The 8 actual bits represent either a data or a command byte. // b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0 // 1 1 1 1 1 RW RS 0 d7 d6 d5 d4 d3 d2 d1 d0 // // RS=1 means that next byte is data, RS=0 means that next byte is command // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib) // if (value) { _controlbyte = 0xFA; // Next byte is data } else { _controlbyte = 0xF8; // Next byte is command } } // Set BL pin void TextLCD_SPI_N_3_16::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_SPI_N_3_16::_setData(int value) { } // Write a byte using SPI3 16 bits mode void TextLCD_SPI_N_3_16::_writeByte(int value) { _cs = 0; wait_us(1); _spi->write(_controlbyte); _spi->write(value); wait_us(1); _cs = 1; } //------- End TextLCD_SPI_N_3_16 ---------- #endif #if(1) //------- Start TextLCD_SPI_N_3_24 -------- /** Create a TextLCD interface using a controller with a native SPI3 24 bits interface * * @param spi SPI Bus * @param cs chip select pin (active low) * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param bl Backlight control line (optional, default = NC) * @param ctrl LCD controller (default = SSD1803) */ TextLCD_SPI_N_3_24::TextLCD_SPI_N_3_24(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _spi(spi), _cs(cs) { // Init CS _cs = 1; // Setup the spi for 8 bit data, low steady state clock, // rising edge capture, with a 500KHz or 1MHz clock rate _spi->format(8,0); _spi->frequency(1000000); // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin _bl->write(0); //Deactivate } else { // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } //Sanity check if (_ctrl & LCD_C_SPI3_24) { _init(); } else { error("Error: LCD Controller type does not support native SPI3 24 bits interface\n\r"); } } TextLCD_SPI_N_3_24::~TextLCD_SPI_N_3_24() { if (_bl != NULL) {delete _bl;} // BL pin } // Not used in this mode void TextLCD_SPI_N_3_24::_setEnable(bool value) { } // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI_N_3_24::_setRS(bool value) { // The 24bit mode is split in 3 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next two bytes. // Each byte encodes 4 actual bits. The 8 actual bits represent either a data or a command byte. // b23 b22 b21 b20 b19 b18 b17 b16 - b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0 // 1 1 1 1 1 RW RS 0 d0 d1 d2 d3 0 0 0 0 d4 d5 d6 d7 0 0 0 0 // // RS=1 means that next byte is data, RS=0 means that next byte is command // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib) // // Note: SPI3_24 expects LSB first. This is inconsistent with regular SPI convention (and hardware) that sends MSB first. if (value) { _controlbyte = 0xFA; // Next byte is data } else { _controlbyte = 0xF8; // Next byte is command } } // Set BL pin void TextLCD_SPI_N_3_24::_setBL(bool value) { if (_bl) { _bl->write(value); } } // Not used in this mode void TextLCD_SPI_N_3_24::_setData(int value) { } //Mapping table to flip the bits around cause SPI3_24 expects LSB first. const uint8_t map3_24[16] = {0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0}; // Write a byte using SPI3 24 bits mode void TextLCD_SPI_N_3_24::_writeByte(int value) { _cs = 0; wait_us(1); _spi->write(_controlbyte); //Map and send the LSB nibble _spi->write( map3_24[value & 0x0F]); //Map and send the MSB nibble _spi->write( map3_24[(value >> 4) & 0x0F]); wait_us(1); _cs = 1; } //------- End TextLCD_SPI_N_3_24 ---------- #endif