Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32630/mxc/uart.c
- Committer:
- <>
- Date:
- 2017-02-02
- Revision:
- 157:ff67d9f36b67
File content as of revision 157:ff67d9f36b67:
/**
* @file
* @brief This file contains the function implementations for the UART
* serial communications peripheral module.
*/
/* *****************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2016-09-08 17:00:36 -0500 (Thu, 08 Sep 2016) $
* $Revision: 24319 $
*
**************************************************************************** */
/* **** Includes **** */
#include <string.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "mxc_lock.h"
#include "mxc_sys.h"
#include "uart.h"
/**
* @ingroup uart_comm
* @{
*/
/* **** Definitions **** */
///@cond
#define UART_ERRORS (MXC_F_UART_INTEN_RX_FIFO_OVERFLOW | \
MXC_F_UART_INTEN_RX_FRAMING_ERR | \
MXC_F_UART_INTEN_RX_PARITY_ERR)
#define UART_READ_INTS (MXC_F_UART_INTEN_RX_FIFO_AF | \
MXC_F_UART_INTEN_RX_FIFO_NOT_EMPTY | \
MXC_F_UART_INTEN_RX_STALLED | \
UART_ERRORS)
#define UART_WRITE_INTS (MXC_F_UART_INTEN_TX_UNSTALLED | \
MXC_F_UART_INTEN_TX_FIFO_AE)
#define UART_RXFIFO_USABLE (MXC_UART_FIFO_DEPTH-3)
///@endcond
//
/* **** Globals **** */
// Saves the state of the non-blocking read requests
static uart_req_t *rx_states[MXC_CFG_UART_INSTANCES];
// Saves the state of the non-blocking write requests
static uart_req_t *tx_states[MXC_CFG_UART_INSTANCES];
/* **** Functions **** */
static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num);
static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num,
uint32_t flags);
/* ************************************************************************* */
int UART_Init(mxc_uart_regs_t *uart, const uart_cfg_t *cfg, const sys_cfg_uart_t *sys_cfg)
{
int err;
int uart_num;
uint32_t uart_clk;
uint8_t baud_shift;
uint16_t baud_div;
uint32_t baud, diff_baud;
uint32_t baud_1, diff_baud_1;
// Check the input parameters
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
// Set system level configurations
if(sys_cfg != NULL) {
if ((err = SYS_UART_Init(uart, cfg, sys_cfg)) != E_NO_ERROR) {
return err;
}
}
// Initialize state pointers
rx_states[uart_num] = NULL;
tx_states[uart_num] = NULL;
// Drain FIFOs and enable UART
uart->ctrl = 0;
uart->ctrl = (MXC_F_UART_CTRL_UART_EN | MXC_F_UART_CTRL_TX_FIFO_EN |
MXC_F_UART_CTRL_RX_FIFO_EN |
(UART_RXFIFO_USABLE << MXC_F_UART_CTRL_RTS_LEVEL_POS));
// Configure data size, stop bit, parity, cts, and rts
uart->ctrl |= ((cfg->size << MXC_F_UART_CTRL_DATA_SIZE_POS) |
(cfg->extra_stop << MXC_F_UART_CTRL_EXTRA_STOP_POS) |
(cfg->parity << MXC_F_UART_CTRL_PARITY_POS) |
(cfg->cts << MXC_F_UART_CTRL_CTS_EN_POS) |
(cfg->rts << MXC_F_UART_CTRL_RTS_EN_POS));
// Configure the baud rate and divisor
uart_clk = SYS_UART_GetFreq(uart);
MXC_ASSERT(uart_clk > 0);
baud_shift = 2;
baud_div = (uart_clk / (cfg->baud * 4));
// Can not support higher frequencies
if(!baud_div) {
return E_NOT_SUPPORTED;
}
// Decrease the divisor if baud_div is overflowing
while(baud_div > 0xFF) {
if(baud_shift == 0) {
return E_NOT_SUPPORTED;
}
baud_shift--;
baud_div = (uart_clk / (cfg->baud * (16 >> baud_shift)));
}
// Adjust baud_div so we don't overflow with the calculations below
if(baud_div == 0xFF) {
baud_div = 0xFE;
}
if(baud_div == 0) {
baud_div = 1;
}
// Figure out if the truncation increased the error
baud = (uart_clk / (baud_div * (16 >> baud_shift)));
baud_1 = (uart_clk / ((baud_div+1) * (16 >> baud_shift)));
if(cfg->baud > baud) {
diff_baud = cfg->baud - baud;
} else {
diff_baud = baud - cfg->baud;
}
if(cfg->baud > baud_1) {
diff_baud_1 = cfg->baud - baud_1;
} else {
diff_baud_1 = baud_1 - cfg->baud;
}
if(diff_baud < diff_baud_1) {
uart->baud = ((baud_div & MXC_F_UART_BAUD_BAUD_DIVISOR) |
(baud_shift << MXC_F_UART_BAUD_BAUD_MODE_POS));
} else {
uart->baud = (((baud_div+1) & MXC_F_UART_BAUD_BAUD_DIVISOR) |
(baud_shift << MXC_F_UART_BAUD_BAUD_MODE_POS));
}
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_Shutdown(mxc_uart_regs_t *uart)
{
int uart_num, err;
uart_req_t *temp_req;
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
// Disable and clear interrupts
uart->inten = 0;
uart->intfl = uart->intfl;
// Disable UART and FIFOS
uart->ctrl &= ~(MXC_F_UART_CTRL_UART_EN | MXC_F_UART_CTRL_TX_FIFO_EN |
MXC_F_UART_CTRL_RX_FIFO_EN);
// Call all of the pending callbacks for this UART
if(rx_states[uart_num] != NULL) {
// Save the request
temp_req = rx_states[uart_num];
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
// Callback if not NULL
if(temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
if(tx_states[uart_num] != NULL) {
// Save the request
temp_req = tx_states[uart_num];
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
// Callback if not NULL
if(temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
// Clears system level configurations
if ((err = SYS_UART_Shutdown(uart)) != E_NO_ERROR) {
return err;
}
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_Write(mxc_uart_regs_t *uart, uint8_t* data, int len)
{
int num, uart_num;
mxc_uart_fifo_regs_t *fifo;
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
if(data == NULL) {
return E_NULL_PTR;
}
// Make sure the UART has been initialized
if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) {
return E_UNINITIALIZED;
}
if(!(len > 0)) {
return E_NO_ERROR;
}
// Lock this UART from writing
while(mxc_get_lock((uint32_t*)&tx_states[uart_num], 1) != E_NO_ERROR) {}
// Get the FIFO for this UART
fifo = MXC_UART_GET_FIFO(uart_num);
num = 0;
while(num < len) {
// Wait for TXFIFO to not be full
while((uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) ==
MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) {}
// Write the data to the FIFO
#if(MXC_UART_REV == 0)
uart->intfl = MXC_F_UART_INTFL_TX_DONE;
#endif
fifo->tx = data[num++];
}
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
return num;
}
/* ************************************************************************* */
int UART_Read(mxc_uart_regs_t *uart, uint8_t* data, int len, int *num)
{
int num_local, remain, uart_num;
mxc_uart_fifo_regs_t *fifo;
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
if(data == NULL) {
return E_NULL_PTR;
}
// Make sure the UART has been initialized
if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) {
return E_UNINITIALIZED;
}
if(!(len > 0)) {
return E_NO_ERROR;
}
// Lock this UART from reading
while(mxc_get_lock((uint32_t*)&rx_states[uart_num], 1) != E_NO_ERROR) {}
// Get the FIFO for this UART
fifo = MXC_UART_GET_FIFO(uart_num);
num_local = 0;
remain = len;
while(remain) {
// Save the data in the FIFO
while((uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) && remain) {
data[num_local] = fifo->rx;
num_local++;
remain--;
}
// Break if there is an error
if(uart->intfl & UART_ERRORS) {
break;
}
}
// Save the number of bytes read if pointer is valid
if(num != NULL) {
*num = num_local;
}
// Check for errors
if(uart->intfl & MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) {
// Clear errors and return error code
uart->intfl = UART_ERRORS;
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
return E_OVERFLOW;
} else if(uart->intfl & (MXC_F_UART_INTFL_RX_FRAMING_ERR |
MXC_F_UART_INTFL_RX_PARITY_ERR)) {
// Clear errors and return error code
uart->intfl = UART_ERRORS;
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
return E_COMM_ERR;
}
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
return num_local;
}
/* ************************************************************************* */
int UART_WriteAsync(mxc_uart_regs_t *uart, uart_req_t *req)
{
int uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
// Check the input parameters
if(req->data == NULL) {
return E_NULL_PTR;
}
// Make sure the UART has been initialized
if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) {
return E_UNINITIALIZED;
}
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
if(mxc_get_lock((uint32_t*)&tx_states[uart_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Clear the number of bytes counter
req->num = 0;
// Start the write
UART_WriteHandler(uart, req, uart_num);
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_ReadAsync(mxc_uart_regs_t *uart, uart_req_t *req)
{
int uart_num;
uint32_t flags;
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
if(req->data == NULL) {
return E_NULL_PTR;
}
// Make sure the UART has been initialized
if(!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) {
return E_UNINITIALIZED;
}
if(!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
if(mxc_get_lock((uint32_t*)&rx_states[uart_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Clear the number of bytes counter
req->num = 0;
// Start the read
flags = uart->intfl;
uart->intfl = flags;
UART_ReadHandler(uart, req, uart_num, flags);
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_AbortAsync(uart_req_t *req)
{
int uart_num;
// Figure out if this was a read or write request, find the request, set to NULL
for(uart_num = 0; uart_num < MXC_CFG_UART_INSTANCES; uart_num++) {
if(req == rx_states[uart_num]) {
// Disable read interrupts, clear flags.
MXC_UART_GET_UART(uart_num)->inten &= ~UART_READ_INTS;
MXC_UART_GET_UART(uart_num)->intfl = UART_READ_INTS;
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
if(req == tx_states[uart_num]) {
// Disable write interrupts, clear flags.
MXC_UART_GET_UART(uart_num)->inten &= ~(UART_WRITE_INTS);
MXC_UART_GET_UART(uart_num)->intfl = UART_WRITE_INTS;
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
// Callback if not NULL
if(req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/* ************************************************************************* */
void UART_Handler(mxc_uart_regs_t *uart)
{
int uart_num;
uint32_t flags;
uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
flags = uart->intfl;
uart->intfl = flags;
// Figure out if this UART has an active Read request
if((rx_states[uart_num] != NULL) && (flags & UART_READ_INTS)) {
UART_ReadHandler(uart, rx_states[uart_num], uart_num, flags);
}
// Figure out if this UART has an active Write request
if((tx_states[uart_num] != NULL) && (flags & (UART_WRITE_INTS))) {
UART_WriteHandler(uart, tx_states[uart_num], uart_num);
}
}
/* ************************************************************************* */
int UART_Busy(mxc_uart_regs_t *uart)
{
int uart_num = MXC_UART_GET_IDX(uart);
MXC_ASSERT(uart_num >= 0);
// Check to see if there are any ongoing transactions or if the UART is disabled
if(((tx_states[uart_num] == NULL) &&
!(uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) &&
#if(MXC_UART_REV == 0)
(uart->intfl & MXC_F_UART_INTFL_TX_DONE)) ||
#else
(uart->idle & MXC_F_UART_IDLE_TX_RX_IDLE)) ||
#endif
!(uart->ctrl & MXC_F_UART_CTRL_UART_EN)) {
return E_NO_ERROR;
}
return E_BUSY;
}
/* ************************************************************************* */
int UART_PrepForSleep(mxc_uart_regs_t *uart)
{
if(UART_Busy(uart) != E_NO_ERROR) {
return E_BUSY;
}
// Leave read interrupts enabled, if already enabled
uart->inten &= UART_READ_INTS;
return E_NO_ERROR;
}
/* ************************************************************************* */
static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num)
{
int avail, remain;
mxc_uart_fifo_regs_t *fifo;
// Disable write interrupts
uart->inten &= ~(UART_WRITE_INTS);
// Get the FIFO for this UART
fifo = MXC_UART_GET_FIFO(uart_num);
// Refill the TX FIFO
avail = UART_NumWriteAvail(uart);
remain = req->len - req->num;
while(avail && remain) {
// Write the data to the FIFO
#if(MXC_UART_REV == 0)
uart->intfl = MXC_F_UART_INTFL_TX_DONE;
#endif
fifo->tx = req->data[req->num++];
remain--;
avail--;
}
// All of the bytes have been written to the FIFO
if(!remain) {
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
if(req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
} else {
// Interrupt when there is one byte left in the TXFIFO
uart->tx_fifo_ctrl = ((MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS);
// Enable almost empty interrupt
uart->inten |= (MXC_F_UART_INTEN_TX_FIFO_AE);
}
}
/* ************************************************************************* */
static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num,
uint32_t flags)
{
int avail, remain;
mxc_uart_fifo_regs_t *fifo;
// Disable interrupts
uart->inten &= ~UART_READ_INTS;
// Get the FIFO for this UART, uart_num
fifo = MXC_UART_GET_FIFO(uart_num);
// Save the data in the FIFO while we still need data
avail = UART_NumReadAvail(uart);
remain = req->len - req->num;
while(avail && remain) {
req->data[req->num++] = fifo->rx;
remain--;
avail--;
}
// Check for errors
if(flags & MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) {
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
if(req->callback != NULL) {
req->callback(req, E_OVERFLOW);
}
return;
}
if(flags & (MXC_F_UART_INTFL_RX_FRAMING_ERR |
MXC_F_UART_INTFL_RX_PARITY_ERR)) {
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
if(req->callback != NULL) {
req->callback(req, E_COMM_ERR);
}
return;
}
// Check to see if we're done receiving
if(remain == 0) {
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
if(req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
return;
}
if(remain == 1) {
uart->inten |= (MXC_F_UART_INTEN_RX_FIFO_NOT_EMPTY | UART_ERRORS);
} else {
// Set the RX FIFO AF threshold
if(remain < UART_RXFIFO_USABLE) {
uart->rx_fifo_ctrl = ((remain - 1) <<
MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL_POS);
} else {
uart->rx_fifo_ctrl = (UART_RXFIFO_USABLE <<
MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL_POS);
}
uart->inten |= (MXC_F_UART_INTEN_RX_FIFO_AF | UART_ERRORS);
}
}
/**@} end of ingroup uart_comm */
