RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Fri May 10 20:38:35 2013 +0000
Revision:
13:530968937ccb
Parent:
11:8c1d44595620
Child:
14:352609d395c1
happyhappyjoyjoy

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #include "I2CDriver.h"
humlet 9:65aae53a34de 2 #include "i2cRtos_api.h"
humlet 0:13c962fecb13 3 #include "error.h"
humlet 0:13c962fecb13 4
humlet 1:90455d5bdd8c 5 using namespace mbed;
humlet 1:90455d5bdd8c 6 using namespace rtos;
humlet 0:13c962fecb13 7
humlet 13:530968937ccb 8 #define PREFIX i2c
humlet 13:530968937ccb 9 #define PASTER(x,y) x ## _ ## y
humlet 13:530968937ccb 10 #define EVALUATOR(x,y) PASTER(x,y)
humlet 13:530968937ccb 11 #define FUNCTION(fun) EVALUATOR(PREFIX, fun)
humlet 1:90455d5bdd8c 12
humlet 1:90455d5bdd8c 13 const PinName I2CDriver::c_sdas[] = {p9,p28};
humlet 1:90455d5bdd8c 14 const PinName I2CDriver::c_scls[] = {p10,p27};
humlet 1:90455d5bdd8c 15
humlet 1:90455d5bdd8c 16 I2CDriver::Channel* I2CDriver::s_channels[2] = {0,0};
humlet 0:13c962fecb13 17
humlet 3:967dde37e712 18 I2CDriver::I2CDriver(PinName sda, PinName scl, int hz, int slaveAdr):m_freq(hz),m_slaveAdr(slaveAdr)
humlet 3:967dde37e712 19 {
humlet 13:530968937ccb 20 static Mutex mutex;
humlet 13:530968937ccb 21 mutex.lock();
humlet 3:967dde37e712 22 // check pins and determine i2c channel
humlet 3:967dde37e712 23 int channel=0;
humlet 3:967dde37e712 24 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 3:967dde37e712 25 if(sda==c_sdas[0] && scl==c_scls[0]) channel=0; // I2C_1
humlet 3:967dde37e712 26 else
humlet 3:967dde37e712 27 #endif
humlet 3:967dde37e712 28 if (sda==c_sdas[1] && scl==c_scls[1]) channel=1; //I2C_2 or I2C
humlet 9:65aae53a34de 29 else error("I2CDriver: Invalid I2C pins selected\n");
humlet 3:967dde37e712 30
humlet 9:65aae53a34de 31 if(s_channels[channel]==0) {
humlet 13:530968937ccb 32 s_channels[channel] = new I2CDriver::Channel;
humlet 13:530968937ccb 33 m_channel = s_channels[channel];
humlet 13:530968937ccb 34 m_channel->freq = 0;
humlet 13:530968937ccb 35 m_channel->slaveAdr = 0;
humlet 13:530968937ccb 36 m_channel->modeSlave = 0;
humlet 13:530968937ccb 37 FUNCTION(init)(&m_channel->i2c, c_sdas[channel], c_scls[channel]);
humlet 8:5be85bd4c5ba 38 }
humlet 3:967dde37e712 39 m_channel = s_channels[channel];
humlet 13:530968937ccb 40 mutex.unlock();
humlet 0:13c962fecb13 41 }
humlet 0:13c962fecb13 42
humlet 6:5b98c902a659 43 void I2CDriver::lock()
humlet 6:5b98c902a659 44 {
humlet 6:5b98c902a659 45 // One and the same thread can lock twice, but then it needs also to unlock twice.
humlet 6:5b98c902a659 46 // exactly what we need here
humlet 6:5b98c902a659 47 m_callerID = osThreadGetId();
humlet 6:5b98c902a659 48 m_callerPrio = osThreadGetPriority(m_callerID);
humlet 6:5b98c902a659 49 m_channel->mutex.lock(osWaitForever);
humlet 13:530968937ccb 50 // maximize thread prio
humlet 13:530968937ccb 51 osThreadSetPriority(m_callerID, c_drvPrio); // hopefully not interrupted since the lock in the line above
humlet 13:530968937ccb 52 // mutex code looks like that waiting threads are priority ordered
humlet 13:530968937ccb 53 // also priority inheritance seems to be provided
humlet 6:5b98c902a659 54 }
humlet 6:5b98c902a659 55
humlet 6:5b98c902a659 56 void I2CDriver::unlock()
humlet 6:5b98c902a659 57 {
humlet 13:530968937ccb 58 // free the mutex and restore original prio
humlet 6:5b98c902a659 59 m_channel->mutex.unlock();
humlet 6:5b98c902a659 60 osThreadSetPriority(m_callerID, m_callerPrio);
humlet 6:5b98c902a659 61 }
humlet 6:5b98c902a659 62
humlet 13:530968937ccb 63 void I2CDriver::config()
humlet 0:13c962fecb13 64 {
humlet 13:530968937ccb 65 // check and update frequency
humlet 13:530968937ccb 66 if(m_freq != m_channel->freq) {
humlet 13:530968937ccb 67 m_channel->freq = m_freq;
humlet 13:530968937ccb 68 i2c_frequency(&m_channel->i2c, m_freq);
humlet 13:530968937ccb 69 }
humlet 13:530968937ccb 70 // check and update slave/master mode
humlet 13:530968937ccb 71 if(m_modeSlave != m_channel->modeSlave) {
humlet 13:530968937ccb 72 m_channel->modeSlave = m_modeSlave;
humlet 13:530968937ccb 73 i2c_slave_mode(&m_channel->i2c, m_modeSlave);
humlet 13:530968937ccb 74 }
humlet 13:530968937ccb 75 // check and update slave address
humlet 13:530968937ccb 76 if(m_modeSlave && m_slaveAdr != m_channel->slaveAdr) {
humlet 13:530968937ccb 77 m_channel->slaveAdr = m_slaveAdr;
humlet 13:530968937ccb 78 i2c_slave_address(&m_channel->i2c, 0, m_slaveAdr, 0);
humlet 13:530968937ccb 79 }
humlet 0:13c962fecb13 80 }
humlet 0:13c962fecb13 81
humlet 3:967dde37e712 82 int I2CDriver::readMaster(int address, char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 83 {
humlet 13:530968937ccb 84 m_modeSlave = false;
humlet 13:530968937ccb 85 lockNconfig();
humlet 13:530968937ccb 86 int ret = FUNCTION(read)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 87 unlock();
humlet 13:530968937ccb 88 return ret;
humlet 1:90455d5bdd8c 89 }
humlet 3:967dde37e712 90 int I2CDriver::readMaster(int address, uint8_t _register, char *data, int length, bool repeated)
humlet 3:967dde37e712 91 {
humlet 13:530968937ccb 92 m_modeSlave = false;
humlet 13:530968937ccb 93 lockNconfig();
humlet 13:530968937ccb 94 int ret = FUNCTION(write)(&m_channel->i2c, address,(const char*)&_register, 1, 0);
humlet 13:530968937ccb 95 if(!ret) ret = FUNCTION(read)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 96 unlock();
humlet 13:530968937ccb 97 return ret;
humlet 3:967dde37e712 98 }
humlet 3:967dde37e712 99 int I2CDriver::readMaster(int ack)
humlet 1:90455d5bdd8c 100 {
humlet 13:530968937ccb 101 m_modeSlave = false;
humlet 13:530968937ccb 102 lockNconfig();
humlet 13:530968937ccb 103 int ret = i2cRtos_byte_read(&m_channel->i2c, (ack?0:1));
humlet 13:530968937ccb 104 unlock();
humlet 13:530968937ccb 105 return ret;
humlet 1:90455d5bdd8c 106 }
humlet 3:967dde37e712 107 int I2CDriver::writeMaster(int address, const char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 108 {
humlet 13:530968937ccb 109 m_modeSlave = false;
humlet 13:530968937ccb 110 lockNconfig();
humlet 13:530968937ccb 111 int ret = FUNCTION(write)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 112 unlock();
humlet 13:530968937ccb 113 return ret;
humlet 1:90455d5bdd8c 114 }
humlet 3:967dde37e712 115 int I2CDriver::writeMaster(int data)
humlet 1:90455d5bdd8c 116 {
humlet 13:530968937ccb 117 m_modeSlave = false;
humlet 13:530968937ccb 118 lockNconfig();
humlet 13:530968937ccb 119 int ret = i2cRtos_byte_write(&m_channel->i2c, data);
humlet 13:530968937ccb 120 unlock();
humlet 13:530968937ccb 121 return ret;
humlet 0:13c962fecb13 122 }
humlet 3:967dde37e712 123 void I2CDriver::startMaster(void)
humlet 1:90455d5bdd8c 124 {
humlet 13:530968937ccb 125 m_modeSlave = false;
humlet 13:530968937ccb 126 lockNconfig();
humlet 13:530968937ccb 127 i2c_start(&m_channel->i2c);
humlet 13:530968937ccb 128 unlock();
humlet 3:967dde37e712 129 }
humlet 13:530968937ccb 130 bool I2CDriver::stopMaster(void)
humlet 3:967dde37e712 131 {
humlet 13:530968937ccb 132 m_modeSlave = false;
humlet 13:530968937ccb 133 lockNconfig();
humlet 13:530968937ccb 134 bool ret=i2cRtos_stop(&m_channel->i2c);
humlet 13:530968937ccb 135 unlock();
humlet 13:530968937ccb 136 return ret;
humlet 3:967dde37e712 137 }
humlet 3:967dde37e712 138 void I2CDriver::stopSlave(void)
humlet 3:967dde37e712 139 {
humlet 13:530968937ccb 140 m_modeSlave = true;
humlet 13:530968937ccb 141 lockNconfig();
humlet 13:530968937ccb 142 i2c_stop(&m_channel->i2c);
humlet 13:530968937ccb 143 unlock();
humlet 3:967dde37e712 144 }
humlet 3:967dde37e712 145 int I2CDriver::receiveSlave(uint32_t timeout_ms)
humlet 3:967dde37e712 146 {
humlet 13:530968937ccb 147 m_modeSlave = true;
humlet 13:530968937ccb 148 lockNconfig();
humlet 13:530968937ccb 149 int ret = i2cRtos_slave_receive(&m_channel->i2c, timeout_ms);
humlet 13:530968937ccb 150 unlock();
humlet 13:530968937ccb 151 return ret;
humlet 3:967dde37e712 152 }
humlet 3:967dde37e712 153 int I2CDriver::readSlave(char* data, int length)
humlet 3:967dde37e712 154 {
humlet 13:530968937ccb 155 m_modeSlave = true;
humlet 13:530968937ccb 156 lockNconfig();
humlet 13:530968937ccb 157 int ret = i2cRtos_slave_read(&m_channel->i2c, data, length);
humlet 13:530968937ccb 158 unlock();
humlet 13:530968937ccb 159 return ret;
humlet 3:967dde37e712 160 }
humlet 3:967dde37e712 161 int I2CDriver::readSlave(void)
humlet 3:967dde37e712 162 {
humlet 13:530968937ccb 163 m_modeSlave = true;
humlet 13:530968937ccb 164 lockNconfig();
humlet 13:530968937ccb 165 int ret = i2cRtos_byte_read(&m_channel->i2c, 0);
humlet 13:530968937ccb 166 unlock();
humlet 13:530968937ccb 167 return ret;
humlet 3:967dde37e712 168 }
humlet 3:967dde37e712 169 int I2CDriver::writeSlave(const char *data, int length)
humlet 3:967dde37e712 170 {
humlet 13:530968937ccb 171 m_modeSlave = true;
humlet 13:530968937ccb 172 lockNconfig();
humlet 13:530968937ccb 173 int ret = i2cRtos_slave_write(&m_channel->i2c, data, length);
humlet 13:530968937ccb 174 unlock();
humlet 13:530968937ccb 175 return ret;
humlet 3:967dde37e712 176 }
humlet 3:967dde37e712 177 int I2CDriver::writeSlave(int data)
humlet 3:967dde37e712 178 {
humlet 13:530968937ccb 179 m_modeSlave = true;
humlet 13:530968937ccb 180 lockNconfig();
humlet 13:530968937ccb 181 int ret = i2cRtos_byte_write(&m_channel->i2c, data);
humlet 13:530968937ccb 182 unlock();
humlet 13:530968937ccb 183 return ret;
humlet 1:90455d5bdd8c 184 }
humlet 1:90455d5bdd8c 185
humlet 1:90455d5bdd8c 186
humlet 3:967dde37e712 187
humlet 3:967dde37e712 188