V148

Fork of RadioHead-148 by David Rimer

RH_NRF24.h

Committer:
ilkaykozak
Date:
2017-10-25
Revision:
1:b7641da2b203
Parent:
0:ab4e012489ef

File content as of revision 1:b7641da2b203:

// RH_NRF24.h
// Author: Mike McCauley
// Copyright (C) 2012 Mike McCauley
// $Id: RH_NRF24.h,v 1.16 2015/08/13 02:45:47 mikem Exp $
//

#ifndef RH_NRF24_h
#define RH_NRF24_h

#include <RHGenericSPI.h>
#include <RHNRFSPIDriver.h>

// This is the maximum number of bytes that can be carried by the nRF24.
// We use some for headers, keeping fewer for RadioHead messages
#define RH_NRF24_MAX_PAYLOAD_LEN 32

// The length of the headers we add.
// The headers are inside the nRF24 payload
#define RH_NRF24_HEADER_LEN 4

// This is the maximum RadioHead user message length that can be supported by this library. Limited by
// the supported message lengths in the nRF24
#define RH_NRF24_MAX_MESSAGE_LEN (RH_NRF24_MAX_PAYLOAD_LEN-RH_NRF24_HEADER_LEN)

// SPI Command names
#define RH_NRF24_COMMAND_R_REGISTER                        0x00
#define RH_NRF24_COMMAND_W_REGISTER                        0x20
#define RH_NRF24_COMMAND_ACTIVATE                          0x50 // only on RFM73 ?
#define RH_NRF24_COMMAND_R_RX_PAYLOAD                      0x61
#define RH_NRF24_COMMAND_W_TX_PAYLOAD                      0xa0
#define RH_NRF24_COMMAND_FLUSH_TX                          0xe1
#define RH_NRF24_COMMAND_FLUSH_RX                          0xe2
#define RH_NRF24_COMMAND_REUSE_TX_PL                       0xe3
#define RH_NRF24_COMMAND_R_RX_PL_WID                       0x60
#define RH_NRF24_COMMAND_W_ACK_PAYLOAD(pipe)               (0xa8|(pipe&0x7))
#define RH_NRF24_COMMAND_W_TX_PAYLOAD_NOACK                0xb0
#define RH_NRF24_COMMAND_NOP                               0xff

// Register names
#define RH_NRF24_REGISTER_MASK                             0x1f
#define RH_NRF24_REG_00_CONFIG                             0x00
#define RH_NRF24_REG_01_EN_AA                              0x01
#define RH_NRF24_REG_02_EN_RXADDR                          0x02
#define RH_NRF24_REG_03_SETUP_AW                           0x03
#define RH_NRF24_REG_04_SETUP_RETR                         0x04
#define RH_NRF24_REG_05_RF_CH                              0x05
#define RH_NRF24_REG_06_RF_SETUP                           0x06
#define RH_NRF24_REG_07_STATUS                             0x07
#define RH_NRF24_REG_08_OBSERVE_TX                         0x08
#define RH_NRF24_REG_09_RPD                                0x09
#define RH_NRF24_REG_0A_RX_ADDR_P0                         0x0a
#define RH_NRF24_REG_0B_RX_ADDR_P1                         0x0b
#define RH_NRF24_REG_0C_RX_ADDR_P2                         0x0c
#define RH_NRF24_REG_0D_RX_ADDR_P3                         0x0d
#define RH_NRF24_REG_0E_RX_ADDR_P4                         0x0e
#define RH_NRF24_REG_0F_RX_ADDR_P5                         0x0f
#define RH_NRF24_REG_10_TX_ADDR                            0x10
#define RH_NRF24_REG_11_RX_PW_P0                           0x11
#define RH_NRF24_REG_12_RX_PW_P1                           0x12
#define RH_NRF24_REG_13_RX_PW_P2                           0x13
#define RH_NRF24_REG_14_RX_PW_P3                           0x14
#define RH_NRF24_REG_15_RX_PW_P4                           0x15
#define RH_NRF24_REG_16_RX_PW_P5                           0x16
#define RH_NRF24_REG_17_FIFO_STATUS                        0x17
#define RH_NRF24_REG_1C_DYNPD                              0x1c
#define RH_NRF24_REG_1D_FEATURE                            0x1d

// These register masks etc are named wherever possible
// corresponding to the bit and field names in the nRF24L01 Product Specification
// #define RH_NRF24_REG_00_CONFIG                             0x00
#define RH_NRF24_MASK_RX_DR                                0x40
#define RH_NRF24_MASK_TX_DS                                0x20
#define RH_NRF24_MASK_MAX_RT                               0x10
#define RH_NRF24_EN_CRC                                    0x08
#define RH_NRF24_CRCO                                      0x04
#define RH_NRF24_PWR_UP                                    0x02
#define RH_NRF24_PRIM_RX                                   0x01

// #define RH_NRF24_REG_01_EN_AA                              0x01
#define RH_NRF24_ENAA_P5                                   0x20
#define RH_NRF24_ENAA_P4                                   0x10
#define RH_NRF24_ENAA_P3                                   0x08
#define RH_NRF24_ENAA_P2                                   0x04
#define RH_NRF24_ENAA_P1                                   0x02
#define RH_NRF24_ENAA_P0                                   0x01

// #define RH_NRF24_REG_02_EN_RXADDR                          0x02
#define RH_NRF24_ERX_P5                                    0x20
#define RH_NRF24_ERX_P4                                    0x10
#define RH_NRF24_ERX_P3                                    0x08
#define RH_NRF24_ERX_P2                                    0x04
#define RH_NRF24_ERX_P1                                    0x02
#define RH_NRF24_ERX_P0                                    0x01

// #define RH_NRF24_REG_03_SETUP_AW                           0x03
#define RH_NRF24_AW_3_BYTES                                0x01
#define RH_NRF24_AW_4_BYTES                                0x02
#define RH_NRF24_AW_5_BYTES                                0x03

// #define RH_NRF24_REG_04_SETUP_RETR                         0x04
#define RH_NRF24_ARD                                       0xf0
#define RH_NRF24_ARC                                       0x0f

// #define RH_NRF24_REG_05_RF_CH                              0x05
#define RH_NRF24_RF_CH                                     0x7f

// #define RH_NRF24_REG_06_RF_SETUP                           0x06
#define RH_NRF24_CONT_WAVE                                 0x80
#define RH_NRF24_RF_DR_LOW                                 0x20
#define RH_NRF24_PLL_LOCK                                  0x10
#define RH_NRF24_RF_DR_HIGH                                0x08
#define RH_NRF24_PWR                                       0x06
#define RH_NRF24_PWR_m18dBm                                0x00
#define RH_NRF24_PWR_m12dBm                                0x02
#define RH_NRF24_PWR_m6dBm                                 0x04
#define RH_NRF24_PWR_0dBm                                  0x06
#define RH_NRF24_LNA_HCURR                                 0x01

// #define RH_NRF24_REG_07_STATUS                             0x07
#define RH_NRF24_RX_DR                                     0x40
#define RH_NRF24_TX_DS                                     0x20
#define RH_NRF24_MAX_RT                                    0x10
#define RH_NRF24_RX_P_NO                                   0x0e
#define RH_NRF24_STATUS_TX_FULL                            0x01

// #define RH_NRF24_REG_08_OBSERVE_TX                         0x08
#define RH_NRF24_PLOS_CNT                                  0xf0
#define RH_NRF24_ARC_CNT                                   0x0f

// #define RH_NRF24_REG_09_RPD                                0x09
#define RH_NRF24_RPD                                       0x01

// #define RH_NRF24_REG_17_FIFO_STATUS                        0x17
#define RH_NRF24_TX_REUSE                                  0x40
#define RH_NRF24_TX_FULL                                   0x20
#define RH_NRF24_TX_EMPTY                                  0x10
#define RH_NRF24_RX_FULL                                   0x02
#define RH_NRF24_RX_EMPTY                                  0x01

// #define RH_NRF24_REG_1C_DYNPD                              0x1c
#define RH_NRF24_DPL_ALL                                   0x3f
#define RH_NRF24_DPL_P5                                    0x20
#define RH_NRF24_DPL_P4                                    0x10
#define RH_NRF24_DPL_P3                                    0x08
#define RH_NRF24_DPL_P2                                    0x04
#define RH_NRF24_DPL_P1                                    0x02
#define RH_NRF24_DPL_P0                                    0x01

// #define RH_NRF24_REG_1D_FEATURE                            0x1d
#define RH_NRF24_EN_DPL                                    0x04
#define RH_NRF24_EN_ACK_PAY                                0x02
#define RH_NRF24_EN_DYN_ACK                                0x01


/////////////////////////////////////////////////////////////////////
/// \class RH_NRF24 RH_NRF24.h <RH_NRF24.h>
/// \brief Send and receive addressed, reliable, acknowledged datagrams by nRF24L01 and compatible transceivers.
///
/// Supported transceivers include:
/// - Nordic nRF24 based 2.4GHz radio modules, such as nRF24L01 http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
/// and other compatible transceivers. 
/// - nRF24L01p with PA and LNA modules that produce a higher power output similar to this one: 
/// http://www.elecfreaks.com/wiki/index.php?title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA
/// - Sparkfun WRL-00691 module with nRF24L01 https://www.sparkfun.com/products/691 
/// or WRL-00705 https://www.sparkfun.com/products/705 etc.
/// - Hope-RF RFM73 http://www.hoperf.com/rf/2.4g_module/RFM73.htm and 
/// http://www.anarduino.com/details.jsp?pid=121
/// and compatible devices (such as BK2423). nRF24L01 and RFM73 can interoperate
/// with each other.
///
/// This base class provides basic functions for sending and receiving unaddressed, unreliable datagrams
/// of arbitrary length to 28 octets per packet. Use one of the Manager classes to get addressing and 
/// acknowledgement reliability, routing, meshes etc.
///
/// The nRF24L01 (http://www.sparkfun.com/datasheets/Wireless/Nordic/nRF24L01P_Product_Specification_1_0.pdf)
/// is a low-cost 2.4GHz ISM transceiver module. It supports a number of channel frequencies in the 2.4GHz band
/// and a range of data rates.
///
/// This library provides functions for sending and receiving messages of up to 28 octets on any 
/// frequency supported by the nRF24L01, at a selected data rate.
///
/// Several nRF24L01 modules can be connected to an Arduino, permitting the construction of translators
/// and frequency changers, etc.
///
/// The nRF24 transceiver is configured to use Enhanced Shockburst with no acknowledgement and no retransmits.
/// TX_ADDR and RX_ADDR_P0 are set to the network address. If you need the low level auto-acknowledgement
/// feature supported by this chip, you can use our original NRF24 library 
/// at http://www.airspayce.com/mikem/arduino/NRF24
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and 
/// data rate, and with identical network addresses.
///
/// Example Arduino programs are included to show the main modes of use.
///
/// \par Packet Format
///
/// All messages sent and received by this class conform to this packet format, as specified by 
/// the nRF24L01 product specification:
///
/// - 1 octets PREAMBLE
/// - 3 to 5 octets NETWORK ADDRESS
/// - 9 bits packet control field
/// - 0 to 32 octets PAYLOAD, consisting of:
///   - 1 octet TO header
///   - 1 octet FROM header
///   - 1 octet ID header
///   - 1 octet FLAGS header
///   - 0 to 28 octets of user message
/// - 2 octets CRC 
///
/// \par Connecting nRF24L01 to Arduino
///
/// The electrical connection between the nRF24L01 and the Arduino require 3.3V, the 3 x SPI pins (SCK, SDI, SDO), 
/// a Chip Enable pin and a Slave Select pin.
/// If you are using the Sparkfun WRL-00691 module, it has a voltage regulator on board and 
/// can be should with 5V VCC if possible.
/// The examples below assume the Sparkfun WRL-00691 module
///
/// Connect the nRF24L01 to most Arduino's like this (Caution, Arduino Mega has different pins for SPI, 
/// see below). Use these same connections for Teensy 3.1 (use 3.3V not 5V Vcc).
/// \code
///                 Arduino      Sparkfun WRL-00691
///                 5V-----------VCC   (3.3V to 7V in)
///             pin D8-----------CE    (chip enable in)
///          SS pin D10----------CSN   (chip select in)
///         SCK pin D13----------SCK   (SPI clock in)
///        MOSI pin D11----------SDI   (SPI Data in)
///        MISO pin D12----------SDO   (SPI data out)
///                              IRQ   (Interrupt output, not connected)
///                 GND----------GND   (ground in)
/// \endcode
///
/// For an Arduino Leonardo (the SPI pins do not come out on the Digital pins as for normal Arduino, but only
/// appear on the ICSP header)
/// \code
///                Leonardo      Sparkfun WRL-00691
///                 5V-----------VCC   (3.3V to 7V in)
///             pin D8-----------CE    (chip enable in)
///          SS pin D10----------CSN   (chip select in)
///      SCK ICSP pin 3----------SCK   (SPI clock in)
///     MOSI ICSP pin 4----------SDI   (SPI Data in)
///     MISO ICSP pin 1----------SDO   (SPI data out)
///                              IRQ   (Interrupt output, not connected)
///                 GND----------GND   (ground in)
/// \endcode
/// and initialise the NRF24 object like this to explicitly set the SS pin
/// NRF24 nrf24(8, 10);
///
/// For an Arduino Mega:
/// \code
///                 Mega         Sparkfun WRL-00691
///                 5V-----------VCC   (3.3V to 7V in)
///             pin D8-----------CE    (chip enable in)
///          SS pin D53----------CSN   (chip select in)
///         SCK pin D52----------SCK   (SPI clock in)
///        MOSI pin D51----------SDI   (SPI Data in)
///        MISO pin D50----------SDO   (SPI data out)
///                              IRQ   (Interrupt output, not connected)
///                 GND----------GND   (ground in)
/// \endcode
/// and you can then use the constructor RH_NRF24(8, 53). 
///
/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by hardware SPI to the 
/// ITDB02 Parallel LCD Module Interface pins:
/// \code
///  IBoard Signal=ITDB02 pin          Sparkfun WRL-00691
///        3.3V      37-----------VCC  (3.3V to 7V in)
///         D2       28-----------CE   (chip enable in)
///         D29      27----------CSN   (chip select in)
///         SCK D52  32----------SCK   (SPI clock in)
///        MOSI D51  34----------SDI   (SPI Data in)
///        MISO D50  30----------SDO   (SPI data out)
///                              IRQ   (Interrupt output, not connected)
///        GND       39----------GND   (ground in)
/// \endcode
/// And initialise like this:
/// \code
/// RH_NRF24 nrf24(2, 29);
/// \endcode
///
/// For an Itead Studio IBoard Pro http://imall.iteadstudio.com/iboard-pro.html, connected by software SPI to the 
/// nRF24L01+ Module Interface pins. CAUTION: performance of software SPI is very slow and is not
/// compatible with other modules running hardware SPI.
/// \code
///  IBoard Signal=Module pin          Sparkfun WRL-00691
///        3.3V      2----------VCC   (3.3V to 7V in)
///         D12      3-----------CE   (chip enable in)
///         D29      4----------CSN   (chip select in)
///         D9       5----------SCK   (SPI clock in)
///         D8       6----------SDI   (SPI Data in)
///         D7       7----------SDO   (SPI data out)
///                              IRQ   (Interrupt output, not connected)
///        GND       1----------GND   (ground in)
/// \endcode
/// And initialise like this:
/// \code
/// #include <SPI.h>
/// #include <RH_NRF24.h>
/// #include <RHSoftwareSPI.h>
/// Singleton instance of the radio driver
/// RHSoftwareSPI spi;
/// RH_NRF24 nrf24(12, 11, spi);
/// void setup() {
///     spi.setPins(7, 8, 9);
///     ....
/// \endcode
///
///
/// For Raspberry Pi with Sparkfun WRL-00691 
/// \code
///     Raspberry Pi P1 pin          Sparkfun WRL-00691
///             5V      2-----------VCC   (3.3V to 7V in)
///         GPIO25      22-----------CE   (chip enable in)
///         GPIO8       24----------CSN   (chip select in)
///         GPIO11      23----------SCK   (SPI clock in)
///         GPIO10      19----------SDI   (SPI Data in)
///         GPIO9       21----------SDO   (SPI data out)
///                                 IRQ   (Interrupt output, not connected)
///            GND       6----------GND   (ground in)
/// \endcode
/// and initialise like this:
/// \code
///  RH_NRF24 nrf24(RPI_V2_GPIO_P1_22, RPI_V2_GPIO_P1_24);
/// \endcode
/// See the example program and Makefile in examples/raspi. Requires bcm2835 library to be previously installed.
/// \code
/// cd examples/raspi
/// make
/// sudo ./RasPiRH
/// \endcode
/// \code
///
/// You can override the default settings for the CSN and CE pins 
/// in the NRF24() constructor if you wish to connect the slave select CSN to other than the normal one for your 
/// Arduino (D10 for Diecimila, Uno etc and D53 for Mega)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave select pin to be other than the usual SS 
/// pin (D53 on  Mega 2560), you may need to set the usual SS pin to be an output to force the Arduino into SPI 
/// master mode.
///
/// Caution: this module has not been proved to work with Leonardo, at least without level 
/// shifters between the nRF24 and the Leonardo. Tests seem to indicate that such level shifters would be required
/// with Leonardo to make it work.
///
/// It is possible to have 2 radios conected to one arduino, provided each radio has its own 
/// CSN and CE line (SCK, SDI and SDO are common to both radios)
///
/// \par SPI Interface
///
/// You can interface to nRF24L01 with with hardware or software SPI. Use of software SPI with the RHSoftwareSPI 
/// class depends on a fast enough processor and digitalOut() functions to achieve a high enough SPI bus frequency.
/// If you observe reliable behaviour with the default hardware SPI RHHardwareSPI, but unreliable behaviour 
/// with Software SPI RHSoftwareSPI, it may be due to slow CPU performance.
///
/// Initialisation example with hardware SPI
/// \code
/// #include <RH_NRF24.h>
/// RH_NRF24 driver;
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// Initialisation example with software SPI
/// \code
/// #include <RH_NRF24.h>
/// #include <RHSoftwareSPI.h>
/// RHSoftwareSPI spi;
/// RH_NRF24 driver(8, 10, spi);
/// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
/// \endcode
///
/// \par Example programs
///
/// Several example programs are provided.
///
/// \par Radio Performance
///
/// Frequency accuracy may be debatable. For nominal frequency of 2401.000 MHz (ie channel 1), 
/// my Yaesu VR-5000 receiver indicated the center frequency for my test radios
/// was 2401.121 MHz. Its not clear to me if the Yaesu
/// is the source of the error, but I tend to believe it, which would make the nRF24l01 frequency out by 121kHz.
///
/// The measured power output for a nRF24L01p with PA and LNA set to 0dBm output is about 18dBm.
/// 
/// \par Radio operating strategy and defaults
///
/// The radio is enabled all the time, and switched between TX and RX modes depending on 
/// whether there is any data to send. Sending data sets the radio to TX mode.
/// After data is sent, the radio automatically returns to Standby II mode. Calling waitAvailable() or
/// waitAvailableTimeout() starts the radio in RX mode.
///
/// The radio is configured by default to Channel 2, 2Mbps, 0dBm power, 5 bytes address, payload width 1, CRC enabled
/// 2 byte CRC, No Auto-Ack mode. Enhanced shockburst is used. 
/// TX and P0 are set to the Network address. Node addresses and decoding are handled with the RH_NRF24 module.
///
/// \par Memory
///
/// Memory usage of this class is minimal. The compiled client and server sketches are about 6000 bytes on Arduino. 
/// The reliable client and server sketches compile to about 8500 bytes on Arduino.
/// RAM requirements are minimal.
///
class RH_NRF24 : public RHNRFSPIDriver
{
public:

    /// \brief Defines convenient values for setting data rates in setRF()
    typedef enum
    {
	DataRate1Mbps = 0,   ///< 1 Mbps
	DataRate2Mbps,       ///< 2 Mbps
	DataRate250kbps      ///< 250 kbps
    } DataRate;

    /// \brief Convenient values for setting transmitter power in setRF()
    /// These are designed to agree with the values for RF_PWR in RH_NRF24_REG_06_RF_SETUP
    /// To be passed to setRF();
    typedef enum
    {
	// Add 20dBm for nRF24L01p with PA and LNA modules
	TransmitPowerm18dBm = 0,        ///< On nRF24, -18 dBm
	TransmitPowerm12dBm,            ///< On nRF24, -12 dBm
	TransmitPowerm6dBm,             ///< On nRF24, -6 dBm
	TransmitPower0dBm,              ///< On nRF24, 0 dBm
	// Sigh, different power levels for the same bit patterns on RFM73:
	// On RFM73P-S, there is a Tx power amp, so expect higher power levels, up to 20dBm. Alas
	// there is no clear documentation on the power for different settings :-(
	RFM73TransmitPowerm10dBm = 0,   ///< On RFM73, -10 dBm
	RFM73TransmitPowerm5dBm,        ///< On RFM73, -5 dBm
	RFM73TransmitPowerm0dBm,        ///< On RFM73, 0 dBm
	RFM73TransmitPower5dBm          ///< On RFM73, 5 dBm. 20dBm on RFM73P-S2 ?

    } TransmitPower;

    /// Constructor. You can have multiple instances, but each instance must have its own
    /// chip enable and slave select pin. 
    /// After constructing, you must call init() to initialise the interface
    /// and the radio module
    /// \param[in] chipEnablePin the Arduino pin to use to enable the chip for transmit/receive
    /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the NRF24 before
    /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, 
    /// D10 for Maple)
    /// \param[in] spi Pointer to the SPI interface object to use. 
    ///                Defaults to the standard Arduino hardware SPI interface
    RH_NRF24(PINS chipEnablePin, PINS slaveSelectPin, RHGenericSPI& spi = hardware_spi);
  
    /// Initialises this instance and the radio module connected to it.
    /// The following steps are taken:g
    /// - Set the chip enable and chip select pins to output LOW, HIGH respectively.
    /// - Initialise the SPI output pins
    /// - Initialise the SPI interface library to 8MHz (Hint, if you want to lower
    /// the SPI frequency (perhaps where you have other SPI shields, low voltages etc), 
    /// call SPI.setClockDivider() after init()).
    /// -Flush the receiver and transmitter buffers
    /// - Set the radio to receive with powerUpRx();
    /// \return  true if everything was successful
    bool        init();

    /// Reads a single register from the NRF24
    /// \param[in] reg Register number, one of NRF24_REG_*
    /// \return The value of the register
    uint8_t        spiReadRegister(uint8_t reg);

    /// Writes a single byte to the NRF24, and at the ame time reads the current STATUS register
    /// \param[in] reg Register number, one of NRF24_REG_*
    /// \param[in] val The value to write
    /// \return the current STATUS (read while the command is sent)
    uint8_t        spiWriteRegister(uint8_t reg, uint8_t val);

    /// Reads a number of consecutive registers from the NRF24 using burst read mode
    /// \param[in] reg Register number of the first register, one of NRF24_REG_*
    /// \param[in] dest Array to write the register values to. Must be at least len bytes
    /// \param[in] len Number of bytes to read
    /// \return the current STATUS (read while the command is sent)
    uint8_t           spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len);

    /// Write a number of consecutive registers using burst write mode
    /// \param[in] reg Register number of the first register, one of NRF24_REG_*
    /// \param[in] src Array of new register values to write. Must be at least len bytes
    /// \param[in] len Number of bytes to write
    /// \return the current STATUS (read while the command is sent)
    uint8_t        spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t len);

    /// Reads and returns the device status register NRF24_REG_02_DEVICE_STATUS
    /// \return The value of the device status register
    uint8_t        statusRead();
  
    /// Sets the transmit and receive channel number.
    /// The frequency used is (2400 + channel) MHz
    /// \return true on success
    bool setChannel(uint8_t channel);

    /// Sets the chip configuration that will be used to set
    /// the NRF24 NRF24_REG_00_CONFIG register when in Idle mode. This allows you to change some
    /// chip configuration for compatibility with libraries other than this one.
    /// You should not normally need to call this.
    /// Defaults to NRF24_EN_CRC| RH_NRF24_CRCO, which is the standard configuration for this library 
    /// (2 byte CRC enabled).
    /// \param[in] mode The chip configuration to be used whe in Idle mode.
    /// \return true on success
    bool setOpMode(uint8_t mode);

    /// Sets the Network address.
    /// Only nodes with the same network address can communicate with each other. You 
    /// can set different network addresses in different sets of nodes to isolate them from each other.
    /// Internally, this sets the nRF24 TX_ADDR and RX_ADDR_P0 to be the given network address.
    /// The default network address is 0xE7E7E7E7E7
    /// \param[in] address The new network address. Must match the network address of any receiving node(s).
    /// \param[in] len Number of bytes of address to set (3 to 5).
    /// \return true on success, false if len is not in the range 3-5 inclusive.
    bool setNetworkAddress(uint8_t* address, uint8_t len);

    /// Sets the data rate and transmitter power to use. Note that the nRF24 and the RFM73 have different
    /// available power levels, and for convenience, 2 different sets of values are available in the 
    /// RH_NRF24::TransmitPower enum. The ones with the RFM73 only have meaning on the RFM73 and compatible
    /// devces. The others are for the nRF24.
    /// \param [in] data_rate The data rate to use for all packets transmitted and received. One of RH_NRF24::DataRate.
    /// \param [in] power Transmitter power. One of RH_NRF24::TransmitPower.
    /// \return true on success
    bool setRF(DataRate data_rate, TransmitPower power);

    /// Sets the radio in power down mode, with the configuration set to the
    /// last value from setOpMode().
    /// Sets chip enable to LOW.
    void setModeIdle();

    /// Sets the radio in RX mode.
    /// Sets chip enable to HIGH to enable the chip in RX mode.
    void setModeRx();

    /// Sets the radio in TX mode.
    /// Pulses the chip enable LOW then HIGH to enable the chip in TX mode.
    void setModeTx();

    /// Sends data to the address set by setTransmitAddress()
    /// Sets the radio to TX mode
    /// \param [in] data Data bytes to send.
    /// \param [in] len Number of data bytes to send
    /// \return true on success (which does not necessarily mean the receiver got the message, only that the message was
    /// successfully transmitted).
    bool send(const uint8_t* data, uint8_t len);

    /// Blocks until the current message (if any) 
    /// has been transmitted
    /// \return true on success, false if the chip is not in transmit mode or other transmit failure
    virtual bool waitPacketSent();

    /// Indicates if the chip is in transmit mode and 
    /// there is a packet currently being transmitted
    /// \return true if the chip is in transmit mode and there is a transmission in progress
    bool isSending();

    /// Prints the value of all chip registers
    /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
    /// For debugging purposes only.
    /// \return true on success
    bool printRegisters();

    /// Checks whether a received message is available.
    /// This can be called multiple times in a timeout loop
    /// \return true if a complete, valid message has been received and is able to be retrieved by
    /// recv()
    bool        available();

    /// Turns the receiver on if it not already on.
    /// If there is a valid message available, copy it to buf and return true
    /// else return false.
    /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
    /// You should be sure to call this function frequently enough to not miss any messages
    /// It is recommended that you call it in your main loop.
    /// \param[in] buf Location to copy the received message
    /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
    /// \return true if a valid message was copied to buf
    bool        recv(uint8_t* buf, uint8_t* len);

    /// The maximum message length supported by this driver
    /// \return The maximum message length supported by this driver
    uint8_t maxMessageLength();

    /// Sets the radio into Power Down mode.
    /// If successful, the radio will stay in Power Down mode until woken by 
    /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
    /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
    /// \return true if sleep mode was successfully entered.
    virtual bool    sleep();

protected:
    /// Flush the TX FIFOs
    /// \return the value of the device status register
    uint8_t flushTx();

    /// Flush the RX FIFOs
    /// \return the value of the device status register
    uint8_t flushRx();

    /// Examine the receive buffer to determine whether the message is for this node
    void validateRxBuf();

    /// Clear our local receive buffer
    void clearRxBuf();

private:
    /// This idle mode chip configuration
    uint8_t             _configuration;

    /// the number of the chip enable pin
    uint8_t             _chipEnablePin;

    /// Number of octets in the buffer
    uint8_t             _bufLen;
    
    /// The receiver/transmitter buffer
    uint8_t             _buf[RH_NRF24_MAX_PAYLOAD_LEN];

    /// True when there is a valid message in the buffer
    bool                _rxBufValid;
};

/// @example nrf24_client.pde
/// @example nrf24_server.pde
/// @example nrf24_reliable_datagram_client.pde
/// @example nrf24_reliable_datagram_server.pde
/// @example RasPiRH.cpp

#endif