mbed API for Raspberry Pi boards.
mbedPi
This is an attempt to implement a limited number of mbed APIs for Raspberry Pi single-board computers. The project was inspired by and based on the arduPi library developed for the Arduino by Cooking Hacks .
Specifications
- Chip: Broadcom BCM2836 SoC
- Core architecture: Quad-core ARM Cortex-A7
- CPU frequency: 900 MHz
- GPU: Dual Core VideoCore IV® Multimedia Co-Processor
- Memory: 1GB LPDDR2
- Operating System: Boots from Micro SD card, running a version of the Linux operating system
- Power: Micro USB socket 5V, 2A
Connectors
- Ethernet: 10/100 BaseT Ethernet socket
- Video Output: HDMI (rev 1.3 & 1.4)
- Audio Output: 3.5mm jack, HDMI
- USB: 4 x USB 2.0 Connector
- GPIO Connector: 40-pin 2.54 mm (100 mil) expansion header: 2x20 strip providing 27 GPIO pins as well as +3.3 V, +5 V and GND supply lines
- Camera Connector: 15-pin MIPI Camera Serial Interface (CSI-2)
- JTAG: Not populated
- Display Connector: Display Serial Interface (DSI) 15 way flat flex cable connector with two data lanes and a clock lane
- Memory Card Slot: Micro SDIO
GPIO connector pinout
Information
Only the labels printed in blue/white or green/white (i.e. p3, gpio2 ...) must be used in your code. The other labels are given as information (alternate-functions, power pins, ...).
Building programs for the Raspberry Pi with mbedPi
I use Qt Creator for development, however you can use any other IDE available on the Raspberry Pi (e.g. Geany) if you like. For a quick try:
- Install Qt and the Qt Creator onto your Raspberry Pi. Then create a new "Blinky" Plain non-Qt C++ Project as follows:
- Change the main code as below:
main.cpp
#include "mbedPi.h" int main() { DigitalOut myled(p7); while(1) { myled = 1; // LED is ON wait(0.2); // 200 ms myled = 0; // LED is OFF wait(1.0); // 1 sec printf("Blink\r\n"); } }
- Copy the mbedPi.zip file into your project's folder and unzip.
- Add the mbedPi.h and mbedPi.cpp files to your project by right clicking on the "Blinky" project and then clicking on the "Add Existing Files..." option in the local menu:
- Double click on Blinky.pro to open it for editing and add new libraries by inserting a new line as follows:
- Compile the project.
- Connect an LED through a 1k resistor to pin 7 and the ground on the Raspberry Pi GPIO connector.
- Run the binary as sudo (sudo ./Blinky) and you should see the LED blinking.
- Press Ctrl+c to stop running the application.
source/I2C.cpp
- Committer:
- hudakz
- Date:
- 22 months ago
- Revision:
- 1:1f2d9982fa8c
File content as of revision 1:1f2d9982fa8c:
#include "mbed.h" extern struct bcm2835_peripheral bsc0; extern timeval start_program, end_point; extern volatile uint32_t *bcm2835_bsc1; I2C::I2C() { // start timer gettimeofday(&start_program, NULL); //Initiate the Wire library and join the I2C bus. volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_DIV / 4; // Set the I2C/BSC1 pins to the Alt 0 function to enable I2C access on them bcm2835_gpio_fsel(SDA, BCM2835_GPIO_FSEL_ALT0); bcm2835_gpio_fsel(SCL, BCM2835_GPIO_FSEL_ALT0); // Read the clock divider register uint16_t cdiv = bcm2835_peri_read(paddr); // Calculate time for transmitting one byte // 1000000 = micros seconds in a second // 9 = Clocks per byte : 8 bits + ACK _i2c_byte_wait_us = ((float)cdiv / BCM2835_CORE_CLK_HZ) * 1000000 * 9; } /** * @brief * @note * @param * @retval */ I2C::~I2C() { // Set all the I2C/BSC1 pins back to input bcm2835_gpio_fsel(SDA, BCM2835_GPIO_FSEL_INPT); // SDA bcm2835_gpio_fsel(SCL, BCM2835_GPIO_FSEL_INPT); // SCL } /** * @brief * @note * @param * @retval */ uint8_t I2C::read(uint8_t address, char* buf, int len, bool repeat) { if (repeat) { _addr = address; return read_repeat(buf, len); } else { requestFrom(address, len); return read(buf); } } /** * @brief * @note * @param * @retval */ uint8_t I2C::read(bool ack) { char buf[1] = { 0 }; if (ack) { _i2c_bytes_to_read = 1; read(buf); } else { read_repeat(buf, 1); } return buf[0]; } /** * @brief * @note * @param * @retval */ int I2C::write(uint8_t address, const char* buf, int len, bool repeat) { setAddress(address); return write(buf, len); } /** * @brief * @note * @param * @retval */ int I2C::write(uint8_t data) { char i2cdata[1] = { data }; return write(i2cdata, 1); } /******************* * Private methods * *******************/ /** * @brief * @note * @param * @retval */ void I2C::setAddress(uint8_t address) { _addr = address; volatile uint32_t* paddr = bcm2835_bsc1 + BCM2835_BSC_A / 4; bcm2835_peri_write(paddr, _addr); } /** * @brief * @note Used by the master to request bytes from a slave device * @param * @retval */ void I2C::requestFrom(unsigned char address, int len) { setAddress(address); _i2c_bytes_to_read = len; } /** * @brief Reads bytes from slave after a call to WirePi::requestFrom(address, len) * @note * @param * @retval */ uint8_t I2C::read(char* buf) { volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN / 4; volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO / 4; volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S / 4; volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C / 4; uint32_t remaining = _i2c_bytes_to_read; uint32_t i = 0; uint8_t reason = BCM2835_I2C_REASON_OK; // // Clear FIFO bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1, BCM2835_BSC_C_CLEAR_1); // Clear Status bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE); // Set Data Length bcm2835_peri_write_nb(dlen, _i2c_bytes_to_read); // Start read bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ); // wait for transfer to complete while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE)) { // we must empty the FIFO as it is populated and not use any delay while (bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD) { // Read from FIFO, no barrier buf[i] = bcm2835_peri_read_nb(fifo); i++; remaining--; } } // transfer has finished - grab any remaining stuff in FIFO while (remaining && (bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD)) { // Read from FIFO, no barrier buf[i] = bcm2835_peri_read_nb(fifo); i++; remaining--; } // Received a NACK if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR) { reason = BCM2835_I2C_REASON_ERROR_NACK; } // Received Clock Stretch Timeout else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT) { reason = BCM2835_I2C_REASON_ERROR_CLKT; } // Not all data is received else if (remaining) { reason = BCM2835_I2C_REASON_ERROR_DATA; } bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE, BCM2835_BSC_S_DONE); return reason; } /** * @brief Read len bytes from I2C sending a repeated start after writing the required register. * @note * @param * @retval */ uint8_t I2C::read_repeat(char* buf, int len) { volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN / 4; volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO / 4; volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S / 4; volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C / 4; uint32_t remaining = len; uint32_t i = 0; uint8_t reason = BCM2835_I2C_REASON_OK; // Clear FIFO bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1, BCM2835_BSC_C_CLEAR_1); // Clear Status bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE); // Set Data Length bcm2835_peri_write_nb(dlen, 1); // Enable device and start transfer bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN); bcm2835_peri_write_nb(fifo, (uint32_t) _addr); bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST); // poll for transfer has started while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_TA)) { // Linux may cause us to miss entire transfer stage if (bcm2835_peri_read(status) & BCM2835_BSC_S_DONE) break; } // Send a repeated start with read bit set in address bcm2835_peri_write_nb(dlen, len); bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST | BCM2835_BSC_C_READ); // Wait for write to complete and first byte back. wait_us(_i2c_byte_wait_us * 3); // wait for transfer to complete while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE)) { // we must empty the FIFO as it is populated and not use any delay while (remaining && bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD) { // Read from FIFO, no barrier buf[i] = bcm2835_peri_read_nb(fifo); i++; remaining--; } } // transfer has finished - grab any remaining stuff in FIFO while (remaining && (bcm2835_peri_read_nb(status) & BCM2835_BSC_S_RXD)) { // Read from FIFO, no barrier buf[i] = bcm2835_peri_read_nb(fifo); i++; remaining--; } // Received a NACK if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR) { reason = BCM2835_I2C_REASON_ERROR_NACK; } // Received Clock Stretch Timeout else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT) { reason = BCM2835_I2C_REASON_ERROR_CLKT; } // Not all data is sent else if (remaining) { reason = BCM2835_I2C_REASON_ERROR_DATA; } bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE, BCM2835_BSC_S_DONE); return reason; } /** * @brief * @note * @param * @retval */ int I2C::write(const char* buf, int len) { volatile uint32_t* dlen = bcm2835_bsc1 + BCM2835_BSC_DLEN / 4; volatile uint32_t* fifo = bcm2835_bsc1 + BCM2835_BSC_FIFO / 4; volatile uint32_t* status = bcm2835_bsc1 + BCM2835_BSC_S / 4; volatile uint32_t* control = bcm2835_bsc1 + BCM2835_BSC_C / 4; uint32_t remaining = len; uint32_t i = 0; uint8_t reason = BCM2835_I2C_REASON_OK; // Clear FIFO bcm2835_peri_set_bits(control, BCM2835_BSC_C_CLEAR_1, BCM2835_BSC_C_CLEAR_1); // Clear Status bcm2835_peri_write_nb(status, BCM2835_BSC_S_CLKT | BCM2835_BSC_S_ERR | BCM2835_BSC_S_DONE); // Set Data Length bcm2835_peri_write_nb(dlen, len); // pre populate FIFO with max buffer while (remaining && (i < BCM2835_BSC_FIFO_SIZE)) { bcm2835_peri_write_nb(fifo, buf[i]); i++; remaining--; } // Enable device and start transfer bcm2835_peri_write_nb(control, BCM2835_BSC_C_I2CEN | BCM2835_BSC_C_ST); // Transfer is over when BCM2835_BSC_S_DONE while (!(bcm2835_peri_read_nb(status) & BCM2835_BSC_S_DONE)) { while (remaining && (bcm2835_peri_read_nb(status) & BCM2835_BSC_S_TXD)) { // Write to FIFO, no barrier bcm2835_peri_write_nb(fifo, buf[i]); i++; remaining--; } } // Received a NACK if (bcm2835_peri_read(status) & BCM2835_BSC_S_ERR) { reason = BCM2835_I2C_REASON_ERROR_NACK; } // Received Clock Stretch Timeout else if (bcm2835_peri_read(status) & BCM2835_BSC_S_CLKT) { reason = BCM2835_I2C_REASON_ERROR_CLKT; } // Not all data is sent else if (remaining) { reason = BCM2835_I2C_REASON_ERROR_DATA; } bcm2835_peri_set_bits(control, BCM2835_BSC_S_DONE, BCM2835_BSC_S_DONE); return reason; } // Exposes the physical address defined in the passed structure using mmap on /dev/mem int I2C::map_peripheral(struct bcm2835_peripheral* p) { // Open /dev/mem if ((p->mem_fd = open("/dev/mem", O_RDWR | O_SYNC)) < 0) { printf("Failed to open /dev/mem, try checking permissions.\n"); return -1; } p->map = mmap ( NULL, BLOCK_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, p->mem_fd, // File descriptor to physical memory virtual file '/dev/mem' p->addr_p // Address in physical map that we want this memory block to expose ); if (p->map == MAP_FAILED) { perror("mmap"); return -1; } p->addr = (volatile unsigned int*)p->map; return 0; } /** * @brief * @note * @param * @retval */ void I2C::unmap_peripheral(struct bcm2835_peripheral* p) { munmap(p->map, BLOCK_SIZE); unistd::close(p->mem_fd); } /** * @brief * @note * @param * @retval */ void I2C::wait_i2c_done() { //Wait till done, let's use a timeout just in case int timeout = 50; while ((!((BSC0_S) & BSC_S_DONE)) && --timeout) { unistd::usleep(1000); } if (timeout == 0) printf("wait_i2c_done() timeout. Something went wrong.\n"); }