V148

Fork of RadioHead-148 by David Rimer

RH_RF24.cpp

Committer:
ilkaykozak
Date:
2017-10-25
Revision:
1:b7641da2b203
Parent:
0:ab4e012489ef

File content as of revision 1:b7641da2b203:

// RH_RF24.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF24.cpp,v 1.14 2015/08/13 02:45:47 mikem Exp $

#include <RH_RF24.h>
// Generated with Silicon Labs WDS software:
#include "radio_config_Si4460.h"

// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF24, allowing you to have
// 2 or more RF24s per Arduino
RH_RF24* RH_RF24::_deviceForInterrupt[RH_RF24_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF24::_interruptCount = 0; // Index into _deviceForInterrupt for next device

// This configuration data is defined in radio_config_Si4460.h 
// which was generated with the Silicon Labs WDS program
PROGMEM const uint8_t RFM26_CONFIGURATION_DATA[] = RADIO_CONFIGURATION_DATA_ARRAY;

// These configurations were all generated originally by the Silicon LAbs WDS configuration tool.
// The configurations were imported into RH_RF24, the complete properties set dumped to a file with printRegisters, then 
// RH_RF24_property_data/convert.pl was used to generate the entry for this table.
// Contributions of new complete and tested ModemConfigs ready to add to this list will be readily accepted.
// Casual suggestions of new schemes without working examples will probably be passed over
PROGMEM static const RH_RF24::ModemConfig MODEM_CONFIG_TABLE[] =
{
    // These were generated with convert.pl from data in RH_RF24_property_data
    // FSK_Rb0_5Fd1
    { 0x02, 0x00, 0x13, 0x88, 0x01, 0x00, 0x00, 0x46, 0x01, 0x34, 0x11, 0x02, 0x71, 0x00, 0xd1, 0xb7, 0x00, 0x69, 0x02, 0x36, 0x80, 0x01, 0x5a, 0xfc, 0xe2, 0x11, 0x89, 0x89, 0x00, 0x02, 0xff, 0xff, 0x00, 0x2b, 0x02, 0x81, 0x00, 0xad, 0x3a, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // FSK_Rb5Fd10
    { 0x02, 0x00, 0xc3, 0x50, 0x01, 0x00, 0x02, 0xbb, 0x01, 0x30, 0x20, 0x01, 0x77, 0x01, 0x5d, 0x86, 0x00, 0xaf, 0x02, 0x36, 0x80, 0x0f, 0x15, 0x87, 0xe2, 0x11, 0x52, 0x52, 0x00, 0x02, 0xff, 0xff, 0x00, 0x2a, 0x02, 0x83, 0x01, 0x20, 0x40, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // FSK_Rb50Fd100
    { 0x02, 0x07, 0xa1, 0x20, 0x01, 0x00, 0x1b, 0x4f, 0x01, 0x00, 0x10, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x36, 0x80, 0x92, 0x0a, 0x46, 0xe2, 0x11, 0x2c, 0x2c, 0x00, 0x02, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x02, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },
  
    //FSK_Rb150Fd300
    { 0x02, 0x16, 0xe3, 0x60, 0x01, 0x00, 0x51, 0xec, 0x01, 0x00, 0x30, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x47, 0x83, 0x6a, 0x04, 0xb5, 0xe2, 0x22, 0x16, 0x16, 0x00, 0x02, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x02, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x39, 0x04, 0x05, 0x04, 0x01, },

    // GFSK_Rb0_5Fd1
    { 0x03, 0x00, 0x4e, 0x20, 0x05, 0x00, 0x00, 0x46, 0x01, 0x34, 0x11, 0x02, 0x71, 0x00, 0xd1, 0xb7, 0x00, 0x69, 0x02, 0x36, 0x80, 0x01, 0x5a, 0xfc, 0xe2, 0x11, 0x89, 0x89, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x2b, 0x02, 0x81, 0x00, 0x68, 0x3a, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // GFSK_Rb5Fd10
    { 0x03, 0x03, 0x0d, 0x40, 0x05, 0x00, 0x02, 0xbb, 0x01, 0x30, 0x20, 0x01, 0x77, 0x01, 0x5d, 0x86, 0x00, 0xaf, 0x02, 0x36, 0x80, 0x0f, 0x15, 0x87, 0xe2, 0x11, 0x52, 0x52, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x2a, 0x02, 0x83, 0x00, 0xad, 0x40, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0xff, 0xba, 0x0f, 0x51, 0xcf, 0xa9, 0xc9, 0xfc, 0x1b, 0x1e, 0x0f, 0x01, 0xfc, 0xfd, 0x15, 0xff, 0x00, 0x0f, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // GFSK_Rb50Fd100
    { 0x03, 0x0f, 0x42, 0x40, 0x09, 0x00, 0x1b, 0x4f, 0x01, 0x00, 0x10, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x36, 0x80, 0x92, 0x0a, 0x46, 0xe2, 0x11, 0x2c, 0x2c, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x01, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // GFSK_Rb150Fd300
    { 0x03, 0x2d, 0xc6, 0xc0, 0x09, 0x00, 0x51, 0xec, 0x01, 0x00, 0x30, 0x00, 0xc8, 0x02, 0x8f, 0x5c, 0x01, 0x48, 0x02, 0x47, 0x83, 0x6a, 0x04, 0xb5, 0xe2, 0x22, 0x16, 0x16, 0x00, 0x1a, 0xff, 0xff, 0x00, 0x29, 0x02, 0x83, 0x01, 0x7f, 0x40, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0xff, 0xc4, 0x30, 0x7f, 0xf5, 0xb5, 0xb8, 0xde, 0x05, 0x17, 0x16, 0x0c, 0x03, 0x00, 0x15, 0xff, 0x00, 0x00, 0x3f, 0x39, 0x04, 0x05, 0x04, 0x01, },

    // OOK_Rb5Bw30
    { 0x01, 0x00, 0xc3, 0x50, 0x01, 0x00, 0x00, 0x00, 0x00, 0x34, 0x10, 0x00, 0x3f, 0x08, 0x31, 0x27, 0x04, 0x10, 0x02, 0x12, 0x00, 0x2c, 0x03, 0xf9, 0x62, 0x11, 0x0e, 0x0e, 0x00, 0x02, 0xff, 0xff, 0x00, 0x27, 0x00, 0x00, 0x07, 0xff, 0x40, 0xcc, 0xa1, 0x30, 0xa0, 0x21, 0xd1, 0xb9, 0xc9, 0xea, 0x05, 0x12, 0x11, 0x0a, 0x04, 0x15, 0xfc, 0x03, 0x00, 0xcc, 0xa1, 0x30, 0xa0, 0x21, 0xd1, 0xb9, 0xc9, 0xea, 0x05, 0x12, 0x11, 0x0a, 0x04, 0x15, 0xfc, 0x03, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

    // OOK_Rb10Bw40
    { 0x01, 0x01, 0x86, 0xa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x32, 0x20, 0x00, 0x5e, 0x05, 0x76, 0x1a, 0x02, 0xb9, 0x02, 0x12, 0x00, 0x57, 0x02, 0xb0, 0x62, 0x11, 0x15, 0x15, 0x00, 0x02, 0xff, 0xff, 0x00, 0x28, 0x00, 0x00, 0x07, 0xff, 0x40, 0xa2, 0x81, 0x26, 0xaf, 0x3f, 0xee, 0xc8, 0xc7, 0xdb, 0xf2, 0x02, 0x08, 0x07, 0x03, 0x15, 0xfc, 0x0f, 0x00, 0xa2, 0x81, 0x26, 0xaf, 0x3f, 0xee, 0xc8, 0xc7, 0xdb, 0xf2, 0x02, 0x08, 0x07, 0x03, 0x15, 0xfc, 0x0f, 0x00, 0x3f, 0x2c, 0x0e, 0x04, 0x0c, 0x73, },

};

RH_RF24::RH_RF24(PINS slaveSelectPin, PINS interruptPin, PINS sdnPin, RHGenericSPI& spi)
    :
    RHSPIDriver(slaveSelectPin, spi),
    _interruptPin(interruptPin),
    _sdnPin(sdnPin)
{
    _idleMode = RH_RF24_DEVICE_STATE_READY;
    _myInterruptIndex = 0xff; // Not allocated yet
}

void RH_RF24::setIdleMode(uint8_t idleMode)
{
    _idleMode = idleMode;
}

bool RH_RF24::init()
{
    if (!RHSPIDriver::init())
	return false;

#if (RH_PLATFORM != RH_PLATFORM_MBED)
    // Determine the interrupt number that corresponds to the interruptPin
    int interruptNumber = digitalPinToInterrupt(_interruptPin);
    if (interruptNumber == NOT_AN_INTERRUPT)
	return false;
#endif

    // Initialise the radio
    power_on_reset();
    cmd_clear_all_interrupts();
    // Here we use a configuration generated by the Silicon Las Wireless Development Suite
    // in radio_config_Si4460.h
    // WE override a few things later that we ned to be sure of.
    configure(RFM26_CONFIGURATION_DATA);

    // Get the device type and check it
    // This also tests whether we are really connected to a device
    uint8_t buf[8];
    if (!command(RH_RF24_CMD_PART_INFO, 0, 0, buf, sizeof(buf)))
	return false; // SPI error? Not connected?
    _deviceType = (buf[1] << 8) | buf[2];
    // Check PART to be either 0x4460, 0x4461, 0x4463, 0x4464
    if (_deviceType != 0x4460 &&
	_deviceType != 0x4461 &&
	_deviceType != 0x4463 &&
	_deviceType != 0x4464)
	return false; // Unknown radio type, or not connected

#if (RH_PLATFORM != RH_PLATFORM_MBED)
    // Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
    // ARM M4 requires the below. else pin interrupt doesn't work properly.
    // On all other platforms, its innocuous, belt and braces
    pinMode(_interruptPin, INPUT); 
#endif

    // Set up interrupt handler
    // Since there are a limited number of interrupt glue functions isr*() available,
    // we can only support a limited number of devices simultaneously
    // ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the 
    // interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
    // yourself based on knwledge of what Arduino board you are running on.
    if (_myInterruptIndex == 0xff)
    {
	// First run, no interrupt allocated yet
	if (_interruptCount <= RH_RF24_NUM_INTERRUPTS)
	    _myInterruptIndex = _interruptCount++;
	else
	    return false; // Too many devices, not enough interrupt vectors
    }
    _deviceForInterrupt[_myInterruptIndex] = this;
    
#if (RH_PLATFORM == RH_PLATFORM_MBED)
    if (_myInterruptIndex == 0)
		_interruptPin.fall(&isr0);
    else if (_myInterruptIndex == 1)
		_interruptPin.fall(&isr1);
    else if (_myInterruptIndex == 2)
		_interruptPin.fall(&isr2);
    else
	return false; // Too many devices, not enough interrupt vectors
#else
    if (_myInterruptIndex == 0)
	attachInterrupt(interruptNumber, isr0, FALLING);
    else if (_myInterruptIndex == 1)
	attachInterrupt(interruptNumber, isr1, FALLING);
    else if (_myInterruptIndex == 2)
	attachInterrupt(interruptNumber, isr2, FALLING);
    else
	return false; // Too many devices, not enough interrupt vectors
#endif
    // Ensure we get the interrupts we need, irrespective of whats in the radio_config
    uint8_t int_ctl[] = {RH_RF24_MODEM_INT_STATUS_EN | RH_RF24_PH_INT_STATUS_EN, 0xff, 0xff, 0x00 };
    set_properties(RH_RF24_PROPERTY_INT_CTL_ENABLE, int_ctl, sizeof(int_ctl));

    // RSSI Latching should be configured in MODEM_RSSI_CONTROL in radio_config

    // PKT_TX_THRESHOLD and PKT_RX_THRESHOLD should be set to about 0x30 in radio_config

    // Configure important RH_RF24 registers
    // Here we set up the standard packet format for use by the RH_RF24 library:
    // We will use FIFO Mode, with automatic packet generation
    // We have 2 fields:
    // Field 1 contains only the (variable) length of field 2, with CRC
    // Field 2 contains the variable length payload and the CRC
    // Hmmm, having no CRC on field 1 and CRC on field 2 causes CRC errors when resetting after an odd
    // number of packets! Anyway its prob a good thing at the cost of some airtime.
    // Hmmm, enabling WHITEN stops it working!
    uint8_t pkt_config1[] = { 0x00 };
    set_properties(RH_RF24_PROPERTY_PKT_CONFIG1, pkt_config1, sizeof(pkt_config1));

    uint8_t pkt_len[] = { 0x02, 0x01, 0x00 };
    set_properties(RH_RF24_PROPERTY_PKT_LEN, pkt_len, sizeof(pkt_len));

    uint8_t pkt_field1[] = { 0x00, 0x01, 0x00, RH_RF24_FIELD_CONFIG_CRC_START | RH_RF24_FIELD_CONFIG_SEND_CRC | RH_RF24_FIELD_CONFIG_CHECK_CRC | RH_RF24_FIELD_CONFIG_CRC_ENABLE };
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_12_8, pkt_field1, sizeof(pkt_field1));

    uint8_t pkt_field2[] = { 0x00, sizeof(_buf), 0x00, RH_RF24_FIELD_CONFIG_CRC_START | RH_RF24_FIELD_CONFIG_SEND_CRC | RH_RF24_FIELD_CONFIG_CHECK_CRC | RH_RF24_FIELD_CONFIG_CRC_ENABLE };
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_12_8, pkt_field2, sizeof(pkt_field2));

    // Clear all other fields so they are never used, irrespective of the radio_config
    uint8_t pkt_fieldn[] = { 0x00, 0x00, 0x00, 0x00 };
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_12_8, pkt_fieldn, sizeof(pkt_fieldn));

    // The following can be changed later by the user if necessary.
    // Set up default configuration
    setCRCPolynomial(CRC_16_IBM);
    uint8_t syncwords[] = { 0x2d, 0xd4 };
    setSyncWords(syncwords, sizeof(syncwords)); // Same as RF22's
    // Reasonably fast and reliable default speed and modulation
    setModemConfig(GFSK_Rb5Fd10);
    // 3 would be sufficient, but this is the same as RF22's
    // actualy, 4 seems to work much better for some modulations
    setPreambleLength(4);
    // An innocuous ISM frequency, same as RF22's
    setFrequency(434.0);
    // About 2.4dBm on RFM24:
    setTxPower(0x10); 

    return true;
}

// C++ level interrupt handler for this instance
void RH_RF24::handleInterrupt()
{
    uint8_t status[8];
    command(RH_RF24_CMD_GET_INT_STATUS, NULL, 0, status, sizeof(status));

    // Decode and handle the interrupt bits we are interested in
//    if (status[0] & RH_RF24_INT_STATUS_CHIP_INT_STATUS)
    if (status[0] & RH_RF24_INT_STATUS_MODEM_INT_STATUS)
    {
//	if (status[4] & RH_RF24_INT_STATUS_INVALID_PREAMBLE)
	if (status[4] & RH_RF24_INT_STATUS_INVALID_SYNC)
	{
	    // After INVALID_SYNC, sometimes the radio gets into a silly state and subsequently reports it for every packet
	    // Need to reset the radio and clear the RX FIFO, cause sometimes theres junk there too
	    _mode = RHModeIdle;
	    clearRxFifo();
	    clearBuffer();
	}
    }
    if (status[0] & RH_RF24_INT_STATUS_PH_INT_STATUS)
    {
	if (status[2] & RH_RF24_INT_STATUS_CRC_ERROR)
	{
	    // CRC Error
	    // Radio automatically went to _idleMode
	    _mode = RHModeIdle;
	    _rxBad++;

	    clearRxFifo();
	    clearBuffer();
	}
	if (status[2] & RH_RF24_INT_STATUS_PACKET_SENT)
	{
	    _txGood++; 
	    // Transmission does not automatically clear the tx buffer.
	    // Could retransmit if we wanted
	    // RH_RF24 configured to transition automatically to Idle after packet sent
	    _mode = RHModeIdle;
	    clearBuffer();
	}
	if (status[2] & RH_RF24_INT_STATUS_PACKET_RX)
	{
	    // A complete message has been received with good CRC
	    // Get the RSSI, configured to latch at sync detect in radio_config
	    uint8_t modem_status[6];
	    command(RH_RF24_CMD_GET_MODEM_STATUS, NULL, 0, modem_status, sizeof(modem_status));
	    _lastRssi = modem_status[3];
	    _lastPreambleTime = millis();
	    
	    // Save it in our buffer
	    readNextFragment();
	    // And see if we have a valid message
	    validateRxBuf();
	    // Radio will have transitioned automatically to the _idleMode
	    _mode = RHModeIdle;
	}
	if (status[2] & RH_RF24_INT_STATUS_TX_FIFO_ALMOST_EMPTY)
	{
	    // TX FIFO almost empty, maybe send another chunk, if there is one
	    sendNextFragment();
	}
	if (status[2] & RH_RF24_INT_STATUS_RX_FIFO_ALMOST_FULL)
	{
	    // Some more data to read, get it
	    readNextFragment();
	}
    }
}

// Check whether the latest received message is complete and uncorrupted
void RH_RF24::validateRxBuf()
{
    // Validate headers etc
    if (_bufLen >= RH_RF24_HEADER_LEN)
    {
	_rxHeaderTo    = _buf[0];
	_rxHeaderFrom  = _buf[1];
	_rxHeaderId    = _buf[2];
	_rxHeaderFlags = _buf[3];
	if (_promiscuous ||
	    _rxHeaderTo == _thisAddress ||
	    _rxHeaderTo == RH_BROADCAST_ADDRESS)
	{
	    // Its for us
	    _rxGood++;
	    _rxBufValid = true;
	}
    }
}

bool RH_RF24::clearRxFifo()
{
    uint8_t fifo_clear[] = { 0x02 };
    return command(RH_RF24_CMD_FIFO_INFO, fifo_clear, sizeof(fifo_clear));
}

void RH_RF24::clearBuffer()
{
    _bufLen = 0;
    _txBufSentIndex = 0;
    _rxBufValid = false;
}

// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF24.
// 3 interrupts allows us to have 3 different devices
void RH_RF24::isr0()
{
    if (_deviceForInterrupt[0])
	_deviceForInterrupt[0]->handleInterrupt();
}
void RH_RF24::isr1()
{
    if (_deviceForInterrupt[1])
	_deviceForInterrupt[1]->handleInterrupt();
}
void RH_RF24::isr2()
{
    if (_deviceForInterrupt[2])
	_deviceForInterrupt[2]->handleInterrupt();
}

bool RH_RF24::available()
{
    if (_mode == RHModeTx)
	return false;
    if (!_rxBufValid)
	setModeRx(); // Make sure we are receiving
    return _rxBufValid;
}

bool RH_RF24::recv(uint8_t* buf, uint8_t* len)
{
    if (!available())
	return false;
    // CAUTION: first 4 octets of _buf contain the headers
    if (buf && len && (_bufLen >= RH_RF24_HEADER_LEN))
    {
	ATOMIC_BLOCK_START;
	if (*len > _bufLen - RH_RF24_HEADER_LEN)
	    *len = _bufLen - RH_RF24_HEADER_LEN;
	memcpy(buf, _buf + RH_RF24_HEADER_LEN, *len);
	ATOMIC_BLOCK_END;
    }
    clearBuffer(); // Got the most recent message
    return true;
}

bool RH_RF24::send(const uint8_t* data, uint8_t len)
{
    if (len > RH_RF24_MAX_MESSAGE_LEN)
	return false;

    waitPacketSent(); // Make sure we dont interrupt an outgoing message
    setModeIdle(); // Prevent RX while filling the fifo

    // Put the payload in the FIFO
    // First the length in fixed length field 1. This wont appear in the receiver fifo since
    // we have turned off IN_FIFO in PKT_LEN
    _buf[0] = len + RH_RF24_HEADER_LEN;
    // Now the rest of the payload in variable length field 2
    // First the headers
    _buf[1] = _txHeaderTo;
    _buf[2] = _txHeaderFrom;
    _buf[3] = _txHeaderId;
    _buf[4] = _txHeaderFlags;
    // Then the message
    memcpy(_buf + 1 + RH_RF24_HEADER_LEN, data, len);
    _bufLen = len + 1 + RH_RF24_HEADER_LEN;
    _txBufSentIndex = 0;

    // Set the field 2 length to the variable payload length
    uint8_t l[] = { len +  RH_RF24_HEADER_LEN};
    set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0, l, sizeof(l));

    sendNextFragment();
    setModeTx();
    return true;
}

// This is different to command() since we must not wait for CTS
bool RH_RF24::writeTxFifo(uint8_t *data, uint8_t len)
{
    ATOMIC_BLOCK_START;
    // First send the command
    digitalWrite(_slaveSelectPin, LOW);
    _spi.transfer(RH_RF24_CMD_TX_FIFO_WRITE);
    // Now write any write data
    while (len--)
	_spi.transfer(*data++);
    digitalWrite(_slaveSelectPin, HIGH);
    ATOMIC_BLOCK_END;
    return true;
}

void RH_RF24::sendNextFragment()
{
    if (_txBufSentIndex < _bufLen)
    {
	// Some left to send?
	uint8_t len = _bufLen - _txBufSentIndex;
	// But dont send too much, see how much room is left
	uint8_t fifo_info[2];
	command(RH_RF24_CMD_FIFO_INFO, NULL, 0, fifo_info, sizeof(fifo_info));
	// fifo_info[1] is space left in TX FIFO
	if (len > fifo_info[1])
	    len = fifo_info[1];

	writeTxFifo(_buf + _txBufSentIndex, len);
	_txBufSentIndex += len;
    }
}

void RH_RF24::readNextFragment()
{
    // Get the packet length from the RX FIFO length
    uint8_t fifo_info[1];
    command(RH_RF24_CMD_FIFO_INFO, NULL, 0, fifo_info, sizeof(fifo_info));
    uint8_t fifo_len = fifo_info[0]; 

    // Check for overflow
    if ((_bufLen + fifo_len) > sizeof(_buf))
    {
	// Overflow pending
	_rxBad++;
	setModeIdle();
	clearRxFifo();
	clearBuffer();
	return;
    }
    // So we have room
    // Now read the fifo_len bytes from the RX FIFO
    // This is different to command() since we dont wait for CTS
    digitalWrite(_slaveSelectPin, LOW);
    _spi.transfer(RH_RF24_CMD_RX_FIFO_READ);
    uint8_t* p = _buf + _bufLen;
    uint8_t l = fifo_len;
    while (l--)
	*p++ = _spi.transfer(0);
    digitalWrite(_slaveSelectPin, HIGH);
    _bufLen += fifo_len;
}

uint8_t RH_RF24::maxMessageLength()
{
    return RH_RF24_MAX_MESSAGE_LEN;
}

// Sets registers from a canned modem configuration structure
void RH_RF24::setModemRegisters(const ModemConfig* config)
{
    // This list also generated with convert.pl
    set_properties(0x2000, &config->prop_2000, 1);
    set_properties(0x2003, &config->prop_2003, 1);
    set_properties(0x2004, &config->prop_2004, 1);
    set_properties(0x2005, &config->prop_2005, 1);
    set_properties(0x2006, &config->prop_2006, 1);
    set_properties(0x200b, &config->prop_200b, 1);
    set_properties(0x200c, &config->prop_200c, 1);
    set_properties(0x2018, &config->prop_2018, 1);
    set_properties(0x201e, &config->prop_201e, 1);
    set_properties(0x201f, &config->prop_201f, 1);
    set_properties(0x2022, &config->prop_2022, 1);
    set_properties(0x2023, &config->prop_2023, 1);
    set_properties(0x2024, &config->prop_2024, 1);
    set_properties(0x2025, &config->prop_2025, 1);
    set_properties(0x2026, &config->prop_2026, 1);
    set_properties(0x2027, &config->prop_2027, 1);
    set_properties(0x2028, &config->prop_2028, 1);
    set_properties(0x2029, &config->prop_2029, 1);
    set_properties(0x202d, &config->prop_202d, 1);
    set_properties(0x202e, &config->prop_202e, 1);
    set_properties(0x202f, &config->prop_202f, 1);
    set_properties(0x2030, &config->prop_2030, 1);
    set_properties(0x2031, &config->prop_2031, 1);
    set_properties(0x2035, &config->prop_2035, 1);
    set_properties(0x2038, &config->prop_2038, 1);
    set_properties(0x2039, &config->prop_2039, 1);
    set_properties(0x203a, &config->prop_203a, 1);
    set_properties(0x203b, &config->prop_203b, 1);
    set_properties(0x203c, &config->prop_203c, 1);
    set_properties(0x203d, &config->prop_203d, 1);
    set_properties(0x203e, &config->prop_203e, 1);
    set_properties(0x203f, &config->prop_203f, 1);
    set_properties(0x2040, &config->prop_2040, 1);
    set_properties(0x2043, &config->prop_2043, 1);
    set_properties(0x2045, &config->prop_2045, 1);
    set_properties(0x2046, &config->prop_2046, 1);
    set_properties(0x2047, &config->prop_2047, 1);
    set_properties(0x204e, &config->prop_204e, 1);
    set_properties(0x2100, &config->prop_2100, 1);
    set_properties(0x2101, &config->prop_2101, 1);
    set_properties(0x2102, &config->prop_2102, 1);
    set_properties(0x2103, &config->prop_2103, 1);
    set_properties(0x2104, &config->prop_2104, 1);
    set_properties(0x2105, &config->prop_2105, 1);
    set_properties(0x2106, &config->prop_2106, 1);
    set_properties(0x2107, &config->prop_2107, 1);
    set_properties(0x2108, &config->prop_2108, 1);
    set_properties(0x2109, &config->prop_2109, 1);
    set_properties(0x210a, &config->prop_210a, 1);
    set_properties(0x210b, &config->prop_210b, 1);
    set_properties(0x210c, &config->prop_210c, 1);
    set_properties(0x210d, &config->prop_210d, 1);
    set_properties(0x210e, &config->prop_210e, 1);
    set_properties(0x210f, &config->prop_210f, 1);
    set_properties(0x2110, &config->prop_2110, 1);
    set_properties(0x2111, &config->prop_2111, 1);
    set_properties(0x2112, &config->prop_2112, 1);
    set_properties(0x2113, &config->prop_2113, 1);
    set_properties(0x2114, &config->prop_2114, 1);
    set_properties(0x2115, &config->prop_2115, 1);
    set_properties(0x2116, &config->prop_2116, 1);
    set_properties(0x2117, &config->prop_2117, 1);
    set_properties(0x2118, &config->prop_2118, 1);
    set_properties(0x2119, &config->prop_2119, 1);
    set_properties(0x211a, &config->prop_211a, 1);
    set_properties(0x211b, &config->prop_211b, 1);
    set_properties(0x211c, &config->prop_211c, 1);
    set_properties(0x211d, &config->prop_211d, 1);
    set_properties(0x211e, &config->prop_211e, 1);
    set_properties(0x211f, &config->prop_211f, 1);
    set_properties(0x2120, &config->prop_2120, 1);
    set_properties(0x2121, &config->prop_2121, 1);
    set_properties(0x2122, &config->prop_2122, 1);
    set_properties(0x2123, &config->prop_2123, 1);
    set_properties(0x2203, &config->prop_2203, 1);
    set_properties(0x2300, &config->prop_2300, 1);
    set_properties(0x2301, &config->prop_2301, 1);
    set_properties(0x2303, &config->prop_2303, 1);
    set_properties(0x2304, &config->prop_2304, 1);
    set_properties(0x2305, &config->prop_2305, 1);
}

// Set one of the canned Modem configs
// Returns true if its a valid choice
bool RH_RF24::setModemConfig(ModemConfigChoice index)
{
    if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
        return false;

    ModemConfig cfg;
    memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF24::ModemConfig));
    setModemRegisters(&cfg);

    return true;
}

void RH_RF24::setPreambleLength(uint16_t bytes)
{
    uint8_t config[] = { bytes, 0x14, 0x00, 0x00, 
			 RH_RF24_PREAMBLE_FIRST_1 | RH_RF24_PREAMBLE_LENGTH_BYTES | RH_RF24_PREAMBLE_STANDARD_1010};
    set_properties(RH_RF24_PROPERTY_PREAMBLE_TX_LENGTH, config, sizeof(config));
}

bool RH_RF24::setCRCPolynomial(CRCPolynomial polynomial)
{
    if (polynomial >= CRC_NONE &&
	polynomial <= CRC_Castagnoli)
    {
	// Caution this only has effect if CRCs are enabled
	uint8_t config[] = { (polynomial & RH_RF24_CRC_MASK) | RH_RF24_CRC_SEED_ALL_1S };
	return set_properties(RH_RF24_PROPERTY_PKT_CRC_CONFIG, config, sizeof(config));
    }
    else
	return false;
}

void RH_RF24::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
    if (len > 4 || len < 1)
	return;
    uint8_t config[] = { len-1, 0, 0, 0, 0};
    memcpy(config+1, syncWords, len);
    set_properties(RH_RF24_PROPERTY_SYNC_CONFIG, config, sizeof(config));
}

bool RH_RF24::setFrequency(float centre, float afcPullInRange)
{
    // See Si446x Data Sheet section 5.3.1
    // Also the Si446x PLL Synthesizer / VCO_CNT Calculator Rev 0.4
    uint8_t outdiv;
    uint8_t band;
    if (_deviceType == 0x4460 ||
	_deviceType == 0x4461 ||
	_deviceType == 0x4463)
    {
	// Non-continuous frequency bands
	if (centre <= 1050.0 && centre >= 850.0)
	    outdiv = 4, band = 0;
	else if (centre <= 525.0 && centre >= 425.0)
	    outdiv = 8, band = 2;
	else if (centre <= 350.0 && centre >= 284.0)
	    outdiv = 12, band = 3;
	else if (centre <= 175.0 && centre >= 142.0)
	    outdiv = 24, band = 5;
	else 
	    return false;
    }
    else
    {
	// 0x4464
	// Continuous frequency bands
	if (centre <= 960.0 && centre >= 675.0)
	    outdiv = 4, band = 1;
	else if (centre < 675.0 && centre >= 450.0)
	    outdiv = 6, band = 2;
	else if (centre < 450.0 && centre >= 338.0)
	    outdiv = 8, band = 3;
	else if (centre < 338.0 && centre >= 225.0)
	    outdiv = 12, band = 4;
	else if (centre < 225.0 && centre >= 169.0)
	    outdiv = 16, band = 4;
	else if (centre < 169.0 && centre >= 119.0)
	    outdiv = 24, band = 5;
	else 
	    return false;
    }

    // Set the MODEM_CLKGEN_BAND (not documented)
    uint8_t modem_clkgen[] = { band+8 };
    if (!set_properties(RH_RF24_PROPERTY_MODEM_CLKGEN_BAND, modem_clkgen, sizeof(modem_clkgen)))
	return false;

    centre *= 1000000.0; // Convert to Hz

    // Now generate the RF frequency properties
    // Need the Xtal/XO freq from the radio_config file:
    uint32_t xtal_frequency[1] = RADIO_CONFIGURATION_DATA_RADIO_XO_FREQ;
    unsigned long f_pfd = 2 * xtal_frequency[0] / outdiv;
    unsigned int n = ((unsigned int)(centre / f_pfd)) - 1;
    float ratio = centre / (float)f_pfd;
    float rest  = ratio - (float)n;
    unsigned long m = (unsigned long)(rest * 524288UL); 
    unsigned int m2 = m / 0x10000;
    unsigned int m1 = (m - m2 * 0x10000) / 0x100;
    unsigned int m0 = (m - m2 * 0x10000 - m1 * 0x100); 

    // PROP_FREQ_CONTROL_GROUP
    uint8_t freq_control[] = { n, m2, m1, m0 };
    return set_properties(RH_RF24_PROPERTY_FREQ_CONTROL_INTE, freq_control, sizeof(freq_control));
}

void RH_RF24::setModeIdle()
{
    if (_mode != RHModeIdle)
    {
	// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
	uint8_t config[] = { RH_RF24_GPIO_HIGH, RH_RF24_GPIO_HIGH };
	command(RH_RF24_CMD_GPIO_PIN_CFG, config, sizeof(config));

	uint8_t state[] = { _idleMode };
	command(RH_RF24_CMD_REQUEST_DEVICE_STATE, state, sizeof(state));
	_mode = RHModeIdle;
    }
}

bool RH_RF24::sleep()
{
    if (_mode != RHModeSleep)
    {
	uint8_t state[] = { RH_RF24_DEVICE_STATE_SLEEP };
	command(RH_RF24_CMD_REQUEST_DEVICE_STATE, state, sizeof(state));

	_mode = RHModeSleep;
    }
    return true;
}

void RH_RF24::setModeRx()
{
    if (_mode != RHModeRx)
    {
	// CAUTION: we cant clear the rx buffers here, else we set up a race condition
	// with the _rxBufValid test in available()

	// Tell the receiver the max data length we will accept (a TX may have changed it)
	uint8_t l[] = { sizeof(_buf) };
	set_properties(RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0, l, sizeof(l));
	
	// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
	uint8_t gpio_config[] = { RH_RF24_GPIO_HIGH, RH_RF24_GPIO_LOW };
	command(RH_RF24_CMD_GPIO_PIN_CFG, gpio_config, sizeof(gpio_config));

	uint8_t rx_config[] = { 0x00, RH_RF24_CONDITION_RX_START_IMMEDIATE, 0x00, 0x00, _idleMode, _idleMode, _idleMode};
	command(RH_RF24_CMD_START_RX, rx_config, sizeof(rx_config));
	_mode = RHModeRx;
    }
}

void RH_RF24::setModeTx()
{
    if (_mode != RHModeTx)
    {
	// Set the antenna switch pins using the GPIO, assuming we have an RFM module with antenna switch
	uint8_t config[] = { RH_RF24_GPIO_LOW, RH_RF24_GPIO_HIGH };
	command(RH_RF24_CMD_GPIO_PIN_CFG, config, sizeof(config));

	uint8_t tx_params[] = { 0x00, 
				(uint8_t)(_idleMode << 4) | RH_RF24_CONDITION_RETRANSMIT_NO | RH_RF24_CONDITION_START_IMMEDIATE};
	command(RH_RF24_CMD_START_TX, tx_params, sizeof(tx_params));
	_mode = RHModeTx;
    }
}

void RH_RF24::setTxPower(uint8_t power)
{
    uint8_t pa_bias_clkduty = 0;
    // These calculations valid for advertised power from Si chips at Vcc = 3.3V
    // you may get lower power from RFM modules, depending on Vcc voltage, antenna etc
    if (_deviceType == 0x4460)
    {
	// 0x4f = 13dBm
	pa_bias_clkduty = 0xc0;
	if (power > 0x4f)
	    power = 0x4f;
    }
    else if (_deviceType == 0x4461)
    {
	// 0x7f = 16dBm
	pa_bias_clkduty = 0xc0;
	if (power > 0x7f)
	    power = 0x7f;
    }
    else if (_deviceType == 0x4463 || _deviceType == 0x4464 )
    {
	// 0x7f = 20dBm
	pa_bias_clkduty = 0x00; // Per WDS suggestion
	if (power > 0x7f)
	    power = 0x7f;
    }
    uint8_t power_properties[] = {0x18, 0x00, 0x00 }; // PA_MODE from WDS sugggestions (why?)
    power_properties[1] = power;
    power_properties[2] = pa_bias_clkduty;
    set_properties(RH_RF24_PROPERTY_PA_MODE, power_properties, sizeof(power_properties));
}

// Caution: There was a bug in A1 hardware that will not handle 1 byte commands. 
bool RH_RF24::command(uint8_t cmd, const uint8_t* write_buf, uint8_t write_len, uint8_t* read_buf, uint8_t read_len)
{
    bool   done = false;

    ATOMIC_BLOCK_START;
    // First send the command
    digitalWrite(_slaveSelectPin, LOW);
    _spi.transfer(cmd);

    // Now write any write data
    if (write_buf && write_len)
    {
	while (write_len--)
	    _spi.transfer(*write_buf++);
    }
    // Sigh, the RFM26 at least has problems if we deselect too quickly :-(
    // Innocuous timewaster:
    digitalWrite(_slaveSelectPin, LOW);
    // And finalise the command
    digitalWrite(_slaveSelectPin, HIGH);

    uint16_t count; // Number of times we have tried to get CTS
    for (count = 0; !done && count < RH_RF24_CTS_RETRIES; count++)
    {
	// Wait for the CTS
	digitalWrite(_slaveSelectPin, LOW);

	_spi.transfer(RH_RF24_CMD_READ_BUF);
	if (_spi.transfer(0) == RH_RF24_REPLY_CTS)
	{
	    // Now read any expected reply data
	    if (read_buf && read_len)
	    {
		while (read_len--)
		{
		    *read_buf++ = _spi.transfer(0);
		}
	    }
	    done = true;
	}
	// Sigh, the RFM26 at least has problems if we deselect too quickly :-(
	// Innocuous timewaster:
	digitalWrite(_slaveSelectPin, LOW);
	// Finalise the read
	digitalWrite(_slaveSelectPin, HIGH);
    }
    ATOMIC_BLOCK_END;
    return done; // False if too many attempts at CTS
}

bool RH_RF24::configure(const uint8_t* commands)
{
    // Command strings are constructed in radio_config_Si4460.h 
    // Each command starts with a count of the bytes in that command:
    // <bytecount> <command> <bytecount-2 bytes of args/data>
    uint8_t next_cmd_len;
    
    while (memcpy_P(&next_cmd_len, commands, 1), next_cmd_len > 0)
    {
	uint8_t buf[20]; // As least big as the biggest permitted command/property list of 15
	memcpy_P(buf, commands+1, next_cmd_len);
	command(buf[0], buf+1, next_cmd_len - 1);
	commands += (next_cmd_len + 1);
    }
    return true;
}

void RH_RF24::power_on_reset()
{
    // Sigh: its necessary to control the SDN pin to reset this ship. 
    // Tying it to GND does not produce reliable startups
    // Per Si4464 Data Sheet 3.3.2
    digitalWrite(_sdnPin, HIGH); // So we dont get a glitch after setting pinMode OUTPUT
#if (RH_PLATFORM != RH_PLATFORM_MBED)
    pinMode(_sdnPin, OUTPUT);
#endif
    delay(10);
    digitalWrite(_sdnPin, LOW);
    delay(10);
}

bool RH_RF24::cmd_clear_all_interrupts()
{
    uint8_t write_buf[] = { 0x00, 0x00, 0x00 }; 
    return command(RH_RF24_CMD_GET_INT_STATUS, write_buf, sizeof(write_buf));
}

bool RH_RF24::set_properties(uint16_t firstProperty, const uint8_t* values, uint8_t count)
{
    uint8_t buf[15];

    buf[0] = firstProperty >> 8;   // GROUP
    buf[1] = count;                // NUM_PROPS
    buf[2] = firstProperty & 0xff; // START_PROP
    uint8_t i;
    for (i = 0; i < 12 && i < count; i++)
	buf[3 + i] = values[i]; // DATAn
    return command(RH_RF24_CMD_SET_PROPERTY, buf, count + 3);
}

bool RH_RF24::get_properties(uint16_t firstProperty, uint8_t* values, uint8_t count)
{
    if (count > 16)
	count = 16;
    uint8_t buf[3];
    buf[0] = firstProperty >> 8;   // GROUP
    buf[1] = count;                // NUM_PROPS
    buf[2] = firstProperty & 0xff; // START_PROP
    return command(RH_RF24_CMD_GET_PROPERTY, buf, sizeof(buf), values, count);
}

float RH_RF24::get_temperature()
{
    uint8_t write_buf[] = { 0x10 };
    uint8_t read_buf[8];
    // Takes nearly 4ms
    command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
    uint16_t temp_adc = (read_buf[4] << 8) | read_buf[5];
    return ((800 + read_buf[6]) / 4096.0) * temp_adc - ((read_buf[7] / 2) + 256);
}

float RH_RF24::get_battery_voltage()
{
    uint8_t write_buf[] = { 0x08 };
    uint8_t read_buf[8];
    // Takes nearly 4ms
    command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
    uint16_t battery_adc = (read_buf[2] << 8) | read_buf[3];
    return 3.0 * battery_adc / 1280;
}

float RH_RF24::get_gpio_voltage(uint8_t gpio)
{
    uint8_t write_buf[] = { 0x04 };
    uint8_t read_buf[8];
    write_buf[0] |= (gpio & 0x3);
    // Takes nearly 4ms
    command(RH_RF24_CMD_GET_ADC_READING, write_buf, sizeof(write_buf), read_buf, sizeof(read_buf));
    uint16_t gpio_adc = (read_buf[0] << 8) | read_buf[1];
    return 3.0 * gpio_adc / 1280;
}

uint8_t RH_RF24::frr_read(uint8_t reg)
{
    uint8_t ret;

    // Do not wait for CTS
    ATOMIC_BLOCK_START;
    // First send the command
    digitalWrite(_slaveSelectPin, LOW);
    _spi.transfer(RH_RF24_PROPERTY_FRR_CTL_A_MODE + reg);
    // Get the fast response
    ret = _spi.transfer(0);
    digitalWrite(_slaveSelectPin, HIGH);
    ATOMIC_BLOCK_END;
    return ret;
}

// List of command replies to be printed by prinRegisters()
PROGMEM static const RH_RF24::CommandInfo commands[] =
{
    { RH_RF24_CMD_PART_INFO,            8 },
    { RH_RF24_CMD_FUNC_INFO,            6 },
    { RH_RF24_CMD_GPIO_PIN_CFG,         7 },
    { RH_RF24_CMD_FIFO_INFO,            2 },
    { RH_RF24_CMD_PACKET_INFO,          2 },
    { RH_RF24_CMD_GET_INT_STATUS,       8 },
    { RH_RF24_CMD_GET_PH_STATUS,        2 },
    { RH_RF24_CMD_GET_MODEM_STATUS,     8 },
    { RH_RF24_CMD_GET_CHIP_STATUS,      3 },
    { RH_RF24_CMD_REQUEST_DEVICE_STATE, 2 },
};
#define NUM_COMMAND_INFO (sizeof(commands)/sizeof(CommandInfo))

// List of properties to be printed by printRegisters()
PROGMEM static const uint16_t properties[] =
{
    RH_RF24_PROPERTY_GLOBAL_XO_TUNE,                   
    RH_RF24_PROPERTY_GLOBAL_CLK_CFG,                   
    RH_RF24_PROPERTY_GLOBAL_LOW_BATT_THRESH,           
    RH_RF24_PROPERTY_GLOBAL_CONFIG,                    
    RH_RF24_PROPERTY_GLOBAL_WUT_CONFIG,               
    RH_RF24_PROPERTY_GLOBAL_WUT_M_15_8,
    RH_RF24_PROPERTY_GLOBAL_WUT_M_7_0,
    RH_RF24_PROPERTY_GLOBAL_WUT_R,
    RH_RF24_PROPERTY_GLOBAL_WUT_LDC,
    RH_RF24_PROPERTY_INT_CTL_ENABLE,
    RH_RF24_PROPERTY_INT_CTL_PH_ENABLE,
    RH_RF24_PROPERTY_INT_CTL_MODEM_ENABLE,
    RH_RF24_PROPERTY_INT_CTL_CHIP_ENABLE,
    RH_RF24_PROPERTY_FRR_CTL_A_MODE,
    RH_RF24_PROPERTY_FRR_CTL_B_MODE,
    RH_RF24_PROPERTY_FRR_CTL_C_MODE,
    RH_RF24_PROPERTY_FRR_CTL_D_MODE,
    RH_RF24_PROPERTY_PREAMBLE_TX_LENGTH,
    RH_RF24_PROPERTY_PREAMBLE_CONFIG_STD_1,
    RH_RF24_PROPERTY_PREAMBLE_CONFIG_NSTD,
    RH_RF24_PROPERTY_PREAMBLE_CONFIG_STD_2,
    RH_RF24_PROPERTY_PREAMBLE_CONFIG,
    RH_RF24_PROPERTY_PREAMBLE_PATTERN_31_24,
    RH_RF24_PROPERTY_PREAMBLE_PATTERN_23_16,
    RH_RF24_PROPERTY_PREAMBLE_PATTERN_15_8,
    RH_RF24_PROPERTY_PREAMBLE_PATTERN_7_0,
    RH_RF24_PROPERTY_SYNC_CONFIG,
    RH_RF24_PROPERTY_SYNC_BITS_31_24,
    RH_RF24_PROPERTY_SYNC_BITS_23_16,
    RH_RF24_PROPERTY_SYNC_BITS_15_8,
    RH_RF24_PROPERTY_SYNC_BITS_7_0,
    RH_RF24_PROPERTY_PKT_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_CONFIG1,
    RH_RF24_PROPERTY_PKT_LEN,
    RH_RF24_PROPERTY_PKT_LEN_FIELD_SOURCE,
    RH_RF24_PROPERTY_PKT_LEN_ADJUST,
    RH_RF24_PROPERTY_PKT_TX_THRESHOLD,
    RH_RF24_PROPERTY_PKT_RX_THRESHOLD,
    RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_FIELD_1_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_FIELD_1_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_1_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_FIELD_2_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_FIELD_2_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_2_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_FIELD_3_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_FIELD_3_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_3_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_FIELD_4_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_FIELD_4_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_4_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_FIELD_5_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_FIELD_5_CONFIG,
    RH_RF24_PROPERTY_PKT_FIELD_5_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_1_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_RX_FIELD_1_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_RX_FIELD_1_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_1_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_2_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_RX_FIELD_2_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_RX_FIELD_2_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_2_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_3_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_RX_FIELD_3_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_RX_FIELD_3_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_3_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_4_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_RX_FIELD_4_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_RX_FIELD_4_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_4_CRC_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_5_LENGTH_12_8,
    RH_RF24_PROPERTY_PKT_RX_FIELD_5_LENGTH_7_0,
    RH_RF24_PROPERTY_PKT_RX_FIELD_5_CONFIG,
    RH_RF24_PROPERTY_PKT_RX_FIELD_5_CRC_CONFIG,
    RH_RF24_PROPERTY_MODEM_MOD_TYPE,
    RH_RF24_PROPERTY_MODEM_MAP_CONTROL,
    RH_RF24_PROPERTY_MODEM_DSM_CTRL,
    RH_RF24_PROPERTY_MODEM_DATA_RATE_2,
    RH_RF24_PROPERTY_MODEM_DATA_RATE_1,
    RH_RF24_PROPERTY_MODEM_DATA_RATE_0,
    RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_3,
    RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_2,
    RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_1,
    RH_RF24_PROPERTY_MODEM_TX_NCO_MODE_0,
    RH_RF24_PROPERTY_MODEM_FREQ_DEV_2,
    RH_RF24_PROPERTY_MODEM_FREQ_DEV_1,
    RH_RF24_PROPERTY_MODEM_FREQ_DEV_0,
    RH_RF24_PROPERTY_MODEM_TX_RAMP_DELAY,
    RH_RF24_PROPERTY_MODEM_MDM_CTRL,
    RH_RF24_PROPERTY_MODEM_IF_CONTROL,
    RH_RF24_PROPERTY_MODEM_IF_FREQ_2,
    RH_RF24_PROPERTY_MODEM_IF_FREQ_1,
    RH_RF24_PROPERTY_MODEM_IF_FREQ_0,
    RH_RF24_PROPERTY_MODEM_DECIMATION_CFG1,
    RH_RF24_PROPERTY_MODEM_DECIMATION_CFG0,
    RH_RF24_PROPERTY_MODEM_BCR_OSR_1,
    RH_RF24_PROPERTY_MODEM_BCR_OSR_0,
    RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_2,
    RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_1,
    RH_RF24_PROPERTY_MODEM_BCR_NCO_OFFSET_0,
    RH_RF24_PROPERTY_MODEM_BCR_GAIN_1,
    RH_RF24_PROPERTY_MODEM_BCR_GAIN_0,
    RH_RF24_PROPERTY_MODEM_BCR_GEAR,
    RH_RF24_PROPERTY_MODEM_BCR_MISC1,
    RH_RF24_PROPERTY_MODEM_AFC_GEAR,
    RH_RF24_PROPERTY_MODEM_AFC_WAIT,
    RH_RF24_PROPERTY_MODEM_AFC_GAIN_1,
    RH_RF24_PROPERTY_MODEM_AFC_GAIN_0,
    RH_RF24_PROPERTY_MODEM_AFC_LIMITER_1,
    RH_RF24_PROPERTY_MODEM_AFC_LIMITER_0,
    RH_RF24_PROPERTY_MODEM_AFC_MISC,
    RH_RF24_PROPERTY_MODEM_AGC_CONTROL,
    RH_RF24_PROPERTY_MODEM_AGC_WINDOW_SIZE,
    RH_RF24_PROPERTY_MODEM_AGC_RFPD_DECAY,
    RH_RF24_PROPERTY_MODEM_AGC_IFPD_DECAY,
    RH_RF24_PROPERTY_MODEM_FSK4_GAIN1,
    RH_RF24_PROPERTY_MODEM_FSK4_GAIN0,
    RH_RF24_PROPERTY_MODEM_FSK4_TH1,
    RH_RF24_PROPERTY_MODEM_FSK4_TH0,
    RH_RF24_PROPERTY_MODEM_FSK4_MAP,
    RH_RF24_PROPERTY_MODEM_OOK_PDTC,
    RH_RF24_PROPERTY_MODEM_OOK_CNT1,
    RH_RF24_PROPERTY_MODEM_OOK_MISC,
    RH_RF24_PROPERTY_MODEM_RAW_SEARCH,
    RH_RF24_PROPERTY_MODEM_RAW_CONTROL,
    RH_RF24_PROPERTY_MODEM_RAW_EYE_1,
    RH_RF24_PROPERTY_MODEM_RAW_EYE_0,
    RH_RF24_PROPERTY_MODEM_ANT_DIV_MODE,
    RH_RF24_PROPERTY_MODEM_ANT_DIV_CONTROL,
    RH_RF24_PROPERTY_MODEM_RSSI_THRESH,
    RH_RF24_PROPERTY_MODEM_RSSI_JUMP_THRESH,
    RH_RF24_PROPERTY_MODEM_RSSI_CONTROL,
    RH_RF24_PROPERTY_MODEM_RSSI_CONTROL2,
    RH_RF24_PROPERTY_MODEM_RSSI_COMP,
    RH_RF24_PROPERTY_MODEM_ANT_DIV_CONT,
    RH_RF24_PROPERTY_MODEM_CLKGEN_BAND,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE13_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE12_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE11_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE10_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE9_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE8_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE7_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE6_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE5_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE4_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE3_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE2_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE1_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COE0_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM1,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM2,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX1_CHFLT_COEM3,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE13_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE12_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE11_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE10_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE9_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE8_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE7_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE6_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE5_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE4_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE3_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE2_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE1_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COE0_7_0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM0,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM1,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM2,
    RH_RF24_PROPERTY_MODEM_CHFLT_RX2_CHFLT_COEM3,
    RH_RF24_PROPERTY_PA_MODE,
    RH_RF24_PROPERTY_PA_PWR_LVL,
    RH_RF24_PROPERTY_PA_BIAS_CLKDUTY,
    RH_RF24_PROPERTY_PA_TC,
    RH_RF24_PROPERTY_SYNTH_PFDCP_CPFF,
    RH_RF24_PROPERTY_SYNTH_PFDCP_CPINT,
    RH_RF24_PROPERTY_SYNTH_VCO_KV,
    RH_RF24_PROPERTY_SYNTH_LPFILT3,
    RH_RF24_PROPERTY_SYNTH_LPFILT2,
    RH_RF24_PROPERTY_SYNTH_LPFILT1,
    RH_RF24_PROPERTY_SYNTH_LPFILT0,
    RH_RF24_PROPERTY_MATCH_VALUE_1,
    RH_RF24_PROPERTY_MATCH_MASK_1,
    RH_RF24_PROPERTY_MATCH_CTRL_1,
    RH_RF24_PROPERTY_MATCH_VALUE_2,
    RH_RF24_PROPERTY_MATCH_MASK_2,
    RH_RF24_PROPERTY_MATCH_CTRL_2,
    RH_RF24_PROPERTY_MATCH_VALUE_3,
    RH_RF24_PROPERTY_MATCH_MASK_3,
    RH_RF24_PROPERTY_MATCH_CTRL_3,
    RH_RF24_PROPERTY_MATCH_VALUE_4,
    RH_RF24_PROPERTY_MATCH_MASK_4,
    RH_RF24_PROPERTY_MATCH_CTRL_4,
    RH_RF24_PROPERTY_FREQ_CONTROL_INTE,
    RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_2,
    RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_1,
    RH_RF24_PROPERTY_FREQ_CONTROL_FRAC_0,
    RH_RF24_PROPERTY_FREQ_CONTROL_CHANNEL_STEP_SIZE_1,
    RH_RF24_PROPERTY_FREQ_CONTROL_CHANNEL_STEP_SIZE_0,
    RH_RF24_PROPERTY_FREQ_CONTROL_VCOCNT_RX_ADJ,
    RH_RF24_PROPERTY_RX_HOP_CONTROL,
    RH_RF24_PROPERTY_RX_HOP_TABLE_SIZE,
    RH_RF24_PROPERTY_RX_HOP_TABLE_ENTRY_0,
};
#define	NUM_PROPERTIES (sizeof(properties)/sizeof(uint16_t))

bool RH_RF24::printRegisters()
{  
#ifdef RH_HAVE_SERIAL
    uint8_t i;
    // First print the commands that return interesting data
    for (i = 0; i < NUM_COMMAND_INFO; i++)
    {
	CommandInfo cmd;
	memcpy_P(&cmd, &commands[i], sizeof(cmd));
	uint8_t buf[10]; // Big enough for the biggest command reply
	if (command(cmd.cmd, NULL, 0, buf, cmd.replyLen))
	{
	    // Print the results:
	    Serial.print("cmd: ");
	    Serial.print(cmd.cmd, HEX);
	    Serial.print(" : ");
	    uint8_t j;
	    for (j = 0; j < cmd.replyLen; j++)
	    {
		Serial.print(buf[j], HEX);
		Serial.print(" ");
	    }
	    Serial.println("");
	}
    }

    // Now print the properties
    for (i = 0; i < NUM_PROPERTIES; i++)
    {
	uint16_t prop;
	memcpy_P(&prop, &properties[i], sizeof(prop));
	uint8_t result;
	get_properties(prop, &result, 1);
	Serial.print("prop: ");
	Serial.print(prop, HEX);
	Serial.print(": ");
	Serial.print(result, HEX);
        Serial.println("");
    }
#endif
    return true;
}