V148
Fork of RadioHead-148 by
RH_RF69.cpp
- Committer:
- davidr99
- Date:
- 2015-10-15
- Revision:
- 0:ab4e012489ef
File content as of revision 0:ab4e012489ef:
// RH_RF69.cpp // // Copyright (C) 2011 Mike McCauley // $Id: RH_RF69.cpp,v 1.25 2015/05/17 00:11:26 mikem Exp $ #include <RH_RF69.h> // Interrupt vectors for the 3 Arduino interrupt pins // Each interrupt can be handled by a different instance of RH_RF69, allowing you to have // 2 or more RF69s per Arduino RH_RF69* RH_RF69::_deviceForInterrupt[RH_RF69_NUM_INTERRUPTS] = {0, 0, 0}; uint8_t RH_RF69::_interruptCount = 0; // Index into _deviceForInterrupt for next device // These are indexed by the values of ModemConfigChoice // Stored in flash (program) memory to save SRAM // It is important to keep the modulation index for FSK between 0.5 and 10 // modulation index = 2 * Fdev / BR // Note that I have not had much success with FSK with Fd > ~5 // You have to construct these by hand, using the data from the RF69 Datasheet :-( // or use the SX1231 starter kit software (Ctl-Alt-N to use that without a connected radio) #define CONFIG_FSK (RH_RF69_DATAMODUL_DATAMODE_PACKET | RH_RF69_DATAMODUL_MODULATIONTYPE_FSK | RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_NONE) #define CONFIG_GFSK (RH_RF69_DATAMODUL_DATAMODE_PACKET | RH_RF69_DATAMODUL_MODULATIONTYPE_FSK | RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT1_0) #define CONFIG_OOK (RH_RF69_DATAMODUL_DATAMODE_PACKET | RH_RF69_DATAMODUL_MODULATIONTYPE_OOK | RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_NONE) // Choices for RH_RF69_REG_37_PACKETCONFIG1: #define CONFIG_NOWHITE (RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE | RH_RF69_PACKETCONFIG1_DCFREE_NONE | RH_RF69_PACKETCONFIG1_CRC_ON | RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE) #define CONFIG_WHITE (RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE | RH_RF69_PACKETCONFIG1_DCFREE_WHITENING | RH_RF69_PACKETCONFIG1_CRC_ON | RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE) #define CONFIG_MANCHESTER (RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE | RH_RF69_PACKETCONFIG1_DCFREE_MANCHESTER | RH_RF69_PACKETCONFIG1_CRC_ON | RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE) PROGMEM static const RH_RF69::ModemConfig MODEM_CONFIG_TABLE[] = { // 02, 03, 04, 05, 06, 19, 1a, 37 // FSK, No Manchester, no shaping, whitening, CRC, no address filtering // AFC BW == RX BW == 2 x bit rate // Low modulation indexes of ~ 1 at slow speeds do not seem to work very well. Choose MI of 2. { CONFIG_FSK, 0x3e, 0x80, 0x00, 0x52, 0xf4, 0xf4, CONFIG_WHITE}, // FSK_Rb2Fd5 { CONFIG_FSK, 0x34, 0x15, 0x00, 0x4f, 0xf4, 0xf4, CONFIG_WHITE}, // FSK_Rb2_4Fd4_8 { CONFIG_FSK, 0x1a, 0x0b, 0x00, 0x9d, 0xf4, 0xf4, CONFIG_WHITE}, // FSK_Rb4_8Fd9_6 { CONFIG_FSK, 0x0d, 0x05, 0x01, 0x3b, 0xf4, 0xf4, CONFIG_WHITE}, // FSK_Rb9_6Fd19_2 { CONFIG_FSK, 0x06, 0x83, 0x02, 0x75, 0xf3, 0xf3, CONFIG_WHITE}, // FSK_Rb19_2Fd38_4 { CONFIG_FSK, 0x03, 0x41, 0x04, 0xea, 0xf2, 0xf2, CONFIG_WHITE}, // FSK_Rb38_4Fd76_8 { CONFIG_FSK, 0x02, 0x2c, 0x07, 0xae, 0xe2, 0xe2, CONFIG_WHITE}, // FSK_Rb57_6Fd120 { CONFIG_FSK, 0x01, 0x00, 0x08, 0x00, 0xe1, 0xe1, CONFIG_WHITE}, // FSK_Rb125Fd125 { CONFIG_FSK, 0x00, 0x80, 0x10, 0x00, 0xe0, 0xe0, CONFIG_WHITE}, // FSK_Rb250Fd250 { CONFIG_FSK, 0x02, 0x40, 0x03, 0x33, 0x42, 0x42, CONFIG_WHITE}, // FSK_Rb55555Fd50 // 02, 03, 04, 05, 06, 19, 1a, 37 // GFSK (BT=1.0), No Manchester, whitening, CRC, no address filtering // AFC BW == RX BW == 2 x bit rate { CONFIG_GFSK, 0x3e, 0x80, 0x00, 0x52, 0xf4, 0xf5, CONFIG_WHITE}, // GFSK_Rb2Fd5 { CONFIG_GFSK, 0x34, 0x15, 0x00, 0x4f, 0xf4, 0xf4, CONFIG_WHITE}, // GFSK_Rb2_4Fd4_8 { CONFIG_GFSK, 0x1a, 0x0b, 0x00, 0x9d, 0xf4, 0xf4, CONFIG_WHITE}, // GFSK_Rb4_8Fd9_6 { CONFIG_GFSK, 0x0d, 0x05, 0x01, 0x3b, 0xf4, 0xf4, CONFIG_WHITE}, // GFSK_Rb9_6Fd19_2 { CONFIG_GFSK, 0x06, 0x83, 0x02, 0x75, 0xf3, 0xf3, CONFIG_WHITE}, // GFSK_Rb19_2Fd38_4 { CONFIG_GFSK, 0x03, 0x41, 0x04, 0xea, 0xf2, 0xf2, CONFIG_WHITE}, // GFSK_Rb38_4Fd76_8 { CONFIG_GFSK, 0x02, 0x2c, 0x07, 0xae, 0xe2, 0xe2, CONFIG_WHITE}, // GFSK_Rb57_6Fd120 { CONFIG_GFSK, 0x01, 0x00, 0x08, 0x00, 0xe1, 0xe1, CONFIG_WHITE}, // GFSK_Rb125Fd125 { CONFIG_GFSK, 0x00, 0x80, 0x10, 0x00, 0xe0, 0xe0, CONFIG_WHITE}, // GFSK_Rb250Fd250 { CONFIG_GFSK, 0x02, 0x40, 0x03, 0x33, 0x42, 0x42, CONFIG_WHITE}, // GFSK_Rb55555Fd50 // 02, 03, 04, 05, 06, 19, 1a, 37 // OOK, No Manchester, no shaping, whitening, CRC, no address filtering // with the help of the SX1231 configuration program // AFC BW == RX BW // All OOK configs have the default: // Threshold Type: Peak // Peak Threshold Step: 0.5dB // Peak threshiold dec: ONce per chip // Fixed threshold: 6dB { CONFIG_OOK, 0x7d, 0x00, 0x00, 0x10, 0x88, 0x88, CONFIG_WHITE}, // OOK_Rb1Bw1 { CONFIG_OOK, 0x68, 0x2b, 0x00, 0x10, 0xf1, 0xf1, CONFIG_WHITE}, // OOK_Rb1_2Bw75 { CONFIG_OOK, 0x34, 0x15, 0x00, 0x10, 0xf5, 0xf5, CONFIG_WHITE}, // OOK_Rb2_4Bw4_8 { CONFIG_OOK, 0x1a, 0x0b, 0x00, 0x10, 0xf4, 0xf4, CONFIG_WHITE}, // OOK_Rb4_8Bw9_6 { CONFIG_OOK, 0x0d, 0x05, 0x00, 0x10, 0xf3, 0xf3, CONFIG_WHITE}, // OOK_Rb9_6Bw19_2 { CONFIG_OOK, 0x06, 0x83, 0x00, 0x10, 0xf2, 0xf2, CONFIG_WHITE}, // OOK_Rb19_2Bw38_4 { CONFIG_OOK, 0x03, 0xe8, 0x00, 0x10, 0xe2, 0xe2, CONFIG_WHITE}, // OOK_Rb32Bw64 // { CONFIG_FSK, 0x68, 0x2b, 0x00, 0x52, 0x55, 0x55, CONFIG_WHITE}, // works: Rb1200 Fd 5000 bw10000, DCC 400 // { CONFIG_FSK, 0x0c, 0x80, 0x02, 0x8f, 0x52, 0x52, CONFIG_WHITE}, // works 10/40/80 // { CONFIG_FSK, 0x0c, 0x80, 0x02, 0x8f, 0x53, 0x53, CONFIG_WHITE}, // works 10/40/40 }; RH_RF69::RH_RF69(PINS slaveSelectPin, PINS interruptPin, RHGenericSPI& spi) : RHSPIDriver(slaveSelectPin, spi), _interruptPin(interruptPin) { _idleMode = RH_RF69_OPMODE_MODE_STDBY; _myInterruptIndex = 0xff; // Not allocated yet } void RH_RF69::setIdleMode(uint8_t idleMode) { _idleMode = idleMode; } bool RH_RF69::init() { if (!RHSPIDriver::init()) return false; #if (RH_PLATFORM != RH_PLATFORM_MBED) // Determine the interrupt number that corresponds to the interruptPin int interruptNumber = digitalPinToInterrupt(_interruptPin); if (interruptNumber == NOT_AN_INTERRUPT) return false; #endif // Get the device type and check it // This also tests whether we are really connected to a device // My test devices return 0x24 _deviceType = spiRead(RH_RF69_REG_10_VERSION); if (_deviceType == 00 || _deviceType == 0xff) return false; // Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy // ARM M4 requires the below. else pin interrupt doesn't work properly. // On all other platforms, its innocuous, belt and braces #if (RH_PLATFORM != RH_PLATFORM_MBED) pinMode(_interruptPin, INPUT); #endif // Set up interrupt handler // Since there are a limited number of interrupt glue functions isr*() available, // we can only support a limited number of devices simultaneously // ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the // interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping // yourself based on knwledge of what Arduino board you are running on. if (_myInterruptIndex == 0xff) { // First run, no interrupt allocated yet if (_interruptCount <= RH_RF69_NUM_INTERRUPTS) _myInterruptIndex = _interruptCount++; else return false; // Too many devices, not enough interrupt vectors } _deviceForInterrupt[_myInterruptIndex] = this; #if (RH_PLATFORM == RH_PLATFORM_MBED) if (_myInterruptIndex == 0) _interruptPin.rise(&isr0); else if (_myInterruptIndex == 1) _interruptPin.rise(&isr1); else if (_myInterruptIndex == 2) _interruptPin.rise(&isr2); else return false; // Too many devices, not enough interrupt vectors #else if (_myInterruptIndex == 0) attachInterrupt(interruptNumber, isr0, RISING); else if (_myInterruptIndex == 1) attachInterrupt(interruptNumber, isr1, RISING); else if (_myInterruptIndex == 2) attachInterrupt(interruptNumber, isr2, RISING); else return false; // Too many devices, not enough interrupt vectors #endif setModeIdle(); // Configure important RH_RF69 registers // Here we set up the standard packet format for use by the RH_RF69 library: // 4 bytes preamble // 2 SYNC words 2d, d4 // 2 CRC CCITT octets computed on the header, length and data (this in the modem config data) // 0 to 60 bytes data // RSSI Threshold -114dBm // We dont use the RH_RF69s address filtering: instead we prepend our own headers to the beginning // of the RH_RF69 payload spiWrite(RH_RF69_REG_3C_FIFOTHRESH, RH_RF69_FIFOTHRESH_TXSTARTCONDITION_NOTEMPTY | 0x0f); // thresh 15 is default // RSSITHRESH is default // spiWrite(RH_RF69_REG_29_RSSITHRESH, 220); // -110 dbM // SYNCCONFIG is default. SyncSize is set later by setSyncWords() // spiWrite(RH_RF69_REG_2E_SYNCCONFIG, RH_RF69_SYNCCONFIG_SYNCON); // auto, tolerance 0 // PAYLOADLENGTH is default // spiWrite(RH_RF69_REG_38_PAYLOADLENGTH, RH_RF69_FIFO_SIZE); // max size only for RX // PACKETCONFIG 2 is default spiWrite(RH_RF69_REG_6F_TESTDAGC, RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAOFF); // If high power boost set previously, disable it spiWrite(RH_RF69_REG_5A_TESTPA1, RH_RF69_TESTPA1_NORMAL); spiWrite(RH_RF69_REG_5C_TESTPA2, RH_RF69_TESTPA2_NORMAL); // The following can be changed later by the user if necessary. // Set up default configuration uint8_t syncwords[] = { 0x2d, 0xd4 }; setSyncWords(syncwords, sizeof(syncwords)); // Same as RF22's // Reasonably fast and reliable default speed and modulation setModemConfig(GFSK_Rb250Fd250); // 3 would be sufficient, but this is the same as RF22's setPreambleLength(4); // An innocuous ISM frequency, same as RF22's setFrequency(434.0); // No encryption setEncryptionKey(NULL); // +13dBm, same as power-on default setTxPower(13); return true; } // C++ level interrupt handler for this instance // RH_RF69 is unusual in Mthat it has several interrupt lines, and not a single, combined one. // On Moteino, only one of the several interrupt lines (DI0) from the RH_RF69 is connnected to the processor. // We use this to get PACKETSDENT and PAYLOADRADY interrupts. void RH_RF69::handleInterrupt() { // Get the interrupt cause uint8_t irqflags2 = spiRead(RH_RF69_REG_28_IRQFLAGS2); if (_mode == RHModeTx && (irqflags2 & RH_RF69_IRQFLAGS2_PACKETSENT)) { // A transmitter message has been fully sent setModeIdle(); // Clears FIFO _txGood++; // Serial.println("PACKETSENT"); } // Must look for PAYLOADREADY, not CRCOK, since only PAYLOADREADY occurs _after_ AES decryption // has been done if (_mode == RHModeRx && (irqflags2 & RH_RF69_IRQFLAGS2_PAYLOADREADY)) { // A complete message has been received with good CRC _lastRssi = -((int8_t)(spiRead(RH_RF69_REG_24_RSSIVALUE) >> 1)); _lastPreambleTime = millis(); setModeIdle(); // Save it in our buffer readFifo(); // Serial.println("PAYLOADREADY"); } } // Low level function reads the FIFO and checks the address // Caution: since we put our headers in what the RH_RF69 considers to be the payload, if encryption is enabled // we have to suffer the cost of decryption before we can determine whether the address is acceptable. // Performance issue? void RH_RF69::readFifo() { ATOMIC_BLOCK_START; digitalWrite(_slaveSelectPin, LOW); _spi.transfer(RH_RF69_REG_00_FIFO); // Send the start address with the write mask off uint8_t payloadlen = _spi.transfer(0); // First byte is payload len (counting the headers) if (payloadlen <= RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN && payloadlen >= RH_RF69_HEADER_LEN) { _rxHeaderTo = _spi.transfer(0); // Check addressing if (_promiscuous || _rxHeaderTo == _thisAddress || _rxHeaderTo == RH_BROADCAST_ADDRESS) { // Get the rest of the headers _rxHeaderFrom = _spi.transfer(0); _rxHeaderId = _spi.transfer(0); _rxHeaderFlags = _spi.transfer(0); // And now the real payload for (_bufLen = 0; _bufLen < (payloadlen - RH_RF69_HEADER_LEN); _bufLen++) _buf[_bufLen] = _spi.transfer(0); _rxGood++; _rxBufValid = true; } } digitalWrite(_slaveSelectPin, HIGH); ATOMIC_BLOCK_END; // Any junk remaining in the FIFO will be cleared next time we go to receive mode. } // These are low level functions that call the interrupt handler for the correct // instance of RH_RF69. // 3 interrupts allows us to have 3 different devices void RH_RF69::isr0() { if (_deviceForInterrupt[0]) _deviceForInterrupt[0]->handleInterrupt(); } void RH_RF69::isr1() { if (_deviceForInterrupt[1]) _deviceForInterrupt[1]->handleInterrupt(); } void RH_RF69::isr2() { if (_deviceForInterrupt[2]) _deviceForInterrupt[2]->handleInterrupt(); } int8_t RH_RF69::temperatureRead() { // Caution: must be ins standby. // setModeIdle(); spiWrite(RH_RF69_REG_4E_TEMP1, RH_RF69_TEMP1_TEMPMEASSTART); // Start the measurement while (spiRead(RH_RF69_REG_4E_TEMP1) & RH_RF69_TEMP1_TEMPMEASRUNNING) ; // Wait for the measurement to complete return 166 - spiRead(RH_RF69_REG_4F_TEMP2); // Very approximate, based on observation } bool RH_RF69::setFrequency(float centre, float afcPullInRange) { // Frf = FRF / FSTEP uint32_t frf = (uint32_t)((centre * 1000000.0) / RH_RF69_FSTEP); spiWrite(RH_RF69_REG_07_FRFMSB, (frf >> 16) & 0xff); spiWrite(RH_RF69_REG_08_FRFMID, (frf >> 8) & 0xff); spiWrite(RH_RF69_REG_09_FRFLSB, frf & 0xff); // afcPullInRange is not used return true; } int8_t RH_RF69::rssiRead() { // Force a new value to be measured // Hmmm, this hangs forever! #if 0 spiWrite(RH_RF69_REG_23_RSSICONFIG, RH_RF69_RSSICONFIG_RSSISTART); while (!(spiRead(RH_RF69_REG_23_RSSICONFIG) & RH_RF69_RSSICONFIG_RSSIDONE)) ; #endif return -((int8_t)(spiRead(RH_RF69_REG_24_RSSIVALUE) >> 1)); } void RH_RF69::setOpMode(uint8_t mode) { uint8_t opmode = spiRead(RH_RF69_REG_01_OPMODE); opmode &= ~RH_RF69_OPMODE_MODE; opmode |= (mode & RH_RF69_OPMODE_MODE); spiWrite(RH_RF69_REG_01_OPMODE, opmode); // Wait for mode to change. while (!(spiRead(RH_RF69_REG_27_IRQFLAGS1) & RH_RF69_IRQFLAGS1_MODEREADY)) ; } void RH_RF69::setModeIdle() { if (_mode != RHModeIdle) { if (_power >= 18) { // If high power boost, return power amp to receive mode spiWrite(RH_RF69_REG_5A_TESTPA1, RH_RF69_TESTPA1_NORMAL); spiWrite(RH_RF69_REG_5C_TESTPA2, RH_RF69_TESTPA2_NORMAL); } setOpMode(_idleMode); _mode = RHModeIdle; } } bool RH_RF69::sleep() { if (_mode != RHModeSleep) { spiWrite(RH_RF69_REG_01_OPMODE, RH_RF69_OPMODE_MODE_SLEEP); _mode = RHModeSleep; } return true; } void RH_RF69::setModeRx() { if (_mode != RHModeRx) { if (_power >= 18) { // If high power boost, return power amp to receive mode spiWrite(RH_RF69_REG_5A_TESTPA1, RH_RF69_TESTPA1_NORMAL); spiWrite(RH_RF69_REG_5C_TESTPA2, RH_RF69_TESTPA2_NORMAL); } spiWrite(RH_RF69_REG_25_DIOMAPPING1, RH_RF69_DIOMAPPING1_DIO0MAPPING_01); // Set interrupt line 0 PayloadReady setOpMode(RH_RF69_OPMODE_MODE_RX); // Clears FIFO _mode = RHModeRx; } } void RH_RF69::setModeTx() { if (_mode != RHModeTx) { if (_power >= 18) { // Set high power boost mode // Note that OCP defaults to ON so no need to change that. spiWrite(RH_RF69_REG_5A_TESTPA1, RH_RF69_TESTPA1_BOOST); spiWrite(RH_RF69_REG_5C_TESTPA2, RH_RF69_TESTPA2_BOOST); } spiWrite(RH_RF69_REG_25_DIOMAPPING1, RH_RF69_DIOMAPPING1_DIO0MAPPING_00); // Set interrupt line 0 PacketSent setOpMode(RH_RF69_OPMODE_MODE_TX); // Clears FIFO _mode = RHModeTx; } } void RH_RF69::setTxPower(int8_t power) { _power = power; uint8_t palevel; if (_power < -18) _power = -18; // See http://www.hoperf.com/upload/rfchip/RF69-V1.2.pdf section 3.3.6 // for power formulas if (_power <= 13) { // -18dBm to +13dBm palevel = RH_RF69_PALEVEL_PA0ON | ((_power + 18) & RH_RF69_PALEVEL_OUTPUTPOWER); } else if (_power >= 18) { // +18dBm to +20dBm // Need PA1+PA2 // Also need PA boost settings change when tx is turned on and off, see setModeTx() palevel = RH_RF69_PALEVEL_PA1ON | RH_RF69_PALEVEL_PA2ON | ((_power + 11) & RH_RF69_PALEVEL_OUTPUTPOWER); } else { // +14dBm to +17dBm // Need PA1+PA2 palevel = RH_RF69_PALEVEL_PA1ON | RH_RF69_PALEVEL_PA2ON | ((_power + 14) & RH_RF69_PALEVEL_OUTPUTPOWER); } spiWrite(RH_RF69_REG_11_PALEVEL, palevel); } // Sets registers from a canned modem configuration structure void RH_RF69::setModemRegisters(const ModemConfig* config) { spiBurstWrite(RH_RF69_REG_02_DATAMODUL, &config->reg_02, 5); spiBurstWrite(RH_RF69_REG_19_RXBW, &config->reg_19, 2); spiWrite(RH_RF69_REG_37_PACKETCONFIG1, config->reg_37); } // Set one of the canned FSK Modem configs // Returns true if its a valid choice bool RH_RF69::setModemConfig(ModemConfigChoice index) { if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig))) return false; ModemConfig cfg; memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF69::ModemConfig)); setModemRegisters(&cfg); return true; } void RH_RF69::setPreambleLength(uint16_t bytes) { spiWrite(RH_RF69_REG_2C_PREAMBLEMSB, bytes >> 8); spiWrite(RH_RF69_REG_2D_PREAMBLELSB, bytes & 0xff); } void RH_RF69::setSyncWords(const uint8_t* syncWords, uint8_t len) { uint8_t syncconfig = spiRead(RH_RF69_REG_2E_SYNCCONFIG); if (syncWords && len && len <= 4) { spiBurstWrite(RH_RF69_REG_2F_SYNCVALUE1, syncWords, len); syncconfig |= RH_RF69_SYNCCONFIG_SYNCON; } else syncconfig &= ~RH_RF69_SYNCCONFIG_SYNCON; syncconfig &= ~RH_RF69_SYNCCONFIG_SYNCSIZE; syncconfig |= (len-1) << 3; spiWrite(RH_RF69_REG_2E_SYNCCONFIG, syncconfig); } void RH_RF69::setEncryptionKey(uint8_t* key) { if (key) { spiBurstWrite(RH_RF69_REG_3E_AESKEY1, key, 16); spiWrite(RH_RF69_REG_3D_PACKETCONFIG2, spiRead(RH_RF69_REG_3D_PACKETCONFIG2) | RH_RF69_PACKETCONFIG2_AESON); } else { spiWrite(RH_RF69_REG_3D_PACKETCONFIG2, spiRead(RH_RF69_REG_3D_PACKETCONFIG2) & ~RH_RF69_PACKETCONFIG2_AESON); } } bool RH_RF69::available() { if (_mode == RHModeTx) return false; setModeRx(); // Make sure we are receiving return _rxBufValid; } bool RH_RF69::recv(uint8_t* buf, uint8_t* len) { if (!available()) return false; if (buf && len) { ATOMIC_BLOCK_START; if (*len > _bufLen) *len = _bufLen; memcpy(buf, _buf, *len); ATOMIC_BLOCK_END; } _rxBufValid = false; // Got the most recent message // printBuffer("recv:", buf, *len); return true; } bool RH_RF69::send(const uint8_t* data, uint8_t len) { if (len > RH_RF69_MAX_MESSAGE_LEN) return false; waitPacketSent(); // Make sure we dont interrupt an outgoing message setModeIdle(); // Prevent RX while filling the fifo ATOMIC_BLOCK_START; digitalWrite(_slaveSelectPin, LOW); _spi.transfer(RH_RF69_REG_00_FIFO | RH_RF69_SPI_WRITE_MASK); // Send the start address with the write mask on _spi.transfer(len + RH_RF69_HEADER_LEN); // Include length of headers // First the 4 headers _spi.transfer(_txHeaderTo); _spi.transfer(_txHeaderFrom); _spi.transfer(_txHeaderId); _spi.transfer(_txHeaderFlags); // Now the payload while (len--) _spi.transfer(*data++); digitalWrite(_slaveSelectPin, HIGH); ATOMIC_BLOCK_END; setModeTx(); // Start the transmitter return true; } uint8_t RH_RF69::maxMessageLength() { return RH_RF69_MAX_MESSAGE_LEN; } bool RH_RF69::printRegister(uint8_t reg) { #ifdef RH_HAVE_SERIAL Serial.print(reg, HEX); Serial.print(" "); Serial.println(spiRead(reg), HEX); #endif return true; } bool RH_RF69::printRegisters() { uint8_t i; for (i = 0; i < 0x50; i++) printRegister(i); // Non-contiguous registers printRegister(RH_RF69_REG_58_TESTLNA); printRegister(RH_RF69_REG_6F_TESTDAGC); printRegister(RH_RF69_REG_71_TESTAFC); return true; }