Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/hal/TARGET_RENESAS/TARGET_VK_RZ_A1H/spi_api.c
- Committer:
- mbed_official
- Date:
- 2016-04-29
- Revision:
- 119:3921aeca8633
File content as of revision 119:3921aeca8633:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include <math.h> #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "RZ_A1_Init.h" #ifdef MAX_PERI static const PinMap PinMap_SPI_SCLK[] = { {P2_12 , SPI_0, 2}, {P7_15 , SPI_0, 2}, {P4_4 , SPI_1, 2}, {P6_4 , SPI_1, 7}, {P8_3 , SPI_2, 3}, {P8_14 , SPI_2, 5}, {P3_0 , SPI_3, 8}, {P5_0 , SPI_3, 8}, {P2_8 , SPI_4, 8}, {P4_0 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_SSEL[] = { {P2_13 , SPI_0, 2}, {P8_0 , SPI_0, 2}, {P4_5 , SPI_1, 2}, {P6_5 , SPI_1, 7}, {P8_4 , SPI_2, 3}, {P8_15 , SPI_2, 5}, {P3_1 , SPI_3, 8}, {P5_1 , SPI_3, 8}, {P2_9 , SPI_4, 8}, {P4_1 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MOSI[] = { {P2_14 , SPI_0, 2}, {P8_1 , SPI_0, 2}, {P4_6 , SPI_1, 2}, {P6_6 , SPI_1, 7}, {P8_5 , SPI_2, 3}, {P9_0 , SPI_2, 5}, {P3_2 , SPI_3, 8}, {P5_2 , SPI_3, 8}, {P2_10 , SPI_4, 8}, {P4_2 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MISO[] = { {P2_15 , SPI_0, 2}, {P8_2 , SPI_0, 2}, {P4_7 , SPI_1, 2}, {P6_7 , SPI_1, 7}, {P8_6 , SPI_2, 3}, {P9_1 , SPI_2, 5}, {P3_3 , SPI_3, 8}, {P5_3 , SPI_3, 8}, {P2_11 , SPI_4, 8}, {P4_3 , SPI_4, 7}, {NC , NC , 0} }; #else static const PinMap PinMap_SPI_SCLK[] = { {P4_4 , SPI_1, 2}, {P8_14 , SPI_2, 5}, {P5_0 , SPI_3, 8}, {P4_0 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_SSEL[] = { {P4_5 , SPI_1, 2}, {P8_15 , SPI_2, 5}, {P5_1 , SPI_3, 8}, {P4_1 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MOSI[] = { {P4_6 , SPI_1, 2}, {P9_0 , SPI_2, 5}, {P5_2 , SPI_3, 8}, {P4_2 , SPI_4, 7}, {NC , NC , 0} }; static const PinMap PinMap_SPI_MISO[] = { {P4_7 , SPI_1, 2}, {P9_1 , SPI_2, 5}, {P5_3 , SPI_3, 8}, {P4_3 , SPI_4, 7}, {NC , NC , 0} }; #endif static const struct st_rspi *RSPI[] = RSPI_ADDRESS_LIST; static inline void spi_disable(spi_t *obj); static inline void spi_enable(spi_t *obj); static inline int spi_readable(spi_t *obj); static inline void spi_write(spi_t *obj, int value); static inline int spi_read(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use volatile uint8_t dummy; uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI); uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO); uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK); uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL); uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso); uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel); uint32_t spi = pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)spi != NC); obj->spi = (struct st_rspi *)RSPI[spi]; // enable power and clocking switch (spi) { case SPI_1: CPGSTBCR10 &= ~(0x40); break; case SPI_2: CPGSTBCR10 &= ~(0x20); break; case SPI_3: CPGSTBCR10 &= ~(0x10); break; case SPI_4: CPGSTBCR10 &= ~(0x08); break; } dummy = CPGSTBCR10; obj->spi->SPCR = 0x00; // CTRL to 0 obj->spi->SPSCR = 0x00; // no sequential operation obj->spi->SSLP = 0x00; // SSL 'L' active obj->spi->SPDCR = 0x20; // byte access obj->spi->SPCKD = 0x00; // SSL -> enable CLK delay : 1RSPCK obj->spi->SSLND = 0x00; // CLK end -> SSL neg delay : 1RSPCK obj->spi->SPND = 0x00; // delay between CMD : 1RSPCK + 2P1CLK obj->spi->SPPCR = 0x20; // MOSI Idle fixed value equals 0 obj->spi->SPBFCR = 0xf0; // and set trigger count: read 1, write 1 obj->spi->SPBFCR = 0x30; // and reset buffer // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if ((int)ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } } void spi_free(spi_t *obj) {} void spi_format(spi_t *obj, int bits, int mode, int slave) { int DSS; // DSS (data select size) int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; uint16_t tmp = 0; uint16_t mask = 0xf03; uint16_t wk_spcmd0; uint8_t splw; switch (mode) { case 0: case 1: case 2: case 3: // Do Nothing break; default: error("SPI format error"); return; } switch (bits) { case 8: DSS = 0x7; splw = 0x20; break; case 16: DSS = 0xf; splw = 0x40; break; case 32: DSS = 0x2; splw = 0x60; break; default: error("SPI module don't support other than 8/16/32bits"); return; } tmp |= phase; tmp |= (polarity << 1); tmp |= (DSS << 8); obj->bits = bits; spi_disable(obj); wk_spcmd0 = obj->spi->SPCMD0; wk_spcmd0 &= ~mask; wk_spcmd0 |= (mask & tmp); obj->spi->SPCMD0 = wk_spcmd0; obj->spi->SPDCR = splw; if (slave) { obj->spi->SPCR &=~(1 << 3); // MSTR to 0 } else { obj->spi->SPCR |= (1 << 3); // MSTR to 1 } spi_enable(obj); } void spi_frequency(spi_t *obj, int hz) { uint32_t pclk_base; uint32_t div; uint32_t brdv = 0; uint32_t hz_max; uint32_t hz_min; uint16_t mask = 0x000c; uint16_t wk_spcmd0; /* set PCLK */ if (RZ_A1_IsClockMode0() == false) { pclk_base = CM1_RENESAS_RZ_A1_P1_CLK; } else { pclk_base = CM0_RENESAS_RZ_A1_P1_CLK; } hz_min = pclk_base / 2 / 256 / 8; hz_max = pclk_base / 2; if ((hz < hz_min) || (hz > hz_max)) { error("Couldn't setup requested SPI frequency"); return; } div = (pclk_base / hz / 2); while (div > 256) { div >>= 1; brdv++; } div -= 1; brdv = (brdv << 2); spi_disable(obj); obj->spi->SPBR = div; wk_spcmd0 = obj->spi->SPCMD0; wk_spcmd0 &= ~mask; wk_spcmd0 |= (mask & brdv); obj->spi->SPCMD0 = wk_spcmd0; spi_enable(obj); } static inline void spi_disable(spi_t *obj) { obj->spi->SPCR &= ~(1 << 6); // SPE to 0 } static inline void spi_enable(spi_t *obj) { obj->spi->SPCR |= (1 << 6); // SPE to 1 } static inline int spi_readable(spi_t *obj) { return obj->spi->SPSR & (1 << 7); // SPRF } static inline int spi_tend(spi_t *obj) { return obj->spi->SPSR & (1 << 6); // TEND } static inline void spi_write(spi_t *obj, int value) { if (obj->bits == 8) { obj->spi->SPDR.UINT8[0] = (uint8_t)value; } else if (obj->bits == 16) { obj->spi->SPDR.UINT16[0] = (uint16_t)value; } else { obj->spi->SPDR.UINT32 = (uint32_t)value; } } static inline int spi_read(spi_t *obj) { int read_data; if (obj->bits == 8) { read_data = obj->spi->SPDR.UINT8[0]; } else if (obj->bits == 16) { read_data = obj->spi->SPDR.UINT16[0]; } else { read_data = obj->spi->SPDR.UINT32; } return read_data; } int spi_master_write(spi_t *obj, int value) { spi_write(obj, value); while(!spi_tend(obj)); return spi_read(obj); } int spi_slave_receive(spi_t *obj) { return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0); } int spi_slave_read(spi_t *obj) { return spi_read(obj); } void spi_slave_write(spi_t *obj, int value) { spi_write(obj, value); } int spi_busy(spi_t *obj) { return 0; }