V148
Fork of RadioHead-148 by
RH_RF69.h
- Committer:
- ilkaykozak
- Date:
- 2017-10-25
- Revision:
- 1:b7641da2b203
- Parent:
- 0:ab4e012489ef
File content as of revision 1:b7641da2b203:
// RH_RF69.h // Author: Mike McCauley (mikem@airspayce.com) // Copyright (C) 2014 Mike McCauley // $Id: RH_RF69.h,v 1.29 2015/05/17 00:11:26 mikem Exp $ // /// #ifndef RH_RF69_h #define RH_RF69_h #include <RHGenericSPI.h> #include <RHSPIDriver.h> // The crystal oscillator frequency of the RF69 module #define RH_RF69_FXOSC 32000000.0 // The Frequency Synthesizer step = RH_RF69_FXOSC / 2^^19 #define RH_RF69_FSTEP (RH_RF69_FXOSC / 524288) // This is the maximum number of interrupts the driver can support // Most Arduinos can handle 2, Megas can handle more #define RH_RF69_NUM_INTERRUPTS 3 // This is the bit in the SPI address that marks it as a write #define RH_RF69_SPI_WRITE_MASK 0x80 // Max number of octets the RH_RF69 Rx and Tx FIFOs can hold #define RH_RF69_FIFO_SIZE 66 // Maximum encryptable payload length the RF69 can support #define RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN 64 // The length of the headers we add. // The headers are inside the RF69's payload and are therefore encrypted if encryption is enabled #define RH_RF69_HEADER_LEN 4 // This is the maximum message length that can be supported by this driver. Limited by // the size of the FIFO, since we are unable to support on-the-fly filling and emptying // of the FIFO. // Can be pre-defined to a smaller size (to save SRAM) prior to including this header // Here we allow for 4 bytes of address and header and payload to be included in the 64 byte encryption limit. // the one byte payload length is not encrpyted #ifndef RH_RF69_MAX_MESSAGE_LEN #define RH_RF69_MAX_MESSAGE_LEN (RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN - RH_RF69_HEADER_LEN) #endif // Keep track of the mode the RF69 is in #define RH_RF69_MODE_IDLE 0 #define RH_RF69_MODE_RX 1 #define RH_RF69_MODE_TX 2 // This is the default node address, #define RH_RF69_DEFAULT_NODE_ADDRESS 0 // Register names #define RH_RF69_REG_00_FIFO 0x00 #define RH_RF69_REG_01_OPMODE 0x01 #define RH_RF69_REG_02_DATAMODUL 0x02 #define RH_RF69_REG_03_BITRATEMSB 0x03 #define RH_RF69_REG_04_BITRATELSB 0x04 #define RH_RF69_REG_05_FDEVMSB 0x05 #define RH_RF69_REG_06_FDEVLSB 0x06 #define RH_RF69_REG_07_FRFMSB 0x07 #define RH_RF69_REG_08_FRFMID 0x08 #define RH_RF69_REG_09_FRFLSB 0x09 #define RH_RF69_REG_0A_OSC1 0x0a #define RH_RF69_REG_0B_AFCCTRL 0x0b #define RH_RF69_REG_0C_RESERVED 0x0c #define RH_RF69_REG_0D_LISTEN1 0x0d #define RH_RF69_REG_0E_LISTEN2 0x0e #define RH_RF69_REG_0F_LISTEN3 0x0f #define RH_RF69_REG_10_VERSION 0x10 #define RH_RF69_REG_11_PALEVEL 0x11 #define RH_RF69_REG_12_PARAMP 0x12 #define RH_RF69_REG_13_OCP 0x13 #define RH_RF69_REG_14_RESERVED 0x14 #define RH_RF69_REG_15_RESERVED 0x15 #define RH_RF69_REG_16_RESERVED 0x16 #define RH_RF69_REG_17_RESERVED 0x17 #define RH_RF69_REG_18_LNA 0x18 #define RH_RF69_REG_19_RXBW 0x19 #define RH_RF69_REG_1A_AFCBW 0x1a #define RH_RF69_REG_1B_OOKPEAK 0x1b #define RH_RF69_REG_1C_OOKAVG 0x1c #define RH_RF69_REG_1D_OOKFIX 0x1d #define RH_RF69_REG_1E_AFCFEI 0x1e #define RH_RF69_REG_1F_AFCMSB 0x1f #define RH_RF69_REG_20_AFCLSB 0x20 #define RH_RF69_REG_21_FEIMSB 0x21 #define RH_RF69_REG_22_FEILSB 0x22 #define RH_RF69_REG_23_RSSICONFIG 0x23 #define RH_RF69_REG_24_RSSIVALUE 0x24 #define RH_RF69_REG_25_DIOMAPPING1 0x25 #define RH_RF69_REG_26_DIOMAPPING2 0x26 #define RH_RF69_REG_27_IRQFLAGS1 0x27 #define RH_RF69_REG_28_IRQFLAGS2 0x28 #define RH_RF69_REG_29_RSSITHRESH 0x29 #define RH_RF69_REG_2A_RXTIMEOUT1 0x2a #define RH_RF69_REG_2B_RXTIMEOUT2 0x2b #define RH_RF69_REG_2C_PREAMBLEMSB 0x2c #define RH_RF69_REG_2D_PREAMBLELSB 0x2d #define RH_RF69_REG_2E_SYNCCONFIG 0x2e #define RH_RF69_REG_2F_SYNCVALUE1 0x2f // another 7 sync word bytes follow, 30 through 36 inclusive #define RH_RF69_REG_37_PACKETCONFIG1 0x37 #define RH_RF69_REG_38_PAYLOADLENGTH 0x38 #define RH_RF69_REG_39_NODEADRS 0x39 #define RH_RF69_REG_3A_BROADCASTADRS 0x3a #define RH_RF69_REG_3B_AUTOMODES 0x3b #define RH_RF69_REG_3C_FIFOTHRESH 0x3c #define RH_RF69_REG_3D_PACKETCONFIG2 0x3d #define RH_RF69_REG_3E_AESKEY1 0x3e // Another 15 AES key bytes follow #define RH_RF69_REG_4E_TEMP1 0x4e #define RH_RF69_REG_4F_TEMP2 0x4f #define RH_RF69_REG_58_TESTLNA 0x58 #define RH_RF69_REG_5A_TESTPA1 0x5a #define RH_RF69_REG_5C_TESTPA2 0x5c #define RH_RF69_REG_6F_TESTDAGC 0x6f #define RH_RF69_REG_71_TESTAFC 0x71 // These register masks etc are named wherever possible // corresponding to the bit and field names in the RFM69 Manual // RH_RF69_REG_01_OPMODE #define RH_RF69_OPMODE_SEQUENCEROFF 0x80 #define RH_RF69_OPMODE_LISTENON 0x40 #define RH_RF69_OPMODE_LISTENABORT 0x20 #define RH_RF69_OPMODE_MODE 0x1c #define RH_RF69_OPMODE_MODE_SLEEP 0x00 #define RH_RF69_OPMODE_MODE_STDBY 0x04 #define RH_RF69_OPMODE_MODE_FS 0x08 #define RH_RF69_OPMODE_MODE_TX 0x0c #define RH_RF69_OPMODE_MODE_RX 0x10 // RH_RF69_REG_02_DATAMODUL #define RH_RF69_DATAMODUL_DATAMODE 0x60 #define RH_RF69_DATAMODUL_DATAMODE_PACKET 0x00 #define RH_RF69_DATAMODUL_DATAMODE_CONT_WITH_SYNC 0x40 #define RH_RF69_DATAMODUL_DATAMODE_CONT_WITHOUT_SYNC 0x60 #define RH_RF69_DATAMODUL_MODULATIONTYPE 0x18 #define RH_RF69_DATAMODUL_MODULATIONTYPE_FSK 0x00 #define RH_RF69_DATAMODUL_MODULATIONTYPE_OOK 0x08 #define RH_RF69_DATAMODUL_MODULATIONSHAPING 0x03 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_NONE 0x00 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT1_0 0x01 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_5 0x02 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_3 0x03 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_NONE 0x00 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_BR 0x01 #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_2BR 0x02 // RH_RF69_REG_11_PALEVEL #define RH_RF69_PALEVEL_PA0ON 0x80 #define RH_RF69_PALEVEL_PA1ON 0x40 #define RH_RF69_PALEVEL_PA2ON 0x20 #define RH_RF69_PALEVEL_OUTPUTPOWER 0x1f // RH_RF69_REG_23_RSSICONFIG #define RH_RF69_RSSICONFIG_RSSIDONE 0x02 #define RH_RF69_RSSICONFIG_RSSISTART 0x01 // RH_RF69_REG_25_DIOMAPPING1 #define RH_RF69_DIOMAPPING1_DIO0MAPPING 0xc0 #define RH_RF69_DIOMAPPING1_DIO0MAPPING_00 0x00 #define RH_RF69_DIOMAPPING1_DIO0MAPPING_01 0x40 #define RH_RF69_DIOMAPPING1_DIO0MAPPING_10 0x80 #define RH_RF69_DIOMAPPING1_DIO0MAPPING_11 0xc0 #define RH_RF69_DIOMAPPING1_DIO1MAPPING 0x30 #define RH_RF69_DIOMAPPING1_DIO1MAPPING_00 0x00 #define RH_RF69_DIOMAPPING1_DIO1MAPPING_01 0x10 #define RH_RF69_DIOMAPPING1_DIO1MAPPING_10 0x20 #define RH_RF69_DIOMAPPING1_DIO1MAPPING_11 0x30 #define RH_RF69_DIOMAPPING1_DIO2MAPPING 0x0c #define RH_RF69_DIOMAPPING1_DIO2MAPPING_00 0x00 #define RH_RF69_DIOMAPPING1_DIO2MAPPING_01 0x04 #define RH_RF69_DIOMAPPING1_DIO2MAPPING_10 0x08 #define RH_RF69_DIOMAPPING1_DIO2MAPPING_11 0x0c #define RH_RF69_DIOMAPPING1_DIO3MAPPING 0x03 #define RH_RF69_DIOMAPPING1_DIO3MAPPING_00 0x00 #define RH_RF69_DIOMAPPING1_DIO3MAPPING_01 0x01 #define RH_RF69_DIOMAPPING1_DIO3MAPPING_10 0x02 #define RH_RF69_DIOMAPPING1_DIO3MAPPING_11 0x03 // RH_RF69_REG_26_DIOMAPPING2 #define RH_RF69_DIOMAPPING2_DIO4MAPPING 0xc0 #define RH_RF69_DIOMAPPING2_DIO4MAPPING_00 0x00 #define RH_RF69_DIOMAPPING2_DIO4MAPPING_01 0x40 #define RH_RF69_DIOMAPPING2_DIO4MAPPING_10 0x80 #define RH_RF69_DIOMAPPING2_DIO4MAPPING_11 0xc0 #define RH_RF69_DIOMAPPING2_DIO5MAPPING 0x30 #define RH_RF69_DIOMAPPING2_DIO5MAPPING_00 0x00 #define RH_RF69_DIOMAPPING2_DIO5MAPPING_01 0x10 #define RH_RF69_DIOMAPPING2_DIO5MAPPING_10 0x20 #define RH_RF69_DIOMAPPING2_DIO5MAPPING_11 0x30 #define RH_RF69_DIOMAPPING2_CLKOUT 0x07 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_ 0x00 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_2 0x01 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_4 0x02 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_8 0x03 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_16 0x04 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_32 0x05 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_RC 0x06 #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_OFF 0x07 // RH_RF69_REG_27_IRQFLAGS1 #define RH_RF69_IRQFLAGS1_MODEREADY 0x80 #define RH_RF69_IRQFLAGS1_RXREADY 0x40 #define RH_RF69_IRQFLAGS1_TXREADY 0x20 #define RH_RF69_IRQFLAGS1_PLLLOCK 0x10 #define RH_RF69_IRQFLAGS1_RSSI 0x08 #define RH_RF69_IRQFLAGS1_TIMEOUT 0x04 #define RH_RF69_IRQFLAGS1_AUTOMODE 0x02 #define RH_RF69_IRQFLAGS1_SYNADDRESSMATCH 0x01 // RH_RF69_REG_28_IRQFLAGS2 #define RH_RF69_IRQFLAGS2_FIFOFULL 0x80 #define RH_RF69_IRQFLAGS2_FIFONOTEMPTY 0x40 #define RH_RF69_IRQFLAGS2_FIFOLEVEL 0x20 #define RH_RF69_IRQFLAGS2_FIFOOVERRUN 0x10 #define RH_RF69_IRQFLAGS2_PACKETSENT 0x08 #define RH_RF69_IRQFLAGS2_PAYLOADREADY 0x04 #define RH_RF69_IRQFLAGS2_CRCOK 0x02 // RH_RF69_REG_2E_SYNCCONFIG #define RH_RF69_SYNCCONFIG_SYNCON 0x80 #define RH_RF69_SYNCCONFIG_FIFOFILLCONDITION_MANUAL 0x40 #define RH_RF69_SYNCCONFIG_SYNCSIZE 0x38 #define RH_RF69_SYNCCONFIG_SYNCSIZE_1 0x00 #define RH_RF69_SYNCCONFIG_SYNCSIZE_2 0x08 #define RH_RF69_SYNCCONFIG_SYNCSIZE_3 0x10 #define RH_RF69_SYNCCONFIG_SYNCSIZE_4 0x18 #define RH_RF69_SYNCCONFIG_SYNCSIZE_5 0x20 #define RH_RF69_SYNCCONFIG_SYNCSIZE_6 0x28 #define RH_RF69_SYNCCONFIG_SYNCSIZE_7 0x30 #define RH_RF69_SYNCCONFIG_SYNCSIZE_8 0x38 #define RH_RF69_SYNCCONFIG_SYNCSIZE_SYNCTOL 0x07 // RH_RF69_REG_37_PACKETCONFIG1 #define RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE 0x80 #define RH_RF69_PACKETCONFIG1_DCFREE 0x60 #define RH_RF69_PACKETCONFIG1_DCFREE_NONE 0x00 #define RH_RF69_PACKETCONFIG1_DCFREE_MANCHESTER 0x20 #define RH_RF69_PACKETCONFIG1_DCFREE_WHITENING 0x40 #define RH_RF69_PACKETCONFIG1_DCFREE_RESERVED 0x60 #define RH_RF69_PACKETCONFIG1_CRC_ON 0x10 #define RH_RF69_PACKETCONFIG1_CRCAUTOCLEAROFF 0x08 #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING 0x06 #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE 0x00 #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE 0x02 #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE_BC 0x04 #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_RESERVED 0x06 // RH_RF69_REG_3C_FIFOTHRESH #define RH_RF69_FIFOTHRESH_TXSTARTCONDITION_NOTEMPTY 0x80 #define RH_RF69_FIFOTHRESH_FIFOTHRESHOLD 0x7f // RH_RF69_REG_3D_PACKETCONFIG2 #define RH_RF69_PACKETCONFIG2_INTERPACKETRXDELAY 0xf0 #define RH_RF69_PACKETCONFIG2_RESTARTRX 0x04 #define RH_RF69_PACKETCONFIG2_AUTORXRESTARTON 0x02 #define RH_RF69_PACKETCONFIG2_AESON 0x01 // RH_RF69_REG_4E_TEMP1 #define RH_RF69_TEMP1_TEMPMEASSTART 0x08 #define RH_RF69_TEMP1_TEMPMEASRUNNING 0x04 // RH_RF69_REG_5A_TESTPA1 #define RH_RF69_TESTPA1_NORMAL 0x55 #define RH_RF69_TESTPA1_BOOST 0x5d // RH_RF69_REG_5C_TESTPA2 #define RH_RF69_TESTPA2_NORMAL 0x70 #define RH_RF69_TESTPA2_BOOST 0x7c // RH_RF69_REG_6F_TESTDAGC #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_NORMAL 0x00 #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAON 0x20 #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAOFF 0x30 // Define this to include Serial printing in diagnostic routines #define RH_RF69_HAVE_SERIAL ///////////////////////////////////////////////////////////////////// /// \class RH_RF69 RH_RF69.h <RH_RF69.h> /// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF69 and compatible radio transceiver. /// /// Works with /// - the excellent Moteino and Moteino-USB /// boards from LowPowerLab http://lowpowerlab.com/moteino/ /// - compatible chips and modules such as RFM69W, RFM69HW, RFM69CW, RFM69HCW (Semtech SX1231, SX1231H), /// - RFM69 modules from http://www.hoperfusa.com such as http://www.hoperfusa.com/details.jsp?pid=145 /// - Anarduino MiniWireless -CW and -HW boards http://www.anarduino.com/miniwireless/ including /// the marvellous high powered MinWireless-HW (with 20dBm output for excellent range) /// /// \par Overview /// /// This class provides basic functions for sending and receiving unaddressed, /// unreliable datagrams of arbitrary length to 64 octets per packet. /// /// Manager classes may use this class to implement reliable, addressed datagrams and streams, /// mesh routers, repeaters, translators etc. /// /// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and /// modulation scheme. /// /// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF /// RF69B and compatible radio modules, such as the RFM69 module. /// /// The Hope-RF (http://www.hoperf.com) RF69 is a low-cost ISM transceiver /// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and /// programmable data rates. It also suports AES encryption of up to 64 octets /// of payload It is available prepackaged on modules such as the RFM69W. And /// such modules can be prepacked on processor boards such as the Moteino from /// LowPowerLabs (which is what we used to develop the RH_RF69 driver) /// /// This Driver provides functions for sending and receiving messages of up /// to 60 octets on any frequency supported by the RF69, in a range of /// predefined data rates and frequency deviations. Frequency can be set with /// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited /// range of frequencies due to antenna tuning. /// /// Up to 2 RF69B modules can be connected to an Arduino (3 on a Mega), /// permitting the construction of translators and frequency changers, etc. /// /// The following modulation types are suppported with a range of modem configurations for /// common data rates and frequency deviations: /// - GFSK Gaussian Frequency Shift Keying /// - FSK Frequency Shift Keying /// /// Support for other RF69 features such as on-chip temperature measurement, /// transmitter power control etc is also provided. /// /// Tested on USB-Moteino with arduino-1.0.5 /// on OpenSuSE 13.1 /// /// \par Packet Format /// /// All messages sent and received by this RH_RF69 Driver conform to this packet format: /// /// - 4 octets PREAMBLE /// - 2 octets SYNC 0x2d, 0xd4 (configurable, so you can use this as a network filter) /// - 1 octet RH_RF69 payload length /// - 4 octets HEADER: (TO, FROM, ID, FLAGS) /// - 0 to 60 octets DATA /// - 2 octets CRC computed with CRC16(IBM), computed on HEADER and DATA /// /// For technical reasons, the message format is not protocol compatible with the /// 'HopeRF Radio Transceiver Message Library for Arduino' /// http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is /// it compatible with messages sent by 'Virtual Wire' /// http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same /// author. Nor is it compatible with messages sent by 'RF22' /// http://www.airspayce.com/mikem/arduino/RF22 also from the same author. /// /// \par Connecting RFM-69 to Arduino /// /// We tested with Moteino, which is an Arduino Uno compatible with the RFM69W /// module on-board. Therefore it needs no connections other than the USB /// programming connection and an antenna to make it work. /// /// If you have a bare RFM69W that you want to connect to an Arduino, you /// might use these connections (untested): CAUTION: you must use a 3.3V type /// Arduino, otherwise you will also need voltage level shifters between the /// Arduino and the RFM69. CAUTION, you must also ensure you connect an /// antenna /// /// \code /// Arduino RFM69W /// GND----------GND (ground in) /// 3V3----------3.3V (3.3V in) /// interrupt 0 pin D2-----------DIO0 (interrupt request out) /// SS pin D10----------NSS (chip select in) /// SCK pin D13----------SCK (SPI clock in) /// MOSI pin D11----------MOSI (SPI Data in) /// MISO pin D12----------MISO (SPI Data out) /// \endcode /// /// With these connections, you can then use the default constructor RH_RF69(). /// You can override the default settings for the SS pin and the interrupt in /// the RH_RF69 constructor if you wish to connect the slave select SS to other /// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53 /// for Mega) or the interrupt request to other than pin D2 (Caution, /// different processors have different constraints as to the pins available /// for interrupts). /// /// If you have a Teensy 3.1 and a compatible RFM69 breakout board, you will need to /// construct the RH_RF69 instance like this: /// \code /// RH_RF69 driver(15, 16); /// \endcode /// /// If you have a MoteinoMEGA https://lowpowerlab.com/shop/moteinomega /// with RFM69 on board, you dont need to make any wiring connections /// (the RFM69 module is soldered onto the MotienoMEGA), but you must initialise the RH_RF69 /// constructor like this: /// \code /// RH_RF69 driver(4, 2); /// \endcode /// Make sure you have the MoteinoMEGA core installed in your Arduino hardware folder as described in the /// documentation for the MoteinoMEGA. /// /// It is possible to have 2 or more radios connected to one Arduino, provided /// each radio has its own SS and interrupt line (SCK, SDI and SDO are common /// to all radios) /// /// Caution: on some Arduinos such as the Mega 2560, if you set the slave /// select pin to be other than the usual SS pin (D53 on Mega 2560), you may /// need to set the usual SS pin to be an output to force the Arduino into SPI /// master mode. /// /// Caution: Power supply requirements of the RF69 module may be relevant in some circumstances: /// RF69 modules are capable of pulling 45mA+ at full power, where Arduino's 3.3V line can /// give 50mA. You may need to make provision for alternate power supply for /// the RF69, especially if you wish to use full transmit power, and/or you have /// other shields demanding power. Inadequate power for the RF69 is likely to cause symptoms such as: /// -reset's/bootups terminate with "init failed" messages /// -random termination of communication after 5-30 packets sent/received /// -"fake ok" state, where initialization passes fluently, but communication doesn't happen /// -shields hang Arduino boards, especially during the flashing /// \par Interrupts /// /// The RH_RF69 driver uses interrupts to react to events in the RF69 module, /// such as the reception of a new packet, or the completion of transmission /// of a packet. The RH_RF69 driver interrupt service routine reads status from /// and writes data to the the RF69 module via the SPI interface. It is very /// important therefore, that if you are using the RH_RF69 driver with another /// SPI based deviced, that you disable interrupts while you transfer data to /// and from that other device. Use cli() to disable interrupts and sei() to /// reenable them. /// /// \par Memory /// /// The RH_RF69 driver requires non-trivial amounts of memory. The sample /// programs above all compile to about 8kbytes each, which will fit in the /// flash proram memory of most Arduinos. However, the RAM requirements are /// more critical. Therefore, you should be vary sparing with RAM use in /// programs that use the RH_RF69 driver. /// /// It is often hard to accurately identify when you are hitting RAM limits on Arduino. /// The symptoms can include: /// - Mysterious crashes and restarts /// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements) /// - Hanging /// - Output from Serial.print() not appearing /// /// \par Automatic Frequency Control (AFC) /// /// The RF69 module is configured by the RH_RF69 driver to always use AFC. /// /// \par Transmitter Power /// /// You can control the transmitter power on the RF69 transceiver /// with the RH_RF69::setTxPower() function. The argument can be any of /// -18 to +13 (for RF69W) or -14 to 20 (for RF69HW) /// The default is 13. Eg: /// \code /// driver.setTxPower(-5); /// \endcode /// /// We have made some actual power measurements against /// programmed power for Moteino (with RF69W) /// - Moteino (with RF69W), USB power /// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND /// - bnc connecteor /// - 12dB attenuator /// - BNC-SMA adapter /// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set) /// - Tektronix TDS220 scope to measure the Vout from power head /// \code /// Program power Measured Power /// dBm dBm /// -18 -17 /// -16 -16 /// -14 -14 /// -12 -12 /// -10 -9 /// -8 -7 /// -6 -4 /// -4 -3 /// -2 -2 /// 0 0.2 /// 2 3 /// 4 5 /// 6 7 /// 8 10 /// 10 13 /// 12 14 /// 13 15 /// 14 -51 /// 20 -51 /// \endcode /// We have also made some actual power measurements against /// programmed power for Anarduino MiniWireless with RFM69-HW /// Anarduino MiniWireless (with RFM69-HW), USB power /// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND /// - bnc connecteor /// - 2x12dB attenuators /// - BNC-SMA adapter /// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set) /// - Tektronix TDS220 scope to measure the Vout from power head /// \code /// Program power Measured Power /// dBm dBm /// -18 no measurable output /// 0 no measurable output /// 13 no measurable output /// 14 11 /// 15 12 /// 16 12.4 /// 17 14 /// 18 15 /// 19 15.8 /// 20 17 /// \endcode /// (Caution: we dont claim laboratory accuracy for these measurements) /// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna. /// Caution: although the RFM69 appears to have a PC antenna on board, you will get much better power and range even /// with just a 1/4 wave wire antenna. /// /// \par Performance /// /// Some simple speed performance tests have been conducted. /// In general packet transmission rate will be limited by the modulation scheme. /// Also, if your code does any slow operations like Serial printing it will also limit performance. /// We disabled any printing in the tests below. /// We tested with RH_RF69::GFSK_Rb250Fd250, which is probably the fastest scheme available. /// We tested with a 13 octet message length, over a very short distance of 10cm. /// /// Transmission (no reply) tests with modulation RH_RF69::GFSK_Rb250Fd250 and a /// 13 octet message show about 152 messages per second transmitted and received. /// /// Transmit-and-wait-for-a-reply tests with modulation RH_RF69::GFSK_Rb250Fd250 and a /// 13 octet message (send and receive) show about 68 round trips per second. /// class RH_RF69 : public RHSPIDriver { public: /// \brief Defines register values for a set of modem configuration registers /// /// Defines register values for a set of modem configuration registers /// that can be passed to setModemRegisters() if none of the choices in /// ModemConfigChoice suit your need setModemRegisters() writes the /// register values from this structure to the appropriate RF69 registers /// to set the desired modulation type, data rate and deviation/bandwidth. typedef struct { uint8_t reg_02; ///< Value for register RH_RF69_REG_02_DATAMODUL uint8_t reg_03; ///< Value for register RH_RF69_REG_03_BITRATEMSB uint8_t reg_04; ///< Value for register RH_RF69_REG_04_BITRATELSB uint8_t reg_05; ///< Value for register RH_RF69_REG_05_FDEVMSB uint8_t reg_06; ///< Value for register RH_RF69_REG_06_FDEVLSB uint8_t reg_19; ///< Value for register RH_RF69_REG_19_RXBW uint8_t reg_1a; ///< Value for register RH_RF69_REG_1A_AFCBW uint8_t reg_37; ///< Value for register RH_RF69_REG_37_PACKETCONFIG1 } ModemConfig; /// Choices for setModemConfig() for a selected subset of common /// modulation types, and data rates. If you need another configuration, /// use the register calculator. and call setModemRegisters() with your /// desired settings. /// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic /// definitions and not their integer equivalents: its possible that new values will be /// introduced in later versions (though we will try to avoid it). /// CAUTION: some of these configurations do not work corectly and are marked as such. typedef enum { FSK_Rb2Fd5 = 0, ///< FSK, Whitening, Rb = 2kbs, Fd = 5kHz FSK_Rb2_4Fd4_8, ///< FSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz FSK_Rb4_8Fd9_6, ///< FSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz FSK_Rb9_6Fd19_2, ///< FSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz FSK_Rb19_2Fd38_4, ///< FSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz FSK_Rb38_4Fd76_8, ///< FSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz FSK_Rb57_6Fd120, ///< FSK, Whitening, Rb = 57.6kbs, Fd = 120kHz FSK_Rb125Fd125, ///< FSK, Whitening, Rb = 125kbs, Fd = 125kHz FSK_Rb250Fd250, ///< FSK, Whitening, Rb = 250kbs, Fd = 250kHz FSK_Rb55555Fd50, ///< FSK, Whitening, Rb = 55555kbs,Fd = 50kHz for RFM69 lib compatibility GFSK_Rb2Fd5, ///< GFSK, Whitening, Rb = 2kbs, Fd = 5kHz GFSK_Rb2_4Fd4_8, ///< GFSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz GFSK_Rb4_8Fd9_6, ///< GFSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz GFSK_Rb9_6Fd19_2, ///< GFSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz GFSK_Rb19_2Fd38_4, ///< GFSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz GFSK_Rb38_4Fd76_8, ///< GFSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz GFSK_Rb57_6Fd120, ///< GFSK, Whitening, Rb = 57.6kbs, Fd = 120kHz GFSK_Rb125Fd125, ///< GFSK, Whitening, Rb = 125kbs, Fd = 125kHz GFSK_Rb250Fd250, ///< GFSK, Whitening, Rb = 250kbs, Fd = 250kHz GFSK_Rb55555Fd50, ///< GFSK, Whitening, Rb = 55555kbs,Fd = 50kHz OOK_Rb1Bw1, ///< OOK, Whitening, Rb = 1kbs, Rx Bandwidth = 1kHz. OOK_Rb1_2Bw75, ///< OOK, Whitening, Rb = 1.2kbs, Rx Bandwidth = 75kHz. OOK_Rb2_4Bw4_8, ///< OOK, Whitening, Rb = 2.4kbs, Rx Bandwidth = 4.8kHz. OOK_Rb4_8Bw9_6, ///< OOK, Whitening, Rb = 4.8kbs, Rx Bandwidth = 9.6kHz. OOK_Rb9_6Bw19_2, ///< OOK, Whitening, Rb = 9.6kbs, Rx Bandwidth = 19.2kHz. OOK_Rb19_2Bw38_4, ///< OOK, Whitening, Rb = 19.2kbs, Rx Bandwidth = 38.4kHz. OOK_Rb32Bw64, ///< OOK, Whitening, Rb = 32kbs, Rx Bandwidth = 64kHz. // Test, } ModemConfigChoice; /// Constructor. You can have multiple instances, but each instance must have its own /// interrupt and slave select pin. After constructing, you must call init() to initialise the interface /// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient /// distinct interrupt lines, one for each instance. /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RF69 before /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple) /// \param[in] interruptPin The interrupt Pin number that is connected to the RF69 DIO0 interrupt line. /// Defaults to pin 2. /// Caution: You must specify an interrupt capable pin. /// On many Arduino boards, there are limitations as to which pins may be used as interrupts. /// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin. /// On other Arduinos pins 2 or 3. /// See http://arduino.cc/en/Reference/attachInterrupt for more details. /// On Chipkit Uno32, pins 38, 2, 7, 8, 35. /// On other boards, any digital pin may be used. /// \param[in] spi Pointer to the SPI interface object to use. /// Defaults to the standard Arduino hardware SPI interface RH_RF69(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi = hardware_spi); /// Initialises this instance and the radio module connected to it. /// The following steps are taken: /// - Initialise the slave select pin and the SPI interface library /// - Checks the connected RF69 module can be communicated /// - Attaches an interrupt handler /// - Configures the RF69 module /// - Sets the frequency to 434.0 MHz /// - Sets the modem data rate to FSK_Rb2Fd5 /// \return true if everything was successful bool init(); /// Reads the on-chip temperature sensor. /// The RF69 must be in Idle mode (= RF69 Standby) to measure temperature. /// The measurement is uncalibrated and without calibration, you can expect it to be far from /// correct. /// \return The measured temperature, in degrees C from -40 to 85 (uncalibrated) int8_t temperatureRead(); /// Sets the transmitter and receiver /// centre frequency /// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, RF69 comes in several /// different frequency ranges, and setting a frequency outside that range of your radio will probably not work /// \param[in] afcPullInRange Not used /// \return true if the selected frquency centre is within range bool setFrequency(float centre, float afcPullInRange = 0.05); /// Reads and returns the current RSSI value. /// Causes the current signal strength to be measured and returned /// If you want to find the RSSI /// of the last received message, use lastRssi() instead. /// \return The current RSSI value on units of 0.5dB. int8_t rssiRead(); /// Sets the parameters for the RF69 OPMODE. /// This is a low level device access function, and should not normally ned to be used by user code. /// Instead can use stModeRx(), setModeTx(), setModeIdle() /// \param[in] mode RF69 OPMODE to set, one of RH_RF69_OPMODE_MODE_*. void setOpMode(uint8_t mode); /// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running, /// disables them. void setModeIdle(); /// If current mode is Tx or Idle, changes it to Rx. /// Starts the receiver in the RF69. void setModeRx(); /// If current mode is Rx or Idle, changes it to Rx. F /// Starts the transmitter in the RF69. void setModeTx(); /// Sets the transmitter power output level. /// Be a good neighbour and set the lowest power level you need. /// Caution: legal power limits may apply in certain countries. /// After init(), the power will be set to 13dBm. /// \param[in] power Transmitter power level in dBm. For RF69W, valid values are from -18 to +13 /// (higher power settings disable the transmitter). /// For RF69HW, valid values are from +14 to +20. Caution: at +20dBm, duty cycle is limited to 1% and a /// maximum VSWR of 3:1 at the antenna port. void setTxPower(int8_t power); /// Sets all the registers required to configure the data modem in the RF69, including the data rate, /// bandwidths etc. You can use this to configure the modem with custom configurations if none of the /// canned configurations in ModemConfigChoice suit you. /// \param[in] config A ModemConfig structure containing values for the modem configuration registers. void setModemRegisters(const ModemConfig* config); /// Select one of the predefined modem configurations. If you need a modem configuration not provided /// here, use setModemRegisters() with your own ModemConfig. The default after init() is RH_RF69::GFSK_Rb250Fd250. /// \param[in] index The configuration choice. /// \return true if index is a valid choice. bool setModemConfig(ModemConfigChoice index); /// Starts the receiver and checks whether a received message is available. /// This can be called multiple times in a timeout loop /// \return true if a complete, valid message has been received and is able to be retrieved by /// recv() bool available(); /// Turns the receiver on if it not already on. /// If there is a valid message available, copy it to buf and return true /// else return false. /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted). /// You should be sure to call this function frequently enough to not miss any messages /// It is recommended that you call it in your main loop. /// \param[in] buf Location to copy the received message /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied. /// \return true if a valid message was copied to buf bool recv(uint8_t* buf, uint8_t* len); /// Waits until any previous transmit packet is finished being transmitted with waitPacketSent(). /// Then loads a message into the transmitter and starts the transmitter. Note that a message length /// of 0 is NOT permitted. /// \param[in] data Array of data to be sent /// \param[in] len Number of bytes of data to send (> 0) /// \return true if the message length was valid and it was correctly queued for transmit bool send(const uint8_t* data, uint8_t len); /// Sets the length of the preamble /// in bytes. /// Caution: this should be set to the same /// value on all nodes in your network. Default is 4. /// Sets the message preamble length in REG_0?_PREAMBLE?SB /// \param[in] bytes Preamble length in bytes. void setPreambleLength(uint16_t bytes); /// Sets the sync words for transmit and receive /// Caution: SyncWords should be set to the same /// value on all nodes in your network. Nodes with different SyncWords set will never receive /// each others messages, so different SyncWords can be used to isolate different /// networks from each other. Default is { 0x2d, 0xd4 }. /// \param[in] syncWords Array of sync words, 1 to 4 octets long. NULL if no sync words to be used. /// \param[in] len Number of sync words to set, 1 to 4. 0 if no sync words to be used. void setSyncWords(const uint8_t* syncWords = NULL, uint8_t len = 0); /// Enables AES encryption and sets the AES encryption key, used /// to encrypt and decrypt all messages. The default is disabled. /// \param[in] key The key to use. Must be 16 bytes long. The same key must be installed /// in other instances of RF69, otherwise communications will not work correctly. If key is NULL, /// encryption is disabled. void setEncryptionKey(uint8_t* key = NULL); /// Returns the time in millis since the most recent preamble was received, and when the most recent /// RSSI measurement was made. uint32_t getLastPreambleTime(); /// The maximum message length supported by this driver /// \return The maximum message length supported by this driver uint8_t maxMessageLength(); /// Prints the value of a single register /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform /// For debugging/testing only /// \return true if successful bool printRegister(uint8_t reg); /// Prints the value of all the RF69 registers /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform /// For debugging/testing only /// \return true if successful bool printRegisters(); /// Sets the radio operating mode for the case when the driver is idle (ie not /// transmitting or receiving), allowing you to control the idle mode power requirements /// at the expense of slower transitions to transmit and receive modes. /// By default, the idle mode is RH_RF69_OPMODE_MODE_STDBY, /// but eg setIdleMode(RH_RF69_OPMODE_MODE_SLEEP) will provide a much lower /// idle current but slower transitions. Call this function after init(). /// \param[in] idleMode The chip operating mode to use when the driver is idle. One of RH_RF69_OPMODE_* void setIdleMode(uint8_t idleMode); /// Sets the radio into low-power sleep mode. /// If successful, the transport will stay in sleep mode until woken by /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc) /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode. /// \return true if sleep mode was successfully entered. virtual bool sleep(); protected: /// This is a low level function to handle the interrupts for one instance of RF69. /// Called automatically by isr*() /// Should not need to be called by user code. void handleInterrupt(); /// Low level function to read the FIFO and put the received data into the receive buffer /// Should not need to be called by user code. void readFifo(); protected: /// Low level interrupt service routine for RF69 connected to interrupt 0 static void isr0(); /// Low level interrupt service routine for RF69 connected to interrupt 1 static void isr1(); /// Low level interrupt service routine for RF69 connected to interrupt 1 static void isr2(); /// Array of instances connected to interrupts 0 and 1 static RH_RF69* _deviceForInterrupt[]; /// Index of next interrupt number to use in _deviceForInterrupt static uint8_t _interruptCount; #if (RH_PLATFORM == RH_PLATFORM_MBED) /// The configured interrupt pin connected to this instance InterruptIn _interruptPin; #else /// The configured interrupt pin connected to this instance uint8_t _interruptPin; #endif /// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated) /// else 0xff uint8_t _myInterruptIndex; /// The radio OP mode to use when mode is RHModeIdle uint8_t _idleMode; /// The reported device type uint8_t _deviceType; /// The selected output power in dBm int8_t _power; /// The message length in _buf volatile uint8_t _bufLen; /// Array of octets of teh last received message or the next to transmit message uint8_t _buf[RH_RF69_MAX_MESSAGE_LEN]; /// True when there is a valid message in the Rx buffer volatile bool _rxBufValid; /// Time in millis since the last preamble was received (and the last time the RSSI was measured) uint32_t _lastPreambleTime; }; /// @example rf69_client.pde /// @example rf69_server.pde /// @example rf69_reliable_datagram_client.pde /// @example rf69_reliable_datagram_server.pde #endif