Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
CAN/function_CAN.cpp
- Committer:
- Lightvalve
- Date:
- 2020-10-12
- Revision:
- 159:9dbc8dce3695
- Parent:
- 158:cb9a6999d5e2
- Child:
- 161:a3b26117104c
File content as of revision 159:9dbc8dce3695:
#include "function_CAN.h"
#include "setting.h"
#include "function_utilities.h"
#include "SPI_EEP_ENC.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
// CAN ID Setting Variables
int CID_RX_CMD = 100;
int CID_RX_REF_POSITION = 200;
int CID_RX_REF_VALVE_POS = 300;
int CID_RX_REF_PWM = 400;
int CID_TX_INFO = 1100;
int CID_TX_POSITION = 1200;
int CID_TX_TORQUE = 1300;
int CID_TX_PRES = 1400;
int CID_TX_VOUT = 1500;
int CID_TX_VALVE_POSITION = 1600;
// variables
uint8_t can_index = 0;
extern DigitalOut LED;
extern float u_past[];
extern float x_past[];
extern float x_future[];
extern float f_past[];
extern float f_future[];
extern float input_NN[];
/*******************************************************************************
* CAN functions
******************************************************************************/
void CAN_ID_INIT(void) {
CID_RX_CMD = (int) (BNO + INIT_CID_RX_CMD);
CID_RX_REF_POSITION = (int) (BNO + INIT_CID_RX_REF_POSITION);
CID_RX_REF_VALVE_POS = (int) (BNO + INIT_CID_RX_REF_VALVE_POS);
CID_RX_REF_PWM = (int) (BNO + INIT_CID_RX_REF_PWM);
CID_TX_INFO = (int) (BNO + INIT_CID_TX_INFO);
CID_TX_POSITION = (int) (BNO + INIT_CID_TX_POSITION);
CID_TX_TORQUE = (int) (BNO + INIT_CID_TX_TORQUE);
CID_TX_PRES = (int) (BNO + INIT_CID_TX_PRES);
CID_TX_VOUT = (int) (BNO + INIT_CID_TX_VOUT);
CID_TX_VALVE_POSITION = (int) (BNO + INIT_CID_TX_VALVE_POSITION);
}
void ReadCMD(int16_t CMD)
{
switch(CMD){
case CRX_ASK_INFO: {
CAN_TX_INFO();
break;
}
case CRX_ASK_BNO: {
CAN_TX_BNO();
break;
}
case CRX_SET_BNO: {
BNO = (int16_t) msg.data[1];
ROM_RESET_DATA();
//spi_eeprom_write(RID_BNO, (int16_t) BNO);
CAN_ID_INIT(); // can id init
break;
}
case CRX_ASK_OPERATING_MODE: {
CAN_TX_OPERATING_MODE();
break;
}
case CRX_SET_OPERATING_MODE: {
OPERATING_MODE = (uint8_t) msg.data[1];
SENSING_MODE = (uint8_t) msg.data[2];
CURRENT_CONTROL_MODE = (uint8_t) msg.data[3];
FLAG_VALVE_DEADZONE = (uint8_t) msg.data[4];
ROM_RESET_DATA();
break;
}
case CRX_SET_ENC_ZERO: {
ENC_SET_ZERO();
break;
}
case CRX_SET_FET_ON: {
break;
}
case CRX_SET_POS_TORQ_TRANS: {
MODE_POS_FT_TRANS = (int16_t) msg.data[1];
/*
MODE_POS_FT_TRANS == 0 : Position Control
MODE_POS_FT_TRANS == 1 : Trasition(Position->Torque)
MODE_POS_FT_TRANS == 2 : Torque Control (Convert to 2 automatically 3sec after transition)
MODE_POS_FT_TRANS == 3 : Transition(Toque->Position)
*/
break;
}
case CRX_ASK_CAN_FREQ: {
CAN_TX_CAN_FREQ();
break;
}
case CRX_SET_CAN_FREQ: {
CAN_FREQ = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
break;
}
case CRX_ASK_CONTROL_MODE: {
CAN_TX_CONTROL_MODE();
break;
}
case CRX_SET_CONTROL_MODE: {
//CONTROL_MODE = (int16_t) (msg.data[1]);
CONTROL_UTILITY_MODE = (int16_t) (msg.data[1]);
if (CONTROL_MODE == 22) { //MODE_FIND_HOME
FLAG_FIND_HOME = true;
}
break;
}
case CRX_SET_DATA_REQUEST: {
int request_type = msg.data[2];
flag_data_request[request_type] = msg.data[1];
//pc.printf("can middle %d\n", request_type);
// if (flag_data_request[1] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC
//if (flag_data_request[1] == HIGH) dac_1 = PRES_A_VREF/3.3;
// if (flag_data_request[2] == HIGH) SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0); // set DAC
//if (flag_data_request[2] == HIGH) dac_2 = PRES_B_VREF/3.3;
break;
}
case CRX_ASK_JOINT_ENC_DIR: {
CAN_TX_JOINT_ENC_DIR();
break;
}
case CRX_SET_JOINT_ENC_DIR: {
DIR_JOINT_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8);
if (DIR_JOINT_ENC >= 0)
DIR_JOINT_ENC = 1;
else
DIR_JOINT_ENC = -1;
ROM_RESET_DATA();
//spi_eeprom_write(RID_JOINT_ENC_DIR, (int16_t) DIR_JOINT_ENC);
break;
}
case CRX_ASK_VALVE_DIR: {
CAN_TX_VALVE_DIR();
break;
}
case CRX_SET_VALVE_DIR: {
DIR_VALVE = (int16_t) (msg.data[1] | msg.data[2] << 8);
if (DIR_VALVE >= 0)
DIR_VALVE = 1;
else
DIR_VALVE = -1;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_DIR, (int16_t) DIR_VALVE);
break;
}
case CRX_ASK_VALVE_ENC_DIR: {
CAN_TX_VALVE_ENC_DIR();
break;
}
case CRX_SET_VALVE_ENC_DIR: {
DIR_VALVE_ENC = (int16_t) (msg.data[1] | msg.data[2] << 8);
if (DIR_VALVE_ENC >= 0)
DIR_VALVE_ENC = 1;
else
DIR_VALVE_ENC = -1;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_ENC_DIR, (int16_t) DIR_VALVE_ENC);
break;
}
case CRX_ASK_VOLTAGE_SUPPLY: {
CAN_TX_VOLTAGE_SUPPLY();
break;
}
case CRX_SET_VOLTAGE_SUPPLY: {
SUPPLY_VOLTAGE = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VOLATGE_SUPPLY, (int16_t) (SUPPLY_VOLTAGE * 10.));
break;
}
case CRX_ASK_VOLTAGE_VALVE: {
CAN_TX_VOLTAGE_VALVE();
break;
}
case CRX_SET_VOLTAGE_VALVE: {
VALVE_VOLTAGE_LIMIT = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VOLTAGE_VALVE, (int16_t) (VALVE_VOLTAGE_LIMIT * 10.));
break;
}
case CRX_SET_HOMEPOS: {
//CONTROL_MODE = 22;
CONTROL_UTILITY_MODE = 22;
break;
}
case CRX_ASK_PID_GAIN: {
CAN_TX_PID_GAIN(msg.data[1]);
break;
}
case CRX_SET_PID_GAIN: {
if (msg.data[1] == 0) {
P_GAIN_VALVE_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_VALVE_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_VALVE_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
} else if (msg.data[1] == 1) {
P_GAIN_JOINT_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_JOINT_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_JOINT_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
} else if (msg.data[1] == 2) {
P_GAIN_JOINT_TORQUE = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_JOINT_TORQUE = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_JOINT_TORQUE = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
} else if (msg.data[1] == 3) {
K_SPRING = (float) (((float) ((int16_t) (msg.data[2] | msg.data[3] << 8))) * 0.1f);
D_DAMPER = (float) (((float) ((int16_t) (msg.data[4] | msg.data[5] << 8))) * 0.01f);
// ROM_RESET_DATA(); //For Real-time changing
} else if (msg.data[1] == 4) {
P_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_JOINT_TORQUE_FF = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
}
break;
}
case CRX_ASK_VALVE_DEADZONE: {
CAN_TX_VALVE_DEADZONE();
break;
}
case CRX_SET_VALVE_DEADZONE: {
VALVE_CENTER = (int16_t) (msg.data[1] | msg.data[2] << 8);
VALVE_DEADZONE_PLUS = (int16_t) (msg.data[3] | msg.data[4] << 8);
VALVE_DEADZONE_MINUS = (int16_t) (msg.data[5] | msg.data[6] << 8);
ROM_RESET_DATA();
break;
}
case CRX_ASK_VELOCITY_COMP_GAIN: {
CAN_TX_VELOCITY_COMP_GAIN();
break;
}
case CRX_SET_VELOCITY_COMP_GAIN: {
VELOCITY_COMP_GAIN = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_VELOCITY_COMP_GAIN, (int16_t) VELOCITY_COMP_GAIN);
break;
}
case CRX_ASK_COMPLIANCE_GAIN: {
CAN_TX_COMPLIANCE_GAIN();
break;
}
case CRX_SET_COMPLIANCE_GAIN: {
COMPLIANCE_GAIN = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_COMPLIANCE_GAIN, (int16_t) COMPLIANCE_GAIN);
break;
}
case CRX_ASK_VALVE_FF: {
CAN_TX_VALVE_FF();
break;
}
case CRX_SET_VALVE_FF: {
VALVE_FF = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_FF, (int16_t) VALVE_FF);
break;
}
case CRX_ASK_BULK_MODULUS: {
CAN_TX_BULK_MODULUS();
break;
}
case CRX_SET_BULK_MODULUS: {
BULK_MODULUS = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_BULK_MODULUS, (int16_t) BULK_MODULUS);
break;
}
case CRX_ASK_CHAMBER_VOLUME: {
CAN_TX_CHAMBER_VOLUME();
break;
}
case CRX_SET_CHAMBER_VOLUME: {
CHAMBER_VOLUME_A = (int16_t) (msg.data[1] | msg.data[2] << 8);
CHAMBER_VOLUME_B = (int16_t) (msg.data[3] | msg.data[4] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_CHAMBER_VOLUME_A, (int16_t) CHAMBER_VOLUME_A);
//spi_eeprom_write(RID_CHAMBER_VOLUME_B, (int16_t) CHAMBER_VOLUME_B);
break;
}
case CRX_ASK_PISTON_AREA: {
CAN_TX_PISTON_AREA();
break;
}
case CRX_SET_PISTON_AREA: {
PISTON_AREA_A = (int16_t) (msg.data[1] | msg.data[2] << 8);
PISTON_AREA_B = (int16_t) (msg.data[3] | msg.data[4] << 8);
PISTON_AREA_alpha = (double)PISTON_AREA_A/(double)PISTON_AREA_B;
alpha3 = PISTON_AREA_alpha * PISTON_AREA_alpha*PISTON_AREA_alpha;
ROM_RESET_DATA();
//spi_eeprom_write(RID_PISTON_AREA_A, (int16_t) PISTON_AREA_A);
//spi_eeprom_write(RID_PISTON_AREA_B, (int16_t) PISTON_AREA_B);
break;
}
case CRX_ASK_PRES: {
CAN_TX_PRES_A_AND_B();
// SPI_VREF_DAC_WRITE(PRES_A_VREF, PRES_B_VREF, TORQUE_VREF, 0);
//dac_1 = PRES_A_VREF;
//dac_2 = PRES_B_VREF;
break;
}
case CRX_SET_PRES: {
PRES_SUPPLY = (int16_t) (msg.data[1] | msg.data[2] << 8);
PRES_RETURN = (int16_t) (msg.data[3] | msg.data[4] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_PRES_SUPPLY, (int16_t) PRES_SUPPLY);
//spi_eeprom_write(RID_PRES_RETURN, (int16_t) PRES_RETURN);
break;
}
case CRX_ASK_ENC_LIMIT: {
CAN_TX_ENC_LIMIT();
break;
}
case CRX_SET_ENC_LIMIT: {
ENC_LIMIT_MINUS = (int16_t) (msg.data[1] | msg.data[2] << 8);
ENC_LIMIT_PLUS = (int16_t) (msg.data[3] | msg.data[4] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_ENC_LIMIT_MINUS, (int16_t) ENC_LIMIT_MINUS);
//spi_eeprom_write(RID_ENC_LIMIT_PLUS, (int16_t) ENC_LIMIT_PLUS);
break;
}
case CRX_ASK_STROKE: {
CAN_TX_STROKE();
break;
}
case CRX_SET_STROKE: {
STROKE = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_STROKE, (int16_t) STROKE);
break;
}
case CRX_ASK_VALVE_LIMIT: {
CAN_TX_VALVE_LIMIT();
break;
}
case CRX_SET_VALVE_LIMIT: {
VALVE_MIN_POS = (int16_t) (msg.data[1] | msg.data[2] << 8);
VALVE_MAX_POS = (int16_t) (msg.data[3] | msg.data[4] << 8);
ROM_RESET_DATA();
break;
}
case CRX_ASK_ENC_PULSE_PER_POSITION: {
CAN_TX_ENC_PULSE_PER_POSITION();
break;
}
case CRX_SET_ENC_PULSE_PER_POSITION: {
ENC_PULSE_PER_POSITION = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_ENC_PULSE_PER_POSITION, (int16_t) ENC_PULSE_PER_POSITION);
break;
}
case CRX_ASK_TORQUE_SENSOR_PULSE_PER_TORQUE: {
CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE();
break;
}
case CRX_SET_TORQUE_SENSOR_PULSE_PER_TORQUE: {
TORQUE_SENSOR_PULSE_PER_TORQUE = (float) ((int16_t) (msg.data[1] | msg.data[2] << 8) * 0.0001f);
ROM_RESET_DATA();
//spi_eeprom_write(RID_TORQUE_SENSOR_PULSE_PER_TORQUE, (int16_t) TORQUE_SENSOR_PULSE_PER_TORQUE);
break;
}
case CRX_ASK_PRES_SENSOR_PULSE_PER_PRES: {
CAN_TX_PRES_SENSOR_PULSE_PER_PRES();
break;
}
case CRX_SET_PRES_SENSOR_PULSE_PER_PRES: {
PRES_SENSOR_A_PULSE_PER_BAR = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) * 0.01f;
PRES_SENSOR_B_PULSE_PER_BAR = (double) ((int16_t) (msg.data[3] | msg.data[4] << 8)) * 0.01f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.));
//(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.));
break;
}
case CRX_ASK_FRICTION: {
CAN_TX_FRICTION();
break;
}
case CRX_SET_FRICTION: {
FRICTION = (double) ((int16_t) (msg.data[1] | msg.data[2] << 8)) / 10.0f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_FRICTION, (int16_t) (FRICTION * 10.));
break;
}
case CRX_ASK_VALVE_GAIN_PLUS: {
CAN_TX_VALVE_GAIN_PLUS();
break;
}
case CRX_SET_VALVE_GAIN_PLUS: {
VALVE_GAIN_LPM_PER_V[0] = (double) msg.data[1] / 50.0f;
VALVE_GAIN_LPM_PER_V[2] = (double) msg.data[2] / 50.0f;
VALVE_GAIN_LPM_PER_V[4] = (double) msg.data[3] / 50.0f;
VALVE_GAIN_LPM_PER_V[6] = (double) msg.data[4] / 50.0f;
VALVE_GAIN_LPM_PER_V[8] = (double) msg.data[5] / 50.0f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[0] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[2] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[4] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[6] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[8] * 100.0f));
break;
}
case CRX_ASK_VALVE_GAIN_MINUS: {
CAN_TX_VALVE_GAIN_MINUS();
break;
}
case CRX_SET_VALVE_GAIN_MINUS: {
VALVE_GAIN_LPM_PER_V[1] = (double) msg.data[1] / 50.0f;
VALVE_GAIN_LPM_PER_V[3] = (double) msg.data[2] / 50.0f;
VALVE_GAIN_LPM_PER_V[5] = (double) msg.data[3] / 50.0f;
VALVE_GAIN_LPM_PER_V[7] = (double) msg.data[4] / 50.0f;
VALVE_GAIN_LPM_PER_V[9] = (double) msg.data[5] / 50.0f;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_GAIN_MINUS_1, (int16_t) (VALVE_GAIN_LPM_PER_V[1] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_MINUS_2, (int16_t) (VALVE_GAIN_LPM_PER_V[3] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_MINUS_3, (int16_t) (VALVE_GAIN_LPM_PER_V[5] * 100.0f));
//spi_eeprom_write(RID_VALVE_GAIN_MINUS_4, (int16_t) (VALVE_GAIN_LPM_PER_V[7] * 100.0f));
//(RID_VALVE_GAIN_MINUS_5, (int16_t) (VALVE_GAIN_LPM_PER_V[9] * 100.0f));
break;
}
case CRX_ASK_DDV_VALVE_DEADZONE: {
CAN_TX_DDV_VALVE_DEADZONE();
break;
}
case CRX_LOW_REF: {
REFERENCE_MODE = msg.data[1];
REF_NUM = msg.data[2];
REF_PERIOD = (double) ((int16_t) (msg.data[3] | msg.data[4] << 8)) / 100.0f;
if (REF_PERIOD <= 0.0f) REF_MOVE_TIME_5k = TMR_FREQ_5k / CAN_FREQ;
else REF_MOVE_TIME_5k = (int) (REF_PERIOD * (double) TMR_FREQ_5k);
REF_MAG = (double) ((int16_t) (msg.data[5] | msg.data[6] << 8)) / 100.0f;
break;
}
case CRX_JUMP_STATUS: {
MODE_JUMP_STATUS = msg.data[1];
break;
}
case CRX_SET_ERR_CLEAR: {
for (int i = 0; i < num_err; i++) {
flag_err[i] = FALSE;
flag_err_old[i] = FALSE;
}
flag_err_rt = FALSE;
break;
}
case CRX_ASK_HOMEPOS_OFFSET: {
CAN_TX_HOMEPOS_OFFSET();
break;
}
case CRX_SET_HOMEPOS_OFFSET: {
HOMEPOS_OFFSET = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_HOMEPOS_OFFSET, (int16_t) HOMEPOS_OFFSET);
break;
}
case CRX_ASK_HOMEPOS_VALVE_OPENING: {
CAN_TX_HOMPOS_VALVE_OPENING();
break;
}
case CRX_SET_HOMEPOS_VALVE_OPENING: {
HOMEPOS_VALVE_OPENING = (int16_t) (msg.data[1] | msg.data[2] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_HOMEPOS_VALVE_OPENING, (int16_t) HOMEPOS_VALVE_OPENING);
break;
}
case CRX_ASK_VALVE_PWM_VS_VALVE_POS: {
can_index = (int16_t) msg.data[1];
CAN_TX_VALVE_PWM_VS_VALVE_POS(can_index);
break;
}
case CRX_ASK_VALVE_POS_VS_FLOWRATE: {
can_index = (int16_t) msg.data[1];
CAN_TX_VALVE_POS_VS_FLOWRATE(can_index);
break;
}
case CRX_ASK_VALVE_POS_NUM: {
CAN_TX_VALVE_POS_NUM();
break;
}
case CRX_SET_ROM: {
ROM_RESET_DATA();
break;
}
case CRX_SET_VALVE_CENTER_OFFSET: {
VALVE_CENTER_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))) * 0.1f;
VALVE_CENTER = VALVE_CENTER + VALVE_CENTER_OFFSET;
ROM_RESET_DATA();
break;
}
case CRX_SET_VALVE_DZ_MINUS_OFFSET: {
VALVE_DZ_MINUS_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))) * 0.1f;
VALVE_DEADZONE_MINUS = VALVE_DEADZONE_MINUS + VALVE_DZ_MINUS_OFFSET;
ROM_RESET_DATA();
break;
}
case CRX_SET_VALVE_DZ_PLUS_OFFSET: {
VALVE_DZ_PLUS_OFFSET = ((float) ((int16_t) (msg.data[1] | msg.data[2] << 8))) * 0.1f;
VALVE_DEADZONE_PLUS = VALVE_DEADZONE_PLUS + VALVE_DZ_PLUS_OFFSET;
ROM_RESET_DATA();
break;
}
case CRX_SET_PID_GAIN_OPP: {
if (msg.data[1] == 0) {
P_GAIN_VALVE_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_VALVE_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_VALVE_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_P_GAIN_VALVE_POSITION, (int16_t) P_GAIN_VALVE_POSITION);
//spi_eeprom_write(RID_I_GAIN_VALVE_POSITION, (int16_t) I_GAIN_VALVE_POSITION);
//spi_eeprom_write(RID_D_GAIN_VALVE_POSITION, (int16_t) D_GAIN_VALVE_POSITION);
} else if (msg.data[1] == 1) {
P_GAIN_JOINT_POSITION = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_JOINT_POSITION = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_JOINT_POSITION = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_P_GAIN_JOINT_POSITION, (int16_t) P_GAIN_JOINT_POSITION);
//spi_eeprom_write(RID_I_GAIN_JOINT_POSITION, (int16_t) I_GAIN_JOINT_POSITION);
//spi_eeprom_write(RID_D_GAIN_JOINT_POSITION, (int16_t) D_GAIN_JOINT_POSITION);
} else if (msg.data[1] == 2) {
P_GAIN_JOINT_TORQUE = (int16_t) (msg.data[2] | msg.data[3] << 8);
I_GAIN_JOINT_TORQUE = (int16_t) (msg.data[4] | msg.data[5] << 8);
D_GAIN_JOINT_TORQUE = (int16_t) (msg.data[6] | msg.data[7] << 8);
ROM_RESET_DATA();
//spi_eeprom_write(RID_P_GAIN_JOINT_TORQUE, (int16_t) P_GAIN_JOINT_TORQUE);
//spi_eeprom_write(RID_I_GAIN_JOINT_TORQUE, (int16_t) I_GAIN_JOINT_TORQUE);
//spi_eeprom_write(RID_D_GAIN_JOINT_TORQUE, (int16_t) D_GAIN_JOINT_TORQUE);
}
break;
}
case CRX_ASK_VALVE_MAX_MIN_POS: {
//CAN_TX_DDV_VALVE_DEADZONE();
CAN_TX_DDV_VALVE_MAX_MIN_POS();
break;
}
case CRX_DELAY_TEST:{
flag_delay_test = 1;
break;
}
case CRX_SET_NN_CONTROL_FLAG: {
NN_Control_Flag = (int16_t) msg.data[1];
CONTROL_UTILITY_MODE = 1;
break;
}
default:
break;
}
}
void CAN_RX_HANDLER()
{
can.read(msg);
unsigned int address = msg.id;
if(address==CID_RX_CMD){
unsigned int CMD = msg.data[0];
ReadCMD(CMD);
} else if(address==CID_RX_REF_POSITION) {
int16_t temp_pos = (int16_t) (msg.data[0] | msg.data[1] << 8);
int16_t temp_vel = (int16_t) (msg.data[2] | msg.data[3] << 8);
int16_t temp_torq = (int16_t) (msg.data[4] | msg.data[5] << 8);
if((OPERATING_MODE&0b001)==0) { // Rotary Actuator
pos.ref = (double)temp_pos * 1.0f;
vel.ref = (double)temp_vel * 10.0f;
}
else { //Linear Actuator
pos.ref = (double)temp_pos * 10.0f;
vel.ref = (double)temp_vel * 256.0f;
}
torq.ref = (double)temp_torq * 0.1f / TORQUE_SENSOR_PULSE_PER_TORQUE; //N
torq.ref_diff = torq.ref - torq.ref_old;
torq.ref_old = torq.ref;
///////////////Make Data///////////////////
for(int i=0; i<num_array_u_past-1;i++){
u_past[i] = u_past[i+1];
}
u_past[num_array_u_past-1] = output_normalized;
for(int i=0; i<num_array_x_past-1;i++){
x_past[i] = x_past[i+1];
}
x_past[num_array_x_past-1] = pos.sen / ENC_PULSE_PER_POSITION; //mm
// for(int i=0;i<num_array_x_future-1;i++){
// x_future[i] = x_future[i+1];
// }
// x_future[num_array_x_future-1] = pos.sen / ENC_PULSE_PER_POSITION; //mm
for(int i=0; i<num_array_f_past-1;i++){
f_past[i] = f_past[i+1];
}
f_past[num_array_f_past-1] = torq.sen; //N
f_future[0] = torq.sen; //N
for(int i=1;i<num_array_f_future-1;i++){
f_future[i] = f_future[i+1];
}
f_future[num_array_f_future-1] = torq.ref; //N
int ind = 0;
for(int i=0;i<numpast_u;i++){
input_NN[ind] = u_past[1*i];
ind = ind + 1;
}
for(int i=0;i<numpast_x;i++){
input_NN[ind] = x_past[1*i] / 60.0f;
ind = ind + 1;
}
input_NN[ind] = (pos.sen / ENC_PULSE_PER_POSITION) / 60.0f;
ind = ind + 1;
// for(int i=0;i<numfuture_x;i++){
// input_NN[ind] = x_future[2*i+2] / 60.0f;
// ind = ind + 1;
// }
for(int i=0;i<numpast_f;i++){
input_NN[ind] = f_past[1*i] / 10000.0f + 0.5f;
ind = ind + 1;
}
input_NN[ind] = torq.sen / 10000.0f + 0.5f;
ind = ind + 1;
for(int i=0;i<numfuture_f;i++){
// input_NN[ind] = (f_future[1*i+1] - f_future[0])/10000.0f+0.5f;
input_NN[ind] = (f_future[2*i+2])/10000.0f+0.5f;
ind = ind + 1;
}
} else if(address==CID_RX_REF_VALVE_POS) {
int16_t temp_ref_valve_pos = (int16_t) (msg.data[0] | msg.data[1] << 8);
if (((OPERATING_MODE&0b110)>>1) == 0) { //Moog Valve
valve_pos.ref = (double) temp_ref_valve_pos;
} else if (((OPERATING_MODE&0b110)>>1) == 1) { //KNR Valve
valve_pos.ref = (double) temp_ref_valve_pos;
} else { //SW Valve
if(temp_ref_valve_pos >= 0) {
valve_pos.ref = (double)VALVE_CENTER + (double)temp_ref_valve_pos * ((double)VALVE_MAX_POS-(double)VALVE_CENTER)/10000.0f;
} else {
valve_pos.ref = (double)VALVE_CENTER - (double)temp_ref_valve_pos * ((double)VALVE_MIN_POS-(double)VALVE_CENTER)/10000.0f;
}
}
} else if(address==CID_RX_REF_PWM){
int temp_ref_pwm = (int16_t) (msg.data[0] | msg.data[1] << 8);
Vout.ref = (double) temp_ref_pwm;
}
}
/******************************************************************************
Information Transmission Functions
*******************************************************************************/
void CAN_TX_INFO(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 7;
temp_msg.data[0] = (uint8_t) CTX_SEND_INFO;
temp_msg.data[1] = (uint8_t) BNO;
temp_msg.data[2] = (uint8_t) CAN_FREQ;
temp_msg.data[3] = (uint8_t) (CAN_FREQ >> 8);
temp_msg.data[4] = (uint8_t) (flag_err[7] << 7 | flag_err[6] << 6 | flag_err[5] << 5 | flag_err[4] << 4 | flag_err[3] << 3 | flag_err[2] << 2 | flag_err[1] << 1 | flag_err[0]);
temp_msg.data[5] = (uint8_t) CONTROL_UTILITY_MODE;
temp_msg.data[6] = (uint8_t) OPERATING_MODE;
can.write(temp_msg);
}
void CAN_TX_BNO(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 2;
temp_msg.data[0] = (uint8_t) CTX_SEND_BNO;
temp_msg.data[1] = (uint8_t) BNO;
can.write(temp_msg);
}
void CAN_TX_OPERATING_MODE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_OPERATING_MODE;
temp_msg.data[1] = (uint8_t) OPERATING_MODE;
temp_msg.data[2] = (uint8_t) SENSING_MODE;
temp_msg.data[3] = (uint8_t) CURRENT_CONTROL_MODE;
temp_msg.data[4] = (uint8_t) FLAG_VALVE_DEADZONE;
can.write(temp_msg);
}
void CAN_TX_CAN_FREQ(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_CAN_FREQ;
temp_msg.data[1] = (uint8_t) CAN_FREQ;
temp_msg.data[2] = (uint8_t) (CAN_FREQ >> 8);
can.write(temp_msg);
}
void CAN_TX_CONTROL_MODE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 2;
temp_msg.data[0] = (uint8_t) CTX_SEND_CONTROL_MODE;
temp_msg.data[1] = (uint8_t) CONTROL_UTILITY_MODE;
can.write(temp_msg);
}
void CAN_TX_JOINT_ENC_DIR(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_JOINT_ENC_DIR;
temp_msg.data[1] = (uint8_t) DIR_JOINT_ENC;
temp_msg.data[2] = (uint8_t) (DIR_JOINT_ENC >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_DIR(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DIR;
temp_msg.data[1] = (uint8_t) DIR_VALVE;
temp_msg.data[2] = (uint8_t) (DIR_VALVE >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_ENC_DIR(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_ENC_DIR;
temp_msg.data[1] = (uint8_t) DIR_VALVE_ENC;
temp_msg.data[2] = (uint8_t) (DIR_VALVE_ENC >> 8);
can.write(temp_msg);
}
void CAN_TX_VOLTAGE_SUPPLY(void) {
int16_t send_voltage_supply = (int16_t) (SUPPLY_VOLTAGE * 10.0f);
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_SUPPLY;
temp_msg.data[1] = (uint8_t) (send_voltage_supply);
temp_msg.data[2] = (uint8_t) (send_voltage_supply >> 8);
can.write(temp_msg);
}
void CAN_TX_VOLTAGE_VALVE(void) {
int16_t send_voltage_valve = (int16_t) (VALVE_VOLTAGE_LIMIT * 10.0f);
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VOLTAGE_VALVE;
temp_msg.data[1] = (uint8_t) send_voltage_valve;
temp_msg.data[2] = (uint8_t) (send_voltage_valve >> 8);
can.write(temp_msg);
}
void CAN_TX_PID_GAIN(int t_type) {
// t_type = 0 : valve position control gain
// t_type = 1 : joint position control gain
// t_type = 2 : joint torque control gain
int16_t sendPgain=0, sendIgain=0, sendDgain=0;
if (t_type == 0) {
sendPgain = (int16_t) (P_GAIN_VALVE_POSITION);
sendIgain = (int16_t) (I_GAIN_VALVE_POSITION);
sendDgain = (int16_t) (D_GAIN_VALVE_POSITION);
} else if (t_type == 1) {
sendPgain = (int16_t) (P_GAIN_JOINT_POSITION);
sendIgain = (int16_t) (I_GAIN_JOINT_POSITION);
sendDgain = (int16_t) (D_GAIN_JOINT_POSITION);
} else if (t_type == 2) {
sendPgain = (int16_t) (P_GAIN_JOINT_TORQUE);
sendIgain = (int16_t) (I_GAIN_JOINT_TORQUE);
sendDgain = (int16_t) (D_GAIN_JOINT_TORQUE);
} else if (t_type == 3) {
sendPgain = (int16_t) (K_SPRING * 10.0f);
sendIgain = (int16_t) (D_DAMPER * 100.0f);
}
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 8;
temp_msg.data[0] = (uint8_t) CTX_SEND_PID_GAIN;
temp_msg.data[1] = (uint8_t) t_type;
temp_msg.data[2] = (uint8_t) sendPgain;
temp_msg.data[3] = (uint8_t) (sendPgain >> 8);
temp_msg.data[4] = (uint8_t) sendIgain;
temp_msg.data[5] = (uint8_t) (sendIgain >> 8);
temp_msg.data[6] = (uint8_t) sendDgain;
temp_msg.data[7] = (uint8_t) (sendDgain >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_DEADZONE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 7;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_DEADZONE;
temp_msg.data[1] = (uint8_t) VALVE_CENTER;
temp_msg.data[2] = (uint8_t) (VALVE_CENTER >> 8);
temp_msg.data[3] = (uint8_t) (int) (VALVE_DEADZONE_PLUS);
temp_msg.data[4] = (uint8_t) ((int) (VALVE_DEADZONE_PLUS) >> 8);
temp_msg.data[5] = (uint8_t) (int) (VALVE_DEADZONE_MINUS);
temp_msg.data[6] = (uint8_t) ((int) (VALVE_DEADZONE_MINUS) >> 8);
can.write(temp_msg);
}
void CAN_TX_VELOCITY_COMP_GAIN(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VELOCITY_COMP_GAIN;
temp_msg.data[1] = (uint8_t) VELOCITY_COMP_GAIN;
temp_msg.data[2] = (uint8_t) (VELOCITY_COMP_GAIN >> 8);
can.write(temp_msg);
}
void CAN_TX_COMPLIANCE_GAIN(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_COMPLIANCE_GAIN;
temp_msg.data[1] = (uint8_t) COMPLIANCE_GAIN;
temp_msg.data[2] = (uint8_t) (COMPLIANCE_GAIN >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_FF(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_FF;
temp_msg.data[1] = (uint8_t) VALVE_FF;
temp_msg.data[2] = (uint8_t) (VALVE_FF >> 8);
can.write(temp_msg);
}
void CAN_TX_BULK_MODULUS(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_BULK_MODULUS;
temp_msg.data[1] = (uint8_t) BULK_MODULUS;
temp_msg.data[2] = (uint8_t) (BULK_MODULUS >> 8);
can.write(temp_msg);
}
void CAN_TX_CHAMBER_VOLUME(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_CHAMBER_VOLUME;
temp_msg.data[1] = (uint8_t) CHAMBER_VOLUME_A;
temp_msg.data[2] = (uint8_t) (CHAMBER_VOLUME_A >> 8);
temp_msg.data[3] = (uint8_t) CHAMBER_VOLUME_B;
temp_msg.data[4] = (uint8_t) (CHAMBER_VOLUME_B >> 8);
can.write(temp_msg);
}
void CAN_TX_PISTON_AREA(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_PISTON_AREA;
temp_msg.data[1] = (uint8_t) PISTON_AREA_A;
temp_msg.data[2] = (uint8_t) (PISTON_AREA_A >> 8);
temp_msg.data[3] = (uint8_t) PISTON_AREA_B;
temp_msg.data[4] = (uint8_t) (PISTON_AREA_B >> 8);
can.write(temp_msg);
}
void CAN_TX_PRES_A_AND_B(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_PRES;
temp_msg.data[1] = (uint8_t) PRES_SUPPLY;
temp_msg.data[2] = (uint8_t) (PRES_SUPPLY >> 8);
temp_msg.data[3] = (uint8_t) PRES_RETURN;
temp_msg.data[4] = (uint8_t) (PRES_RETURN >> 8);
can.write(temp_msg);
}
void CAN_TX_ENC_LIMIT(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_LIMIT;
temp_msg.data[1] = (uint8_t) ENC_LIMIT_MINUS;
temp_msg.data[2] = (uint8_t) (ENC_LIMIT_MINUS >> 8);
temp_msg.data[3] = (uint8_t) ENC_LIMIT_PLUS;
temp_msg.data[4] = (uint8_t) (ENC_LIMIT_PLUS >> 8);
can.write(temp_msg);
}
void CAN_TX_STROKE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_STROKE;
temp_msg.data[1] = (uint8_t) STROKE;
temp_msg.data[2] = (uint8_t) (STROKE >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_LIMIT(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_LIMIT;
temp_msg.data[1] = (uint8_t) VALVE_MIN_POS;
temp_msg.data[2] = (uint8_t) (VALVE_MIN_POS >> 8);
temp_msg.data[3] = (uint8_t) VALVE_MAX_POS;
temp_msg.data[4] = (uint8_t) (VALVE_MAX_POS >> 8);
can.write(temp_msg);
}
void CAN_TX_ENC_PULSE_PER_POSITION(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_ENC_PULSE_PER_POSITION;
int temp_enc_pulse_per_position = (int) (ENC_PULSE_PER_POSITION);
temp_msg.data[1] = (uint8_t) temp_enc_pulse_per_position;
temp_msg.data[2] = (uint8_t) (temp_enc_pulse_per_position >> 8);
can.write(temp_msg);
}
void CAN_TX_TORQUE_SENSOR_PULSE_PER_TORQUE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_TORQUE_SENSOR_PULSE_PER_TORQUE;
int temp_torque_sensor_pulse_per_torque = (int) (TORQUE_SENSOR_PULSE_PER_TORQUE * 10000.0f);
temp_msg.data[1] = (uint8_t) temp_torque_sensor_pulse_per_torque;
temp_msg.data[2] = (uint8_t) (temp_torque_sensor_pulse_per_torque >> 8);
can.write(temp_msg);
}
void CAN_TX_PRES_SENSOR_PULSE_PER_PRES(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_SEND_PRES_SENSOR_PULSE_PER_BAR;
temp_msg.data[1] = (uint8_t) (int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f);
temp_msg.data[2] = (uint8_t) ((int) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0f) >> 8);
temp_msg.data[3] = (uint8_t) (int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f);
temp_msg.data[4] = (uint8_t) ((int) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0f) >> 8);
can.write(temp_msg);
}
void CAN_TX_FRICTION(void) {
CANMessage temp_msg;
int16_t send_friction;
send_friction = (int16_t) (FRICTION * 10.0f);
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_FRICTION;
temp_msg.data[1] = (uint8_t) send_friction;
temp_msg.data[2] = (uint8_t) (send_friction >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_GAIN_PLUS(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 6;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_PLUS;
temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[0] * 50.0f);
temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[2] * 50.0f);
temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[4] * 50.0f);
temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[6] * 50.0f);
temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[8] * 50.0f);
can.write(temp_msg);
}
void CAN_TX_DDV_VALVE_DEADZONE(void) {
CANMessage temp_msg;
float temp_valve_deadzone_minus = 0.0f;
float temp_valve_deadzone_plus = 0.0f;
float temp_ddv_center = 0.0f;
//temp_valve_deadzone_plus = 10000.0f*((double)VALVE_DEADZONE_PLUS-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER);
//temp_valve_deadzone_minus = -10000.0f*((double)VALVE_DEADZONE_MINUS-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER);
temp_valve_deadzone_plus = (double)VALVE_DEADZONE_PLUS;
temp_valve_deadzone_minus = (double)VALVE_DEADZONE_MINUS;
temp_ddv_center = (double)VALVE_CENTER;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 7;
temp_msg.data[0] = (uint8_t) CTX_SEND_DDV_VALVE_DEADZONE;
temp_msg.data[1] = (uint8_t) temp_valve_deadzone_minus;
temp_msg.data[2] = (uint8_t) ((int) (temp_valve_deadzone_minus) >> 8);
temp_msg.data[3] = (uint8_t) (temp_valve_deadzone_plus);
temp_msg.data[4] = (uint8_t) ((int) (temp_valve_deadzone_plus) >> 8);
temp_msg.data[5] = (uint8_t) (temp_ddv_center);
temp_msg.data[6] = (uint8_t) ((int) (temp_ddv_center) >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_GAIN_MINUS(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 6;
temp_msg.data[0] = (uint8_t) CTX_SEND_VALVE_GAIN_MINUS;
temp_msg.data[1] = (uint8_t) (VALVE_GAIN_LPM_PER_V[1] * 50.0f);
temp_msg.data[2] = (uint8_t) (VALVE_GAIN_LPM_PER_V[3] * 50.0f);
temp_msg.data[3] = (uint8_t) (VALVE_GAIN_LPM_PER_V[5] * 50.0f);
temp_msg.data[4] = (uint8_t) (VALVE_GAIN_LPM_PER_V[7] * 50.0f);
temp_msg.data[5] = (uint8_t) (VALVE_GAIN_LPM_PER_V[9] * 50.0f);
can.write(temp_msg);
}
void CAN_TX_REFENCE_MODE(void) {
CANMessage temp_msg;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 6;
temp_msg.data[0] = (uint8_t) CTX_SEND_REFENCE_MODE;
temp_msg.data[1] = (uint8_t) REFERENCE_MODE;
temp_msg.data[2] = (uint8_t) (int) (REFERENCE_FREQ * 100.0f);
temp_msg.data[3] = (uint8_t) ((int) (REFERENCE_FREQ * 100.0f) >> 8);
temp_msg.data[4] = (uint8_t) (int) (REFERENCE_MAG * 100.0f);
temp_msg.data[5] = (uint8_t) ((int) (REFERENCE_MAG * 100.0f) >> 8);
can.write(temp_msg);
}
void CAN_TX_HOMEPOS_OFFSET(void) {
CANMessage temp_msg;
int16_t send_homepos_offset;
send_homepos_offset = (int16_t) (HOMEPOS_OFFSET);
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_OFFSET;
temp_msg.data[1] = (uint8_t) send_homepos_offset;
temp_msg.data[2] = (uint8_t) (send_homepos_offset >> 8);
can.write(temp_msg);
}
void CAN_TX_HOMPOS_VALVE_OPENING(void) {
CANMessage temp_msg;
int16_t send_homepos_valve_opening;
send_homepos_valve_opening = (int16_t) (HOMEPOS_VALVE_OPENING);
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_SEND_HOMEPOS_VALVE_OPENING;
temp_msg.data[1] = (uint8_t) send_homepos_valve_opening;
temp_msg.data[2] = (uint8_t) (send_homepos_valve_opening >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_PWM_VS_VALVE_POS(int8_t canindex) {
CANMessage temp_msg;
int16_t valve_pos_vs_pwm;
// valve_pos_vs_pwm = (int16_t) (VALVE_POS_VS_PWM[canindex]);
if(VALVE_POS_VS_PWM[canindex]>= (float) VALVE_CENTER) {
valve_pos_vs_pwm = 10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER);
} else {
valve_pos_vs_pwm = -10000.0f*((double)VALVE_POS_VS_PWM[canindex]-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER);
}
int16_t PWM_VALVE_ID;
PWM_VALVE_ID = ID_index_array[canindex] * 1000;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 5;
temp_msg.data[0] = (uint8_t) CTX_VALVE_PWM_VS_VALVE_POS;
temp_msg.data[1] = (uint8_t) PWM_VALVE_ID;
temp_msg.data[2] = (uint8_t) (PWM_VALVE_ID >> 8);
temp_msg.data[3] = (uint8_t) valve_pos_vs_pwm;
temp_msg.data[4] = (uint8_t) (valve_pos_vs_pwm >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_POS_VS_FLOWRATE(int8_t canindex) {
CANMessage temp_msg;
int32_t valve_pos_vs_flowrate;
valve_pos_vs_flowrate = (int32_t) (JOINT_VEL[canindex]);
int16_t VALVE_POS_VALVE_ID = ID_index_array[canindex] * 10 + VALVE_CENTER;
int16_t temp_valve_pos = 0;
if(VALVE_POS_VALVE_ID>=VALVE_CENTER) {
temp_valve_pos = (int16_t) (10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MAX_POS-(double)VALVE_CENTER));
} else {
temp_valve_pos = (int16_t) (-10000.0f*((double)VALVE_POS_VALVE_ID-(double)VALVE_CENTER)/((double)VALVE_MIN_POS-(double)VALVE_CENTER));
}
temp_msg.id = CID_TX_INFO;
temp_msg.len = 8;
temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_VS_FLOWRATE;
temp_msg.data[1] = (uint8_t) temp_valve_pos;
temp_msg.data[2] = (uint8_t) (temp_valve_pos >> 8);
temp_msg.data[5] = (uint8_t) valve_pos_vs_flowrate;
temp_msg.data[6] = (uint8_t) (valve_pos_vs_flowrate >> 8);
temp_msg.data[7] = (uint8_t) (valve_pos_vs_flowrate >> 16);
temp_msg.data[7] = (uint8_t) (valve_pos_vs_flowrate >> 24);
can.write(temp_msg);
}
void CAN_TX_VALVE_POS_NUM(void) {
CANMessage temp_msg;
int32_t valve_pos_num;
valve_pos_num = (int16_t) VALVE_POS_NUM;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 3;
temp_msg.data[0] = (uint8_t) CTX_VALVE_POS_NUM;
temp_msg.data[1] = (uint8_t) valve_pos_num;
temp_msg.data[2] = (uint8_t) (valve_pos_num >> 8);
can.write(temp_msg);
}
void CAN_TX_DDV_VALVE_MAX_MIN_POS(void) {
CANMessage temp_msg;
float temp_valve_max_pos = 0.0f;
float temp_valve_min_pos = 0.0f;
float temp_ddv_center = 0.0f;
temp_valve_max_pos = VALVE_MAX_POS;
temp_valve_min_pos = VALVE_MIN_POS;
temp_ddv_center = VALVE_CENTER;
temp_msg.id = CID_TX_INFO;
temp_msg.len = 7;
temp_msg.data[0] = (uint8_t) CTX_VALVE_MAX_MIN_POS;
temp_msg.data[1] = (uint8_t) temp_valve_max_pos;
temp_msg.data[2] = (uint8_t) ((int) (temp_valve_max_pos) >> 8);
temp_msg.data[3] = (uint8_t) (temp_valve_min_pos);
temp_msg.data[4] = (uint8_t) ((int) (temp_valve_min_pos) >> 8);
temp_msg.data[5] = (uint8_t) (temp_ddv_center);
temp_msg.data[6] = (uint8_t) ((int) (temp_ddv_center) >> 8);
can.write(temp_msg);
}
/******************************************************************************
Sensor & State Transmission Functions
*******************************************************************************/
void CAN_TX_POSITION_FT(int16_t t_pos, int16_t t_vel, int16_t t_torq) {
CANMessage temp_msg;
temp_msg.id = CID_TX_POSITION;
temp_msg.len = 6;
temp_msg.data[0] = (uint8_t) t_pos;
temp_msg.data[1] = (uint8_t) (t_pos >> 8);
temp_msg.data[2] = (uint8_t) t_vel;
temp_msg.data[3] = (uint8_t) (t_vel >> 8);
temp_msg.data[4] = (uint8_t) t_torq;
temp_msg.data[5] = (uint8_t) (t_torq >> 8);
can.write(temp_msg);
}
void CAN_TX_POSITION_PRESSURE(int16_t t_pos, int16_t t_vel, int16_t t_pa, int16_t t_pb) {
CANMessage temp_msg;
temp_msg.id = CID_TX_POSITION;
temp_msg.len = 8;
temp_msg.data[0] = (uint8_t) t_pos;
temp_msg.data[1] = (uint8_t) (t_pos >> 8);
temp_msg.data[2] = (uint8_t) t_vel;
temp_msg.data[3] = (uint8_t) (t_vel >> 8);
temp_msg.data[4] = (uint8_t) t_pa;
temp_msg.data[5] = (uint8_t) (t_pa >> 8);
temp_msg.data[6] = (uint8_t) t_pb;
temp_msg.data[7] = (uint8_t) (t_pb >> 8);
can.write(temp_msg);
}
//void CAN_TX_TORQUE(int16_t t_valve_pos, int16_t t_vout) {
// CANMessage temp_msg;
//
// temp_msg.id = CID_TX_TORQUE;
// temp_msg.len = 4;
// temp_msg.data[0] = (uint8_t) t_valve_pos;
// temp_msg.data[1] = (uint8_t) (t_valve_pos >> 8);
// temp_msg.data[2] = (uint8_t) t_vout;
// temp_msg.data[3] = (uint8_t) (t_vout >> 8);
//
// can.write(temp_msg);
//}
void CAN_TX_TORQUE(int16_t t_valve_pos) {
CANMessage temp_msg;
temp_msg.id = CID_TX_TORQUE;
temp_msg.len = 2;
temp_msg.data[0] = (uint8_t) t_valve_pos;
temp_msg.data[1] = (uint8_t) (t_valve_pos >> 8);
can.write(temp_msg);
}
void CAN_TX_PRES(int16_t t_pres_a, int16_t t_pres_b) {
CANMessage temp_msg;
temp_msg.id = CID_TX_PRES;
temp_msg.len = 4;
temp_msg.data[0] = (uint8_t) t_pres_a;
temp_msg.data[1] = (uint8_t) (t_pres_a >> 8);
temp_msg.data[2] = (uint8_t) t_pres_b;
temp_msg.data[3] = (uint8_t) (t_pres_b >> 8);
can.write(temp_msg);
}
void CAN_TX_PWM(int16_t t_pwm) {
CANMessage temp_msg;
temp_msg.id = CID_TX_VOUT;
temp_msg.len = 2;
temp_msg.data[0] = (uint8_t) t_pwm;
temp_msg.data[1] = (uint8_t) (t_pwm >> 8);
can.write(temp_msg);
}
void CAN_TX_VALVE_POSITION(int16_t t_valve_pos_1, int16_t t_valve_pos_2, int16_t t_ref_valve_pos, int16_t t_pwm)
{
CANMessage temp_msg;
temp_msg.id = CID_TX_VALVE_POSITION;
temp_msg.len = 8;
temp_msg.data[0] = (uint8_t) t_valve_pos_1;
temp_msg.data[1] = (uint8_t) (t_valve_pos_1 >> 8);
temp_msg.data[2] = (uint8_t) t_valve_pos_2;
temp_msg.data[3] = (uint8_t) (t_valve_pos_2 >> 8);
temp_msg.data[4] = (uint8_t) t_ref_valve_pos;
temp_msg.data[5] = (uint8_t) (t_ref_valve_pos >> 8);
temp_msg.data[6] = (uint8_t) t_pwm;
temp_msg.data[7] = (uint8_t) (t_pwm >> 8);
can.write(temp_msg);
}