this is 2/2 of the progect this is the master board which has a wifi module ESP8266, an RF transiever nrf module , and an LCD screen with an I2C back pack all communicating with the slave board
Fork of TextLCD by
Diff: TextLCD.cpp
- Revision:
- 30:033048611c01
- Parent:
- 29:a3663151aa65
- Child:
- 31:ef31cd8a00d1
--- a/TextLCD.cpp Tue Jun 17 17:41:47 2014 +0000 +++ b/TextLCD.cpp Sat Jun 28 14:27:32 2014 +0000 @@ -10,7 +10,7 @@ * 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins * 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032 * 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module - * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, improved the _initCtrl() method to deal with differences between all supported controllers + * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal @@ -34,17 +34,81 @@ #include "TextLCD.h" #include "mbed.h" - -DigitalOut led1(LED1); -DigitalOut led2(LED2); +//For Testing only +//DigitalOut led1(LED1); +//DigitalOut led2(LED2); +// led2=!led2; +/** Some sample User Defined Chars 5x7 dots */ +const char udc_ae[] = {0x00, 0x00, 0x1B, 0x05, 0x1F, 0x14, 0x1F, 0x00}; //æ +const char udc_0e[] = {0x00, 0x00, 0x0E, 0x13, 0x15, 0x19, 0x0E, 0x00}; //ø +const char udc_ao[] = {0x0E, 0x0A, 0x0E, 0x01, 0x0F, 0x11, 0x0F, 0x00}; //å +const char udc_AE[] = {0x0F, 0x14, 0x14, 0x1F, 0x14, 0x14, 0x17, 0x00}; //Æ +const char udc_0E[] = {0x0E, 0x13, 0x15, 0x15, 0x15, 0x19, 0x0E, 0x00}; //Ø +const char udc_Ao[] = {0x0E, 0x0A, 0x0E, 0x11, 0x1F, 0x11, 0x11, 0x00}; //Å +const char udc_PO[] = {0x04, 0x0A, 0x0A, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Open +const char udc_PC[] = {0x1C, 0x10, 0x08, 0x1F, 0x1B, 0x1B, 0x1F, 0x00}; //Padlock Closed + +const char udc_0[] = {0x18, 0x14, 0x12, 0x11, 0x12, 0x14, 0x18, 0x00}; // |> +const char udc_1[] = {0x03, 0x05, 0x09, 0x11, 0x09, 0x05, 0x03, 0x00}; // <| +const char udc_2[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // | +const char udc_3[] = {0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00}; // || +const char udc_4[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x00}; // ||| +const char udc_5[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x00}; // = +const char udc_6[] = {0x15, 0x0a, 0x15, 0x0a, 0x15, 0x0a, 0x15, 0x00}; // checkerboard +const char udc_7[] = {0x10, 0x08, 0x04, 0x02, 0x01, 0x00, 0x10, 0x00}; // \ + +const char udc_degr[] = {0x06, 0x09, 0x09, 0x06, 0x00, 0x00, 0x00, 0x00}; // Degree symbol + +const char udc_TM_T[] = {0x1F, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00}; // Trademark T +const char udc_TM_M[] = {0x11, 0x1B, 0x15, 0x11, 0x00, 0x00, 0x00, 0x00}; // Trademark M + +//const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full +//const char udc_Bat_Ha[] = {0x0E, 0x11, 0x13, 0x17, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half +//const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x00}; // Battery Low +const char udc_Bat_Hi[] = {0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Full +const char udc_Bat_Ha[] = {0x0E, 0x11, 0x11, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Battery Half +const char udc_Bat_Lo[] = {0x0E, 0x11, 0x11, 0x11, 0x11, 0x1F, 0x1F, 0x00}; // Battery Low +const char udc_AC[] = {0x0A, 0x0A, 0x1F, 0x11, 0x0E, 0x04, 0x04, 0x00}; // AC Power + +//const char udc_smiley[] = {0x00, 0x0A, 0x00, 0x04, 0x11, 0x0E, 0x00, 0x00}; // Smiley +//const char udc_droopy[] = {0x00, 0x0A, 0x00, 0x04, 0x00, 0x0E, 0x11, 0x00}; // Droopey +//const char udc_note[] = {0x01, 0x03, 0x05, 0x09, 0x0B, 0x1B, 0x18, 0x00}; // Note + +//const char udc_bar_1[] = {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00}; // Bar 1 +//const char udc_bar_2[] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x00}; // Bar 11 +//const char udc_bar_3[] = {0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x1C, 0x00}; // Bar 111 +//const char udc_bar_4[] = {0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x17, 0x00}; // Bar 1111 +//const char udc_bar_5[] = {0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x00}; // Bar 11111 + +//const char udc_ch_1[] = {0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00}; // Hor bars 4 +//const char udc_ch_2[] = {0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f}; // Hor bars 4 (inverted) +//const char udc_ch_3[] = {0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15}; // Ver bars 3 +//const char udc_ch_4[] = {0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a}; // Ver bars 3 (inverted) +//const char udc_ch_yr[] = {0x08, 0x0f, 0x12, 0x0f, 0x0a, 0x1f, 0x02, 0x02}; // Year (kana) +//const char udc_ch_mo[] = {0x0f, 0x09, 0x0f, 0x09, 0x0f, 0x09, 0x09, 0x13}; // Month (kana) +//const char udc_ch_dy[] = {0x1f, 0x11, 0x11, 0x1f, 0x11, 0x11, 0x11, 0x1F}; // Day (kana) +//const char udc_ch_mi[] = {0x0C, 0x0a, 0x11, 0x1f, 0x09, 0x09, 0x09, 0x13}; // minute (kana) + + /** Create a TextLCD_Base interface * * @param type Sets the panel size/addressing mode (default = LCD16x2) * @param ctrl LCD controller (default = HD44780) */ TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) { + + // Extract LCDType data + + // Columns encoded in b7..b0 + _nr_cols = (_type & 0xFF); + + // Rows encoded in b15..b8 + _nr_rows = ((_type >> 8) & 0xFF); + + // Addressing mode encoded in b19..b16 + _addr_mode = _type & LCD_T_ADR_MSK; } @@ -55,25 +119,24 @@ // Select and configure second LCD controller when needed if(_type==LCD40x4) { - _ctrl_idx=_LCDCtrl_1; // Select 2nd controller - - _initCtrl(); // Init 2nd controller - + _ctrl_idx=_LCDCtrl_1; // Select 2nd controller + _initCtrl(); // Init 2nd controller } // Select and configure primary LCD controller _ctrl_idx=_LCDCtrl_0; // Select primary controller - _initCtrl(); // Init primary controller // Reset Cursor location _row=0; - _column=0; + _column=0; + } /** Init the LCD controller * 4-bit mode, number of lines, fonttype, no cursor etc - * + * + * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ void TextLCD_Base::_initCtrl() { @@ -102,52 +165,65 @@ case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: +// case LCD20x1: case LCD24x1: -//@TODO check config - _writeCommand(0x20); // Function set 001 DL N F - - - // DL=0 (4 bits bus) - // N=0 (1 line) - // F=0 (5x7 dots font) + _writeCommand(0x20); // Function set 001 DL N RE(0) DH REV + // DL=0 (4 bits bus) + // N=0 (1 line) + // RE=0 (Dis. Extended Regs, special mode for KS0078) + // DH=0 (Disp shift=disable, special mode for KS0078) + // REV=0 (Reverse=Normal, special mode for KS0078) + + + break; - case LCD24x4B: - // Special mode for KS0078 - _writeCommand(0x2A); // Function set 001 DL N RE DH REV +// case LCD12x3D: // Special mode for KS0078 +// case LCD12x3D1: // Special mode for KS0078 +// case LCD12x4D: // Special mode for KS0078 +// case LCD16x3D: +// case LCD16x4D: +// case LCD24x3D: // Special mode for KS0078 +// case LCD24x3D1: // Special mode for KS0078 + case LCD24x4D: // Special mode for KS0078 + + _writeCommand(0x2A); // Function set 001 DL N RE(0) DH REV // DL=0 (4 bits bus) - // N=1 (Dont care for KS0078) + // N=1 (Dont care for KS0078 in 4-line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) - // DH=1 (Disp shift, special mode for KS0078) - // REV=0 (Reverse, special mode for KS0078) + // DH=1 (Disp shift=enable, special mode for KS0078) + // REV=0 (Reverse=Normal, special mode for KS0078) - _writeCommand(0x2E); // Function set 001 DL N RE DH REV + _writeCommand(0x2E); // Function set 001 DL N RE(1) BE 0 // DL=0 (4 bits bus) - // N=1 (Dont care for KS0078) + // N=1 (Dont care for KS0078 in 4-line mode) // RE=1 (Ena Extended Regs, special mode for KS0078) - // DH=1 (Disp shift, special mode for KS0078) - // REV=0 (Reverse, special mode for KS0078) + // BE=1 (Blink Enable, CG/SEG RAM, special mode for KS0078) + // X=0 (Reverse, special mode for KS0078) _writeCommand(0x09); // Ext Function set 0000 1 FW BW NW // FW=0 (5-dot font, special mode for KS0078) // BW=0 (Cur BW invert disable, special mode for KS0078) // NW=1 (4 Line, special mode for KS0078) - _writeCommand(0x2A); // Function set 001 DL N RE DH REV + _writeCommand(0x2A); // Function set 001 DL N RE(0) DH REV // DL=0 (4 bits bus) - // N=1 (Dont care for KS0078) + // N=1 (Dont care for KS0078 in 4 line mode) // RE=0 (Dis. Extended Regs, special mode for KS0078) - // DH=1 (Disp shift, special mode for KS0078) - // REV=0 (Reverse, special mode for KS0078) - - // All other LCD types are initialised as 2 Line displays (including LCD40x4) + // DH=1 (Disp shift enable, special mode for KS0078) + // REV=0 (Reverse normal, special mode for KS0078) + break; + default: -//@TODO check config - _writeCommand(0x28); // Function set 001 DL N F - - - // DL=0 (4 bits bus) - // Note: 4 bit mode is ignored for native SPI and I2C devices - // N=1 (2 lines) - // F=0 (5x7 dots font, only option for 2 line display) - // - (Don't care) - + // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) + _writeCommand(0x28); // Function set 001 DL N RE(0) DH REV + // DL=0 (4 bits bus) + // Note: 4 bit mode is ignored for native SPI and I2C devices + // N=1 (2 lines) + // RE=0 (Dis. Extended Regs, special mode for KS0078) + // DH=0 (Disp shift=disable, special mode for KS0078) + // REV=0 (Reverse=Normal, special mode for KS0078) + break; } // switch type @@ -162,9 +238,8 @@ case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: +// case LCD20x1: case LCD24x1: - -// _writeCommand(0x31); //FUNCTION SET 8 bit,N=0 1-line display mode,5*7dot, Select Instruction Set = 1 _writeCommand(0x21); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Select Instruction Set = 1 //Note: 4 bit mode is ignored for native SPI and I2C devices @@ -178,16 +253,19 @@ _writeCommand(0x6C); //Follower control wait_ms(10); // Wait 10ms to ensure powered up -// _writeCommand(0x30); //FUNCTION SET 8 bit,N=0 1-line display mode,5*7dot, Return to Instruction Set = 0 _writeCommand(0x20); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Return to Instruction Set = 0 //Note: 4 bit mode is ignored for native SPI and I2C devices + break; + case LCD12x3D: // Special mode for PCF2116 + case LCD12x3D1: // Special mode for PCF2116 + case LCD12x4D: // Special mode for PCF2116 + case LCD24x4D: // Special mode for KS0078 + error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays - -// _writeCommand(0x39); //FUNCTION SET 8 bit,N=1 2-line display mode,5*7dot, Select Instruction Set = 1 _writeCommand(0x29); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Select Instruction Set = 1 //Note: 4 bit mode is ignored for native SPI and I2C devices @@ -201,14 +279,12 @@ _writeCommand(0x6C); //Follower control wait_ms(10); // Wait 10ms to ensure powered up -// _writeCommand(0x38); //FUNCTION SET 8 bit,N=1 2-line display mode,5*7dot, Return to Instruction Set = 0 _writeCommand(0x28); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Return to Instruction Set = 0 //Note: 4 bit mode is ignored for native SPI and I2C devices } // switch type break; // case ST7032_3V3 Controller - case ST7032_5V: // ST7032 controller: Disable Voltage booster for VLCD. VDD=5V @@ -218,9 +294,8 @@ case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: +// case LCD20x1: case LCD24x1: - -// _writeCommand(0x31); //FUNCTION SET 8 bit,N=0 1-line display mode,5*7dot, Select Instruction Set = 1 _writeCommand(0x21); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Select Instruction Set = 1 //Note: 4 bit mode is ignored for native SPI and I2C devices @@ -234,16 +309,19 @@ _writeCommand(0x6C); //Follower control wait_ms(10); // Wait 10ms to ensure powered up -// _writeCommand(0x30); //FUNCTION SET 8 bit,N=0 1-line display mode,5*7dot, Return to Instruction Set = 0 _writeCommand(0x20); //FUNCTION SET 4 bit, N=0 1-line display mode, 5*7dot, Return to Instruction Set = 0 //Note: 4 bit mode is ignored for native SPI and I2C devices + break; + case LCD12x3D: // Special mode for PCF2116 + case LCD12x3D1: // Special mode for PCF2116 + case LCD12x4D: // Special mode for PCF2116 + case LCD24x4D: // Special mode for KS0078 + error("Error: LCD Controller type does not support this Display type\n\r"); break; default: // All other LCD types are initialised as 2 Line displays - -// _writeCommand(0x39); //FUNCTION SET 8 bit,N=1 2-line display mode,5*7dot, Select Instruction Set = 1 _writeCommand(0x29); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Select Instruction Set = 1 //Note: 4 bit mode is ignored for native SPI and I2C devices @@ -257,7 +335,6 @@ _writeCommand(0x6C); //Follower control wait_ms(10); // Wait 10ms to ensure powered up -// _writeCommand(0x38); //FUNCTION SET 8 bit,N=1 2-line display mode,5*7dot, Return to Instruction Set = 0 _writeCommand(0x28); //FUNCTION SET 4 bit, N=1 2-line display mode, 5*7dot, Return to Instruction Set = 0 //Note: 4 bit mode is ignored for native SPI and I2C devices } // switch type @@ -271,7 +348,7 @@ // Initialise Display configuration switch (_type) { case LCD8x1: //8x1 is a regular 1 line display - case LCD8x2B: //8x2B is a special case of 16x1 + case LCD8x2B: //8x2D is a special case of 16x1 // case LCD12x1: case LCD16x1: case LCD24x1: @@ -307,8 +384,16 @@ wait_ms(50); break; #endif + + case LCD12x3D: // Special mode for PCF2116 + case LCD12x3D1: // Special mode for PCF2116 + case LCD12x4D: // Special mode for PCF2116 + case LCD24x4D: // Special mode for KS0078 + error("Error: LCD Controller type does not support this Display type\n\r"); + break; + default: - // All other LCD types are initialised as 2 Line displays + // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) _writeCommand(0x29); // 4-bit Databus, N=1 2 Line, DH=0 5x7font, IS2,IS1 = 01 Select Instruction Set = 1 wait_ms(30); // > 26,3ms _writeCommand(0x14); // Bias: 1/5, 2-Lines LCD @@ -326,61 +411,118 @@ break; // case ST7036 Controller - case PCF21XX_3V3: - // PCF21XX controller: Initialise Voltage booster for VLCD. VDD=3V3 - + case PCF2113_3V3: + // PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3 + // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD. + // You must supply this LCD voltage externally and not enable VGen. + // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3. + // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen. + // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3. + // Note3: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows. + // Note4: See datasheet, you can also disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage. + // Note5: PCF2113 is different wrt to VLCD generator ! + // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange text when not corrected.. + // Initialise Display configuration switch (_type) { - case LCD8x1: //8x1 is a regular 1 line display - case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: - case LCD16x1: case LCD24x1: - _writeCommand(0x22); //FUNCTION SET 4 bit, N=0/M=0 1-line/24 chars display mode, G=1 Booster on + _writeCommand(0x21); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode, extended IS + //Note: 4 bit mode is ignored for I2C mode + _writeCommand(0x9F); //Set VLCD A : VGen for Chars and Icons + _writeCommand(0xDF); //Set VLCD B : VGen for Icons Only + _writeCommand(0x20); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode +// _writeCommand(0x24); //FUNCTION SET 4 bit, M=1 2-line/12 chars display mode, standard IS + + wait_ms(10); // Wait 10ms to ensure powered up + break; + +//Tested OK for PCF2113 +//Note: PCF2113 is different wrt to VLCD generator ! + case LCD12x2: + _writeCommand(0x21); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode, extended IS + //Note: 4 bit mode is ignored for I2C mode + _writeCommand(0x9F); //Set VLCD A : VGen for Chars and Icons + _writeCommand(0xDF); //Set VLCD B : VGen for Icons Only +// _writeCommand(0x20); //FUNCTION SET 4 bit, M=0 1-line/24 chars display mode + _writeCommand(0x24); //FUNCTION SET 4 bit, M=1 2-line/12 chars display mode, standard IS + + wait_ms(10); // Wait 10ms to ensure powered up + break; + + default: + error("Error: LCD Controller type does not support this Display type\n\r"); + break; + + } // switch type + + break; // case PCF2113_3V3 Controller + + + + case PCF2116_3V3: + // PCF2116 controller: Initialise Voltage booster for VLCD. VDD=3V3 + // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD. + // You must supply this LCD voltage externally and not enable VGen. + // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3. + // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen. + // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3. + // Note3: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows. + // Note4: See datasheet, you can also disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage. + // Note5: PCF2113 is different wrt to VLCD generator ! + // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange text when not corrected.. + + // Initialise Display configuration + switch (_type) { +// case LCD12x1: +// case LCD12x2: + case LCD24x1: + _writeCommand(0x22); //FUNCTION SET 4 bit, N=0/M=0 1-line/24 chars display mode, G=1 VGen on //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; - case LCD12x3B: - case LCD12x4B: - _writeCommand(0x2E); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode, G=1 Booster on + case LCD12x3D: + case LCD12x3D1: + case LCD12x4D: + _writeCommand(0x2E); //FUNCTION SET 4 bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on //Note: 4 bit mode is ignored for I2C mode wait_ms(10); // Wait 10ms to ensure powered up break; - - default: - // All other LCD types are initialised as 2 Line displays - _writeCommand(0x2A); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode, G=1 Booster on + + case LCD24x2: + _writeCommand(0x2A); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on //Note: 4 bit mode is ignored for I2C mode + wait_ms(10); // Wait 10ms to ensure powered up - wait_ms(10); // Wait 10ms to ensure powered up - - - led1=!led1; + default: + error("Error: LCD Controller type does not support this Display type\n\r"); + break; + } // switch type - - break; // case PCF21XX_3V3 Controller - + break; // case PCF2116_3V3 Controller // case PCF21XX_5V: - // PCF21XX controller: No Voltage booster for VLCD. VDD=5V - + // PCF21XX controller: No Voltage generator for VLCD. VDD=5V +//@TODO case WS0010: // WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs - // Note: supports 1 or 2 lines (and 16x100 graphics) - // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II) + // Note1: Identical to RS0010 + // Note2: supports 1 or 2 lines (and 16x100 graphics) + // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II) // Cursor/Disp shift set 0001 SC RL 0 0 // - // Mode en Power set 0001 GC PWR 1 1 + // Mode and Power set 0001 GC PWR 1 1 // GC = 0 (Graph Mode=1, Char Mode=0) - // PWR = (DC/DC On/Off) - + // PWR = 1 (DC/DC On/Off) + +//@Todo: This may be needed to enable a warm reboot //_writeCommand(0x13); // DC/DC off + //wait_ms(10); // Wait 10ms to ensure powered down _writeCommand(0x17); // DC/DC on - wait_ms(10); // Wait 10ms to ensure powered up - + wait_ms(10); // Wait 10ms to ensure powered up // Initialise Display configuration switch (_type) { @@ -388,21 +530,30 @@ case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: -// case LCD24x1: - _writeCommand(0x20); // Function set 001 DL N F - - - // DL=0 (4 bits bus) - // N=0 (1 line) - // F=0 (5x7 dots font) + case LCD24x1: + _writeCommand(0x20); // Function set 001 DL N F FT1 FT0 + // DL=0 (4 bits bus) + // N=0 (1 line) + // F=0 (5x7 dots font) + // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2 + break; + + case LCD12x3D: // Special mode for PCF2116 + case LCD12x3D1: // Special mode for PCF2116 + case LCD12x4D: // Special mode for PCF2116 + case LCD24x4D: // Special mode for KS0078 + error("Error: LCD Controller type does not support this Display type\n\r"); break; default: - // All other LCD types are initialised as 2 Line displays (including LCD40x4) - _writeCommand(0x28); // Function set 001 DL N F - - - // DL=0 (4 bits bus) - // N=1 (2 lines) - // F=0 (5x7 dots font, only option for 2 line display) - // - (Don't care) - + // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) + _writeCommand(0x28); // Function set 001 DL N F FT1 FT0 + // DL=0 (4 bits bus) + // N=1 (2 lines) + // F=0 (5x7 dots font) + // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2 + + break; } // switch type @@ -417,14 +568,25 @@ case LCD8x2B: //8x2B is a special case of 16x1 // case LCD12x1: case LCD16x1: +// case LCD20x1: case LCD24x1: +// case LCD40x1: _writeCommand(0x20); // Function set 001 DL N F - - // DL=0 (4 bits bus) // N=0 (1 line) // F=0 (5x7 dots font) break; - // All other LCD types are initialised as 2 Line displays (including LCD40x4) + +// case LCD12x3D: // Special mode for PCF2116 +// case LCD12x3D1: // Special mode for PCF2116 +// case LCD12x4D: // Special mode for PCF2116 +// case LCD24x3D: // Special mode for KS0078 + case LCD24x4D: // Special mode for KS0078 + error("Error: LCD Controller type does not support this Display type\n\r"); + break; + + // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4) default: _writeCommand(0x28); // Function set 001 DL N F - - // DL=0 (4 bits bus) @@ -441,8 +603,7 @@ } // switch Controller specific initialisations - // Controller general initialisations - + // Controller general initialisations _writeCommand(0x01); // cls, and set cursor to 0 wait_ms(10); // The CLS command takes 1.64 ms. // Since we are not using the Busy flag, Lets be safe and take 10 ms @@ -460,12 +621,10 @@ // R/L=1 Right // - // _writeCommand(0x0C); // Display Ctrl 0000 1 D C B // // Display On, Cursor Off, Blink Off setCursor(CurOff_BlkOff); setMode(DispOn); - led2=!led2; } @@ -499,7 +658,7 @@ } setAddress(0, 0); // Reset Cursor location - // Note: this is needed because some rare displays (eg PCF21XX) don't use line 0 in the '3 Line' mode. + // Note: this is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode. } /** Locate cursor to a screen column and row @@ -517,7 +676,7 @@ setAddress(column, row); } - + /** Write a single character (Stream implementation) */ @@ -574,7 +733,6 @@ wait_us(1); // Datahold time // Enable is Low - } @@ -654,6 +812,7 @@ return 0x80 | getAddress(column, row); } +#if(0) // This is new method to return the memory address based on row, column and displaytype. // /** Return the memoryaddress of screen column and row location @@ -661,12 +820,18 @@ * @param column The horizontal position from the left, indexed from 0 * @param row The vertical position from the top, indexed from 0 * @param return The memoryaddress of screen column and row location + * + * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ int TextLCD_Base::getAddress(int column, int row) { switch (_type) { case LCD8x1: - case LCD24x1: +// case LCD12x1: +// case LCD16x1B: +// case LCD20x1: + case LCD24x1: +// case LCD40x1: return 0x00 + column; case LCD16x1: @@ -676,7 +841,7 @@ else return 0x40 + (column - 8); - case LCD8x2B: + case LCD8x2D: // LCD8x2B is a special layout of LCD16x1 if (row==0) return 0x00 + column; @@ -702,6 +867,7 @@ // Special mode for PCF2116 case LCD12x3B: + //Display bottom three rows of four switch (row) { case 0: return 0x20 + column; @@ -711,6 +877,19 @@ return 0x60 + column; } +#if(0) + case LCD12x3C: + //Display top three rows of four + switch (row) { + case 0: + return 0x00 + column; + case 1: + return 0x20 + column; + case 2: + return 0x40 + column; + } +#endif + case LCD12x4: switch (row) { case 0: @@ -815,6 +994,143 @@ } } +#else + +//Test of Addressing Mode encoded in LCDType + +// This is new method to return the memory address based on row, column and displaytype. +// +/** Return the memoryaddress of screen column and row location + * + * @param column The horizontal position from the left, indexed from 0 + * @param row The vertical position from the top, indexed from 0 + * @param return The memoryaddress of screen column and row location + * + * Note: some configurations are commented out because they have not yet been tested due to lack of hardware + */ +int TextLCD_Base::getAddress(int column, int row) { + + switch (_addr_mode) { + + case LCD_T_A: + //Default addressing mode for 1, 2 and 4 rows (except 40x4) + //The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split. + //Displays top rows when less than four are used. + switch (row) { + case 0: + return 0x00 + column; + case 1: + return 0x40 + column; + case 2: + return 0x00 + _nr_cols + column; + case 3: + return 0x40 + _nr_cols + column; + // Should never get here. + default: + return 0x00; + } + + case LCD_T_B: + // LCD8x2B is a special layout of LCD16x1 + if (row==0) + return 0x00 + column; + else +// return _nr_cols + column; + return 0x08 + column; + + case LCD_T_C: + // LCD16x1C is a special layout of LCD8x2 + if (column<8) + return 0x00 + column; + else + return 0x40 + (column - 8); + +// Not sure about this one, seems wrong. +// Left in for compatibility with original library +// case LCD16x2B: +// return 0x00 + (row * 40) + column; + + + case LCD_T_D: + //Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0078 + //The 4 available rows start at a hardcoded address. + //Displays top rows when less than four are used. + switch (row) { + case 0: + return 0x00 + column; + case 1: + return 0x20 + column; + case 2: + return 0x40 + column; + case 3: + return 0x60 + column; + // Should never get here. + default: + return 0x00; + } + + case LCD_T_D1: + //Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0078 + //The 4 available rows start at a hardcoded address. + //Skips top row of 4 row display and starts display at row 1 + switch (row) { + case 0: + return 0x20 + column; + case 1: + return 0x40 + column; + case 2: + return 0x60 + column; + // Should never get here. + default: + return 0x00; + } + + case LCD_T_E: + // LCD40x4 is a special case since it has 2 controllers. + // Each controller is configured as 40x2 (Type A) + if (row<2) { + // Test to see if we need to switch between controllers + if (_ctrl_idx != _LCDCtrl_0) { + + // Second LCD controller Cursor Off + _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); + + // Select primary controller + _ctrl_idx = _LCDCtrl_0; + + // Restore cursormode on primary LCD controller + _setCursorAndDisplayMode(_currentMode, _currentCursor); + } + + return 0x00 + (row * 0x40) + column; + } + else { + + // Test to see if we need to switch between controllers + if (_ctrl_idx != _LCDCtrl_1) { + // Primary LCD controller Cursor Off + _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff); + + // Select secondary controller + _ctrl_idx = _LCDCtrl_1; + + // Restore cursormode on secondary LCD controller + _setCursorAndDisplayMode(_currentMode, _currentCursor); + } + + return 0x00 + ((row-2) * 0x40) + column; + } + + // Should never get here. + default: + return 0x00; + } +} + + +#endif + + /** Set the memoryaddress of screen column and row location * @@ -852,8 +1168,16 @@ /** Return the number of columns * * @param return The number of columns + * + * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ int TextLCD_Base::columns() { + + // Columns encoded in b7..b0 + //return (_type & 0xFF); + return _nr_cols; + +#if(0) switch (_type) { case LCD8x1: case LCD8x2: @@ -862,6 +1186,7 @@ case LCD12x2: case LCD12x3B: +// case LCD12x3C: case LCD12x4: case LCD12x4B: return 12; @@ -873,15 +1198,18 @@ case LCD16x4: return 16; +// case LCD20x1: case LCD20x2: case LCD20x4: return 20; case LCD24x1: case LCD24x2: +// case LCD24x3B: case LCD24x4B: return 24; +// case LCD40x1: case LCD40x2: case LCD40x4: return 40; @@ -890,17 +1218,28 @@ default: return 0; } +#endif } /** Return the number of rows * * @param return The number of rows + * + * Note: some configurations are commented out because they have not yet been tested due to lack of hardware */ int TextLCD_Base::rows() { + + // Rows encoded in b15..b8 + //return ((_type >> 8) & 0xFF); + return _nr_rows; + +#if(0) switch (_type) { case LCD8x1: case LCD16x1: +// case LCD20x1: case LCD24x1: +// case LCD40x1: return 1; case LCD8x2: @@ -914,7 +1253,9 @@ return 2; case LCD12x3B: +// case LCD12x3C: // case LCD16x3: +// case LCD24x3B: return 3; case LCD12x4: @@ -929,6 +1270,7 @@ default: return 0; } +#endif } /** Set the Cursormode @@ -981,14 +1323,12 @@ // Configure secondary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); - } } else { // Configure primary LCD controller _setCursorAndDisplayMode(_currentMode, _currentCursor); - } - + } } @@ -1000,7 +1340,6 @@ _writeCommand(0x08 | displayMode | cursorType); } - /** Set the Backlight mode * * @param backlightMode The Backlight mode (LightOff, LightOn) @@ -1062,14 +1401,12 @@ //Select DD RAM again for current LCD controller int addr = getAddress(_column, _row); - _writeCommand(0x80 | addr); - + _writeCommand(0x80 | addr); } //--------- End TextLCD_Base ----------- - //--------- Start TextLCD Bus ----------- /* Create a TextLCD interface for using regular mbed pins @@ -1109,10 +1446,8 @@ } _init(); - } - /** Destruct a TextLCD interface for using regular mbed pins * * @param none @@ -1148,7 +1483,6 @@ if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit } } - } // Set RS pin @@ -1161,7 +1495,6 @@ else { _rs = 0; // Reset RS bit } - } /** Set BL pin @@ -1186,7 +1519,6 @@ void TextLCD::_setData(int value) { _d = value & 0x0F; // Write Databits } - //----------- End TextLCD --------------- @@ -1206,12 +1538,10 @@ _slaveAddress = deviceAddress & 0xFE; - // Setup the I2C bus // The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit, // _i2c->frequency(100000); - #if (MCP23008==1) // MCP23008 portexpander Init _write_register(IODIR, 0x00); // All outputs @@ -1241,8 +1571,7 @@ _i2c->write(_slaveAddress, &_lcd_bus, 1); #endif - _init(); - + _init(); } // Set E pin (or E2 pin) @@ -1266,7 +1595,6 @@ } } - #if (MCP23008==1) // MCP23008 portexpander @@ -1291,7 +1619,6 @@ _lcd_bus &= ~D_LCD_RS; // Reset RS bit } - #if (MCP23008==1) // MCP23008 portexpander @@ -1302,8 +1629,7 @@ // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); -#endif - +#endif } // Set BL pin @@ -1327,12 +1653,10 @@ // write the new data to the I2C portexpander _i2c->write(_slaveAddress, &_lcd_bus, 1); -#endif - +#endif } - // Place the 4bit data on the databus // Used for mbed pins, I2C bus expander or SPI shifregister void TextLCD_I2C::_setData(int value) { @@ -1387,8 +1711,7 @@ void TextLCD_I2C::_write_register (int reg, int value) { char data[] = {reg, value}; - _i2c->write(_slaveAddress, data, 2); - + _i2c->write(_slaveAddress, data, 2); } //---------- End TextLCD_I2C ------------ @@ -1407,15 +1730,14 @@ TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) : TextLCD_Base(type, ctrl), _i2c(i2c){ - + _slaveAddress = deviceAddress & 0xFE; // Setup the I2C bus // The max bitrate for ST7032i is 400kbit, lets stick to default here _i2c->frequency(100000); // _i2c->frequency(50000); - - + // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. if (bl != NC) { _bl = new DigitalOut(bl); //Construct new pin @@ -1426,7 +1748,29 @@ _bl = NULL; //Construct dummy pin } - _init(); +#if(0) + //Sanity check + switch (_ctrl) { + case ST7032_3V3: + case ST7032_5V: + case PCF21XX_3V3: +// case PCF21XX_5V: + _init(); + break; + + default: + error("Error: LCD Controller type does not support native I2C interface\n\r"); + } +#endif + + //Sanity check + if (_ctrl & LCD_C_I2C) { + _init(); + } + else { + error("Error: LCD Controller type does not support native I2C interface\n\r"); + } + } TextLCD_I2C_N::~TextLCD_I2C_N() { @@ -1440,7 +1784,16 @@ // Set RS pin // Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI void TextLCD_I2C_N::_setRS(bool value) { - +// The controlbyte defines the meaning of the next byte. This next byte can either be data or command. +// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop +// Co RS RW 0 0 0 0 0 command or data +// +// C0=1 indicates that another controlbyte will follow after the next data or command byte +// RS=1 means that next byte is data, RS=0 means that next byte is command +// RW=0 means write to controller. RW=1 means that controller will be read from after the next command. +// Many native I2C controllers dont support this option and it is not used by this lib. +// + if (value) { _controlbyte = 0x40; // Next byte is data, No more control bytes will follow } @@ -1455,28 +1808,30 @@ _bl->write(value); } } - // Not used in this mode void TextLCD_I2C_N::_setData(int value) { } - // Write a byte using I2C void TextLCD_I2C_N::_writeByte(int value) { - +// The controlbyte defines the meaning of the next byte. This next byte can either be data or command. +// Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop +// Co RS RW 0 0 0 0 0 command or data +// +// C0=1 indicates that another controlbyte will follow after the next data or command byte +// RS=1 means that next byte is data, RS=0 means that next byte is command +// RW=0 means write to controller. RW=1 means that controller will be read from after the next command. +// Many native I2C controllers dont support this option and it is not used by this lib. +// char data[] = {_controlbyte, value}; - _i2c->write(_slaveAddress, data, 2); - + _i2c->write(_slaveAddress, data, 2); } - //-------- End TextLCD_I2C_N ------------ - - //--------- Start TextLCD_SPI ----------- /** Create a TextLCD interface using an SPI 74595 portexpander @@ -1497,7 +1852,6 @@ _spi->frequency(500000); //_spi.frequency(1000000); - // Init the portexpander bus _lcd_bus = D_LCD_BUS_DEF; @@ -1505,9 +1859,8 @@ _setCS(false); _spi->write(_lcd_bus); _setCS(true); - - _init(); - + + _init(); } // Set E pin (or E2 pin) @@ -1534,8 +1887,7 @@ // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); - _setCS(true); - + _setCS(true); } // Set RS pin @@ -1553,7 +1905,6 @@ _setCS(false); _spi->write(_lcd_bus); _setCS(true); - } // Set BL pin @@ -1570,11 +1921,9 @@ // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); - _setCS(true); - + _setCS(true); } - // Place the 4bit data on the databus // Used for mbed pins, I2C bus expander or SPI shiftregister void TextLCD_SPI::_setData(int value) { @@ -1614,11 +1963,9 @@ // write the new data to the SPI portexpander _setCS(false); _spi->write(_lcd_bus); - _setCS(true); - + _setCS(true); } - // Set CS line. // Only used for SPI bus void TextLCD_SPI::_setCS(bool value) { @@ -1636,7 +1983,7 @@ //--------- Start TextLCD_SPI_N --------- - /** Create a TextLCD interface using a controller with a native SPI interface + /** Create a TextLCD interface using a controller with a native SPI4 interface * * @param spi SPI Bus * @param cs chip select pin (active low) @@ -1665,8 +2012,28 @@ // No Hardware Backlight pin _bl = NULL; //Construct dummy pin } - - _init(); + +#if(0) + //Sanity check + switch (_ctrl) { + case ST7032_3V3: + case ST7032_5V: + case WS0010: + _init(); + break; + + default: + error("Error: LCD Controller type does not support native SPI4 interface\n\r"); + } +#endif + + //Sanity check + if (_ctrl & LCD_C_SPI4) { + _init(); + } + else { + error("Error: LCD Controller type does not support native SPI4 interface\n\r"); + } } TextLCD_SPI_N::~TextLCD_SPI_N() { @@ -1694,7 +2061,6 @@ void TextLCD_SPI_N::_setData(int value) { } - // Write a byte using SPI void TextLCD_SPI_N::_writeByte(int value) { _cs = 0; @@ -1703,12 +2069,193 @@ wait_us(1); _cs = 1; } - - - + //-------- End TextLCD_SPI_N ------------ +#if(0) +//Code checked out on logic analyser. Not yet tested on hardware.. + +//-------- Start TextLCD_SPI_N_3_9 -------- + + /** Create a TextLCD interface using a controller with a native SPI3 9 bits interface + * + * @param spi SPI Bus + * @param cs chip select pin (active low) + * @param type Sets the panel size/addressing mode (default = LCD16x2) + * @param bl Backlight control line (optional, default = NC) + * @param ctrl LCD controller (default = AIP31068) + */ +TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : + TextLCD_Base(type, ctrl), + _spi(spi), + _cs(cs) { + + // Setup the spi for 9 bit data, low steady state clock, + // rising edge capture, with a 500KHz or 1MHz clock rate + _spi->format(9,0); + _spi->frequency(1000000); + + // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. + if (bl != NC) { + _bl = new DigitalOut(bl); //Construct new pin + _bl->write(0); //Deactivate + } + else { + // No Hardware Backlight pin + _bl = NULL; //Construct dummy pin + } + + //Sanity check + if (_ctrl & LCD_C_SPI3_9) { + _init(); + } + else { + error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r"); + } +} + +TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() { + if (_bl != NULL) {delete _bl;} // BL pin +} + +// Not used in this mode +void TextLCD_SPI_N_3_9::_setEnable(bool value) { +} + +// Set RS pin +// Used for mbed pins, I2C bus expander or SPI shiftregister +void TextLCD_SPI_N_3_9::_setRS(bool value) { +// The controlbits define the meaning of the next byte. This next byte can either be data or command. +// b8 b7...........b0 +// RS command or data +// +// RS=1 means that next byte is data, RS=0 means that next byte is command +// + + if (value) { + _controlbyte = 0x01; // Next byte is data + } + else { + _controlbyte = 0x00; // Next byte is command + } + +} + +// Set BL pin +void TextLCD_SPI_N_3_9::_setBL(bool value) { + if (_bl) { + _bl->write(value); + } +} + +// Not used in this mode +void TextLCD_SPI_N_3_9::_setData(int value) { +} + +// Write a byte using SPI3 9 bits mode +void TextLCD_SPI_N_3_9::_writeByte(int value) { + _cs = 0; + wait_us(1); + _spi->write( (_controlbyte << 8) | (value & 0xFF)); + wait_us(1); + _cs = 1; +} + +//------- End TextLCD_SPI_N_3_9 ----------- +#endif +#if(0) +//Code checked out on logic analyser. Not yet tested on hardware.. + +//------- Start TextLCD_SPI_N_3_10 -------- + + /** Create a TextLCD interface using a controller with a native SPI3 10 bits interface + * + * @param spi SPI Bus + * @param cs chip select pin (active low) + * @param type Sets the panel size/addressing mode (default = LCD16x2) + * @param bl Backlight control line (optional, default = NC) + * @param ctrl LCD controller (default = AIP31068) + */ +TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) : + TextLCD_Base(type, ctrl), + _spi(spi), + _cs(cs) { + + // Setup the spi for 10 bit data, low steady state clock, + // rising edge capture, with a 500KHz or 1MHz clock rate + _spi->format(10,0); + _spi->frequency(1000000); + + // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access. + if (bl != NC) { + _bl = new DigitalOut(bl); //Construct new pin + _bl->write(0); //Deactivate + } + else { + // No Hardware Backlight pin + _bl = NULL; //Construct dummy pin + } + + //Sanity check + if (_ctrl & LCD_C_SPI3_10) { + _init(); + } + else { + error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r"); + } +} + +TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() { + if (_bl != NULL) {delete _bl;} // BL pin +} + +// Not used in this mode +void TextLCD_SPI_N_3_10::_setEnable(bool value) { +} + +// Set RS pin +// Used for mbed pins, I2C bus expander or SPI shiftregister +void TextLCD_SPI_N_3_10::_setRS(bool value) { +// The controlbits define the meaning of the next byte. This next byte can either be data or command. +// b9 b8 b7...........b0 +// RS RW command or data +// +// RS=1 means that next byte is data, RS=0 means that next byte is command +// RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib) +// + + if (value) { + _controlbyte = 0x02; // Next byte is data + } + else { + _controlbyte = 0x00; // Next byte is command + } + +} + +// Set BL pin +void TextLCD_SPI_N_3_10::_setBL(bool value) { + if (_bl) { + _bl->write(value); + } +} + +// Not used in this mode +void TextLCD_SPI_N_3_10::_setData(int value) { +} + +// Write a byte using SPI3 10 bits mode +void TextLCD_SPI_N_3_10::_writeByte(int value) { + _cs = 0; + wait_us(1); + _spi->write( (_controlbyte << 8) | (value & 0xFF)); + wait_us(1); + _cs = 1; +} + +//------- End TextLCD_SPI_N_3_10 ---------- +#endif \ No newline at end of file