V148
Fork of RadioHead-148 by
Diff: RH_RF22.cpp
- Revision:
- 0:ab4e012489ef
diff -r 000000000000 -r ab4e012489ef RH_RF22.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RH_RF22.cpp Thu Oct 15 01:27:00 2015 +0000 @@ -0,0 +1,748 @@ +// RH_RF22.cpp +// +// Copyright (C) 2011 Mike McCauley +// $Id: RH_RF22.cpp,v 1.24 2015/05/17 00:11:26 mikem Exp $ + +#include <RH_RF22.h> + +// Interrupt vectors for the 2 Arduino interrupt pins +// Each interrupt can be handled by a different instance of RH_RF22, allowing you to have +// 2 RH_RF22s per Arduino +RH_RF22* RH_RF22::_deviceForInterrupt[RH_RF22_NUM_INTERRUPTS] = {0, 0, 0}; +uint8_t RH_RF22::_interruptCount = 0; // Index into _deviceForInterrupt for next device + +// These are indexed by the values of ModemConfigChoice +// Canned modem configurations generated with +// http://www.hoperf.com/upload/rf/RH_RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls +// Stored in flash (program) memory to save SRAM +PROGMEM static const RH_RF22::ModemConfig MODEM_CONFIG_TABLE[] = +{ + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5 + + // All the following enable FIFO with reg 71 + // 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72 + // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5 + { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36 + { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45 + { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45 + { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6 + { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6 + { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8 + { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125 + + { 0x2b, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x09, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x04 }, // 512 baud, FSK, 2.5 Khz fd for POCSAG compatibility + { 0x27, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x06, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x07 }, // 512 baud, FSK, 4.5 Khz fd for POCSAG compatibility + + // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + // These differ from FSK only in register 71, for the modulation type + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5 + { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36 + { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45 + { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45 + { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6 + { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6 + { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8 + { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125 + + // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75 + { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335 + { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335 + { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335 + { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335 + { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335 + { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335 +}; + +RH_RF22::RH_RF22(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi) + : + RHSPIDriver(slaveSelectPin, spi), + _interruptPin(interruptPin) +{ + _idleMode = RH_RF22_XTON; // Default idle state is READY mode + _polynomial = CRC_16_IBM; // Historical + _myInterruptIndex = 0xff; // Not allocated yet +} + +void RH_RF22::setIdleMode(uint8_t idleMode) +{ + _idleMode = idleMode; +} + +bool RH_RF22::init() +{ + if (!RHSPIDriver::init()) + return false; + +#if (RH_PLATFORM != RH_PLATFORM_MBED) + // Determine the interrupt number that corresponds to the interruptPin + int interruptNumber = digitalPinToInterrupt(_interruptPin); + if (interruptNumber == NOT_AN_INTERRUPT) + return false; +#endif + + // Software reset the device + reset(); + + // Get the device type and check it + // This also tests whether we are really connected to a device + _deviceType = spiRead(RH_RF22_REG_00_DEVICE_TYPE); + if ( _deviceType != RH_RF22_DEVICE_TYPE_RX_TRX + && _deviceType != RH_RF22_DEVICE_TYPE_TX) + { + return false; + } + + +#if (RH_PLATFORM != RH_PLATFORM_MBED) + // Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy + // ARM M4 requires the below. else pin interrupt doesn't work properly. + // On all other platforms, its innocuous, belt and braces + pinMode(_interruptPin, INPUT); +#endif + + // Enable interrupt output on the radio. Interrupt line will now go high until + // an interrupt occurs + spiWrite(RH_RF22_REG_05_INTERRUPT_ENABLE1, RH_RF22_ENTXFFAEM | RH_RF22_ENRXFFAFULL | RH_RF22_ENPKSENT | RH_RF22_ENPKVALID | RH_RF22_ENCRCERROR | RH_RF22_ENFFERR); + spiWrite(RH_RF22_REG_06_INTERRUPT_ENABLE2, RH_RF22_ENPREAVAL); + + // Set up interrupt handler + // Since there are a limited number of interrupt glue functions isr*() available, + // we can only support a limited number of devices simultaneously + // On some devices, notably most Arduinos, the interrupt pin passed in is actually the + // interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping + // yourself based on knowledge of what Arduino board you are running on. + if (_myInterruptIndex == 0xff) + { + // First run, no interrupt allocated yet + if (_interruptCount <= RH_RF22_NUM_INTERRUPTS) + _myInterruptIndex = _interruptCount++; + else + return false; // Too many devices, not enough interrupt vectors + } + _deviceForInterrupt[_myInterruptIndex] = this; + +#if (RH_PLATFORM == RH_PLATFORM_MBED) + if (_myInterruptIndex == 0) + _interruptPin.fall(&isr0); + else if (_myInterruptIndex == 1) + _interruptPin.fall(&isr1); + else if (_myInterruptIndex == 2) + _interruptPin.fall(&isr2); + else + return false; // Too many devices, not enough interrupt vectors +#else + if (_myInterruptIndex == 0) + attachInterrupt(interruptNumber, isr0, FALLING); + else if (_myInterruptIndex == 1) + attachInterrupt(interruptNumber, isr1, FALLING); + else if (_myInterruptIndex == 2) + attachInterrupt(interruptNumber, isr2, FALLING); + else + return false; // Too many devices, not enough interrupt vectors +#endif + + setModeIdle(); + + clearTxBuf(); + clearRxBuf(); + + // Most of these are the POR default + spiWrite(RH_RF22_REG_7D_TX_FIFO_CONTROL2, RH_RF22_TXFFAEM_THRESHOLD); + spiWrite(RH_RF22_REG_7E_RX_FIFO_CONTROL, RH_RF22_RXFFAFULL_THRESHOLD); + spiWrite(RH_RF22_REG_30_DATA_ACCESS_CONTROL, RH_RF22_ENPACRX | RH_RF22_ENPACTX | RH_RF22_ENCRC | (_polynomial & RH_RF22_CRC)); + + // Configure the message headers + // Here we set up the standard packet format for use by the RH_RF22 library + // 8 nibbles preamble + // 2 SYNC words 2d, d4 + // Header length 4 (to, from, id, flags) + // 1 octet of data length (0 to 255) + // 0 to 255 octets data + // 2 CRC octets as CRC16(IBM), computed on the header, length and data + // On reception the to address is check for validity against RH_RF22_REG_3F_CHECK_HEADER3 + // or the broadcast address of 0xff + // If no changes are made after this, the transmitted + // to address will be 0xff, the from address will be 0xff + // and all such messages will be accepted. This permits the out-of the box + // RH_RF22 config to act as an unaddresed, unreliable datagram service + spiWrite(RH_RF22_REG_32_HEADER_CONTROL1, RH_RF22_BCEN_HEADER3 | RH_RF22_HDCH_HEADER3); + spiWrite(RH_RF22_REG_33_HEADER_CONTROL2, RH_RF22_HDLEN_4 | RH_RF22_SYNCLEN_2); + + setPreambleLength(8); + uint8_t syncwords[] = { 0x2d, 0xd4 }; + setSyncWords(syncwords, sizeof(syncwords)); + setPromiscuous(false); + + // Set some defaults. An innocuous ISM frequency, and reasonable pull-in + setFrequency(434.0, 0.05); +// setFrequency(900.0); + // Some slow, reliable default speed and modulation + setModemConfig(FSK_Rb2_4Fd36); +// setModemConfig(FSK_Rb125Fd125); + setGpioReversed(false); + // Lowish power + setTxPower(RH_RF22_TXPOW_8DBM); + + return true; +} + +// C++ level interrupt handler for this instance +void RH_RF22::handleInterrupt() +{ + uint8_t _lastInterruptFlags[2]; + // Read the interrupt flags which clears the interrupt + spiBurstRead(RH_RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2); + +#if 0 + // DEVELOPER TESTING ONLY + // Caution: Serial printing in this interrupt routine can cause mysterious crashes + Serial.print("interrupt "); + Serial.print(_lastInterruptFlags[0], HEX); + Serial.print(" "); + Serial.println(_lastInterruptFlags[1], HEX); + if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0) + Serial.println("FUNNY: no interrupt!"); +#endif + +#if 0 + // DEVELOPER TESTING ONLY + // TESTING: fake an RH_RF22_IFFERROR + static int counter = 0; + if (_lastInterruptFlags[0] & RH_RF22_IPKSENT && counter++ == 10) + { + _lastInterruptFlags[0] = RH_RF22_IFFERROR; + counter = 0; + } +#endif + + if (_lastInterruptFlags[0] & RH_RF22_IFFERROR) + { + resetFifos(); // Clears the interrupt + if (_mode == RHModeTx) + restartTransmit(); + else if (_mode == RHModeRx) + clearRxBuf(); +// Serial.println("IFFERROR"); + } + // Caution, any delay here may cause a FF underflow or overflow + if (_lastInterruptFlags[0] & RH_RF22_ITXFFAEM) + { + // See if more data has to be loaded into the Tx FIFO + sendNextFragment(); +// Serial.println("ITXFFAEM"); + } + if (_lastInterruptFlags[0] & RH_RF22_IRXFFAFULL) + { + // Caution, any delay here may cause a FF overflow + // Read some data from the Rx FIFO + readNextFragment(); +// Serial.println("IRXFFAFULL"); + } + if (_lastInterruptFlags[0] & RH_RF22_IEXT) + { + // This is not enabled by the base code, but users may want to enable it + handleExternalInterrupt(); +// Serial.println("IEXT"); + } + if (_lastInterruptFlags[1] & RH_RF22_IWUT) + { + // This is not enabled by the base code, but users may want to enable it + handleWakeupTimerInterrupt(); +// Serial.println("IWUT"); + } + if (_lastInterruptFlags[0] & RH_RF22_IPKSENT) + { +// Serial.println("IPKSENT"); + _txGood++; + // Transmission does not automatically clear the tx buffer. + // Could retransmit if we wanted + // RH_RF22 transitions automatically to Idle + _mode = RHModeIdle; + } + if (_lastInterruptFlags[0] & RH_RF22_IPKVALID) + { + uint8_t len = spiRead(RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH); +// Serial.println("IPKVALID"); + + // May have already read one or more fragments + // Get any remaining unread octets, based on the expected length + // First make sure we dont overflow the buffer in the case of a stupid length + // or partial bad receives + if ( len > RH_RF22_MAX_MESSAGE_LEN + || len < _bufLen) + { + _rxBad++; + _mode = RHModeIdle; + clearRxBuf(); + return; // Hmmm receiver buffer overflow. + } + + spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen); + _rxHeaderTo = spiRead(RH_RF22_REG_47_RECEIVED_HEADER3); + _rxHeaderFrom = spiRead(RH_RF22_REG_48_RECEIVED_HEADER2); + _rxHeaderId = spiRead(RH_RF22_REG_49_RECEIVED_HEADER1); + _rxHeaderFlags = spiRead(RH_RF22_REG_4A_RECEIVED_HEADER0); + _rxGood++; + _bufLen = len; + _mode = RHModeIdle; + _rxBufValid = true; + } + if (_lastInterruptFlags[0] & RH_RF22_ICRCERROR) + { +// Serial.println("ICRCERR"); + _rxBad++; + clearRxBuf(); + resetRxFifo(); + _mode = RHModeIdle; + setModeRx(); // Keep trying + } + if (_lastInterruptFlags[1] & RH_RF22_IPREAVAL) + { +// Serial.println("IPREAVAL"); + _lastRssi = (int8_t)(-120 + ((spiRead(RH_RF22_REG_26_RSSI) / 2))); + _lastPreambleTime = millis(); + resetRxFifo(); + clearRxBuf(); + } +} + +// These are low level functions that call the interrupt handler for the correct +// instance of RH_RF22. +// 3 interrupts allows us to have 3 different devices +void RH_RF22::isr0() +{ + if (_deviceForInterrupt[0]) + _deviceForInterrupt[0]->handleInterrupt(); +} +void RH_RF22::isr1() +{ + if (_deviceForInterrupt[1]) + _deviceForInterrupt[1]->handleInterrupt(); +} +void RH_RF22::isr2() +{ + if (_deviceForInterrupt[2]) + _deviceForInterrupt[2]->handleInterrupt(); +} + +void RH_RF22::reset() +{ + spiWrite(RH_RF22_REG_07_OPERATING_MODE1, RH_RF22_SWRES); + // Wait for it to settle + delay(1); // SWReset time is nominally 100usec +} + +uint8_t RH_RF22::statusRead() +{ + return spiRead(RH_RF22_REG_02_DEVICE_STATUS); +} + +uint8_t RH_RF22::adcRead(uint8_t adcsel, + uint8_t adcref , + uint8_t adcgain, + uint8_t adcoffs) +{ + uint8_t configuration = adcsel | adcref | (adcgain & RH_RF22_ADCGAIN); + spiWrite(RH_RF22_REG_0F_ADC_CONFIGURATION, configuration | RH_RF22_ADCSTART); + spiWrite(RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs); + + // Conversion time is nominally 305usec + // Wait for the DONE bit + while (!(spiRead(RH_RF22_REG_0F_ADC_CONFIGURATION) & RH_RF22_ADCDONE)) + ; + // Return the value + return spiRead(RH_RF22_REG_11_ADC_VALUE); +} + +uint8_t RH_RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs) +{ + spiWrite(RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RH_RF22_ENTSOFFS); + spiWrite(RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs); + return adcRead(RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RH_RF22_ADCREF_BANDGAP_VOLTAGE); +} + +uint16_t RH_RF22::wutRead() +{ + uint8_t buf[2]; + spiBurstRead(RH_RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2); + return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order +} + +// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec +void RH_RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd) +{ + uint8_t period[3]; + + period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3); + period[1] = wtm >> 8; + period[2] = wtm & 0xff; + spiBurstWrite(RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period)); +} + +// Returns true if centre + (fhch * fhs) is within limits +// Caution, different versions of the RH_RF22 support different max freq +// so YMMV +bool RH_RF22::setFrequency(float centre, float afcPullInRange) +{ + uint8_t fbsel = RH_RF22_SBSEL; + uint8_t afclimiter; + if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon + return false; + if (centre >= 480.0) + { + if (afcPullInRange < 0.0 || afcPullInRange > 0.318750) + return false; + centre /= 2; + fbsel |= RH_RF22_HBSEL; + afclimiter = afcPullInRange * 1000000.0 / 1250.0; + } + else + { + if (afcPullInRange < 0.0 || afcPullInRange > 0.159375) + return false; + afclimiter = afcPullInRange * 1000000.0 / 625.0; + } + centre /= 10.0; + float integerPart = floor(centre); + float fractionalPart = centre - integerPart; + + uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 + fbsel |= fb; + uint16_t fc = fractionalPart * 64000; + spiWrite(RH_RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT + spiWrite(RH_RF22_REG_74_FREQUENCY_OFFSET2, 0); + spiWrite(RH_RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); + spiWrite(RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); + spiWrite(RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); + spiWrite(RH_RF22_REG_2A_AFC_LIMITER, afclimiter); + return !(statusRead() & RH_RF22_FREQERR); +} + +// Step size in 10kHz increments +// Returns true if centre + (fhch * fhs) is within limits +bool RH_RF22::setFHStepSize(uint8_t fhs) +{ + spiWrite(RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs); + return !(statusRead() & RH_RF22_FREQERR); +} + +// Adds fhch * fhs to centre frequency +// Returns true if centre + (fhch * fhs) is within limits +bool RH_RF22::setFHChannel(uint8_t fhch) +{ + spiWrite(RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch); + return !(statusRead() & RH_RF22_FREQERR); +} + +uint8_t RH_RF22::rssiRead() +{ + return spiRead(RH_RF22_REG_26_RSSI); +} + +uint8_t RH_RF22::ezmacStatusRead() +{ + return spiRead(RH_RF22_REG_31_EZMAC_STATUS); +} + +void RH_RF22::setOpMode(uint8_t mode) +{ + spiWrite(RH_RF22_REG_07_OPERATING_MODE1, mode); +} + +void RH_RF22::setModeIdle() +{ + if (_mode != RHModeIdle) + { + setOpMode(_idleMode); + _mode = RHModeIdle; + } +} + +bool RH_RF22::sleep() +{ + if (_mode != RHModeSleep) + { + setOpMode(0); + _mode = RHModeSleep; + } + return true; +} + +void RH_RF22::setModeRx() +{ + if (_mode != RHModeRx) + { + setOpMode(_idleMode | RH_RF22_RXON); + _mode = RHModeRx; + } +} + +void RH_RF22::setModeTx() +{ + if (_mode != RHModeTx) + { + setOpMode(_idleMode | RH_RF22_TXON); + // Hmmm, if you dont clear the RX FIFO here, then it appears that going + // to transmit mode in the middle of a receive can corrupt the + // RX FIFO + resetRxFifo(); + _mode = RHModeTx; + } +} + +void RH_RF22::setTxPower(uint8_t power) +{ + spiWrite(RH_RF22_REG_6D_TX_POWER, power | RH_RF22_LNA_SW); // On RF23, LNA_SW must be set. +} + +// Sets registers from a canned modem configuration structure +void RH_RF22::setModemRegisters(const ModemConfig* config) +{ + spiWrite(RH_RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c); + spiWrite(RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f); + spiBurstWrite(RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6); + spiBurstWrite(RH_RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3); + spiWrite(RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58); + spiWrite(RH_RF22_REG_69_AGC_OVERRIDE1, config->reg_69); + spiBurstWrite(RH_RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5); +} + +// Set one of the canned FSK Modem configs +// Returns true if its a valid choice +bool RH_RF22::setModemConfig(ModemConfigChoice index) +{ + if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig))) + return false; + + RH_RF22::ModemConfig cfg; + memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF22::ModemConfig)); + setModemRegisters(&cfg); + + return true; +} + +// REVISIT: top bit is in Header Control 2 0x33 +void RH_RF22::setPreambleLength(uint8_t nibbles) +{ + spiWrite(RH_RF22_REG_34_PREAMBLE_LENGTH, nibbles); +} + +// Caution doesnt set sync word len in Header Control 2 0x33 +void RH_RF22::setSyncWords(const uint8_t* syncWords, uint8_t len) +{ + spiBurstWrite(RH_RF22_REG_36_SYNC_WORD3, syncWords, len); +} + +void RH_RF22::clearRxBuf() +{ + ATOMIC_BLOCK_START; + _bufLen = 0; + _rxBufValid = false; + ATOMIC_BLOCK_END; +} + +bool RH_RF22::available() +{ + if (!_rxBufValid) + { + if (_mode == RHModeTx) + return false; + setModeRx(); // Make sure we are receiving + } + return _rxBufValid; +} + +bool RH_RF22::recv(uint8_t* buf, uint8_t* len) +{ + if (!available()) + return false; + + if (buf && len) + { + ATOMIC_BLOCK_START; + if (*len > _bufLen) + *len = _bufLen; + memcpy(buf, _buf, *len); + ATOMIC_BLOCK_END; + } + clearRxBuf(); +// printBuffer("recv:", buf, *len); + return true; +} + +void RH_RF22::clearTxBuf() +{ + ATOMIC_BLOCK_START; + _bufLen = 0; + _txBufSentIndex = 0; + ATOMIC_BLOCK_END; +} + +void RH_RF22::startTransmit() +{ + sendNextFragment(); // Actually the first fragment + spiWrite(RH_RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent + setModeTx(); // Start the transmitter, turns off the receiver +} + +// Restart the transmission of a packet that had a problem +void RH_RF22::restartTransmit() +{ + _mode = RHModeIdle; + _txBufSentIndex = 0; +// Serial.println("Restart"); + startTransmit(); +} + +bool RH_RF22::send(const uint8_t* data, uint8_t len) +{ + bool ret = true; + waitPacketSent(); + ATOMIC_BLOCK_START; + spiWrite(RH_RF22_REG_3A_TRANSMIT_HEADER3, _txHeaderTo); + spiWrite(RH_RF22_REG_3B_TRANSMIT_HEADER2, _txHeaderFrom); + spiWrite(RH_RF22_REG_3C_TRANSMIT_HEADER1, _txHeaderId); + spiWrite(RH_RF22_REG_3D_TRANSMIT_HEADER0, _txHeaderFlags); + if (!fillTxBuf(data, len)) + ret = false; + else + startTransmit(); + ATOMIC_BLOCK_END; +// printBuffer("send:", data, len); + return ret; +} + +bool RH_RF22::fillTxBuf(const uint8_t* data, uint8_t len) +{ + clearTxBuf(); + if (!len) + return false; + return appendTxBuf(data, len); +} + +bool RH_RF22::appendTxBuf(const uint8_t* data, uint8_t len) +{ + if (((uint16_t)_bufLen + len) > RH_RF22_MAX_MESSAGE_LEN) + return false; + ATOMIC_BLOCK_START; + memcpy(_buf + _bufLen, data, len); + _bufLen += len; + ATOMIC_BLOCK_END; +// printBuffer("txbuf:", _buf, _bufLen); + return true; +} + +// Assumption: there is currently <= RH_RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO +void RH_RF22::sendNextFragment() +{ + if (_txBufSentIndex < _bufLen) + { + // Some left to send? + uint8_t len = _bufLen - _txBufSentIndex; + // But dont send too much + if (len > (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1)) + len = (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1); + spiBurstWrite(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len); +// printBuffer("frag:", _buf + _txBufSentIndex, len); + _txBufSentIndex += len; + } +} + +// Assumption: there are at least RH_RF22_RXFFAFULL_THRESHOLD in the RX FIFO +// That means it should only be called after a RXFFAFULL interrupt +void RH_RF22::readNextFragment() +{ + if (((uint16_t)_bufLen + RH_RF22_RXFFAFULL_THRESHOLD) > RH_RF22_MAX_MESSAGE_LEN) + return; // Hmmm receiver overflow. Should never occur + + // Read the RH_RF22_RXFFAFULL_THRESHOLD octets that should be there + spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RH_RF22_RXFFAFULL_THRESHOLD); + _bufLen += RH_RF22_RXFFAFULL_THRESHOLD; +} + +// Clear the FIFOs +void RH_RF22::resetFifos() +{ + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX | RH_RF22_FFCLRTX); + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); +} + +// Clear the Rx FIFO +void RH_RF22::resetRxFifo() +{ + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX); + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); +} + +// CLear the TX FIFO +void RH_RF22::resetTxFifo() +{ + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRTX); + spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0); +} + +// Default implmentation does nothing. Override if you wish +void RH_RF22::handleExternalInterrupt() +{ +} + +// Default implmentation does nothing. Override if you wish +void RH_RF22::handleWakeupTimerInterrupt() +{ +} + +void RH_RF22::setPromiscuous(bool promiscuous) +{ + RHSPIDriver::setPromiscuous(promiscuous); + spiWrite(RH_RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff); +} + +bool RH_RF22::setCRCPolynomial(CRCPolynomial polynomial) +{ + if (polynomial >= CRC_CCITT && + polynomial <= CRC_Biacheva) + { + _polynomial = polynomial; + return true; + } + else + return false; +} + +uint8_t RH_RF22::maxMessageLength() +{ + return RH_RF22_MAX_MESSAGE_LEN; +} + +void RH_RF22::setThisAddress(uint8_t thisAddress) +{ + RHSPIDriver::setThisAddress(thisAddress); + spiWrite(RH_RF22_REG_3F_CHECK_HEADER3, thisAddress); +} + +uint32_t RH_RF22::getLastPreambleTime() +{ + return _lastPreambleTime; +} + +void RH_RF22::setGpioReversed(bool gpioReversed) +{ + // Ensure the antenna can be switched automatically according to transmit and receive + // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit + // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive + if (gpioReversed) + { + // Reversed for HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com. + spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x15) ; // RX state + spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x12) ; // TX state + } + else + { + spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state + spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state + } +} +