final
Dependencies: mbed FATFileSystem
Fork of KL46Z-USBHostMSD_HelloWorld by
Diff: radio22/RF22.cpp
- Revision:
- 4:77d6450f34d7
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/radio22/RF22.cpp Sat Apr 04 20:16:39 2015 +0000 @@ -0,0 +1,798 @@ +// RF22.cpp + +#include "mbed.h" +#include "RF22.h" + +Serial pc1(USBTX, USBRX); + +// These are indexed by the values of ModemConfigChoic +// Stored in flash (program) memory to save SRAM +/*PROGMEM */ static const RF22::ModemConfig MODEM_CONFIG_TABLE[] = { + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5 + + // All the following enable FIFO with reg 71 + // 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72 + // FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5 + { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36 + { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45 + { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45 + { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6 + { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6 + { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8 + { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125 + + // GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + // These differ from FSK only in register 71, for the modulation type + { 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5 + { 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36 + { 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45 + { 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45 + { 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6 + { 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6 + { 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8 + { 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125 + + // OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm + { 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75 + { 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335 + { 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335 + { 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335 + { 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335 + { 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335 + { 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335 + +}; + +RF22::RF22(PinName slaveSelectPin, PinName mosi, PinName miso, PinName sclk, PinName interrupt) + : _slaveSelectPin(slaveSelectPin), _spi(mosi, miso, sclk), _interrupt(interrupt) /*, led1(LED1), led2(LED2), led3(LED3), led4(LED4) */ +{ + + + _idleMode = RF22_XTON; // Default idle state is READY mode + _mode = RF22_MODE_IDLE; // We start up in idle mode + _rxGood = 0; + _rxBad = 0; + _txGood = 0; + + +} + +//moje dopsane metody + + void RF22::obsluhapreruseni() + { + handleInterrupt(); + } + + /* void RF22::vypisfifo() + { + _slaveSelectPin = 0; + _spi.write(RF22_REG_7F_FIFO_ACCESS); + pc1.printf("\n\r Obsah FIFA je:"); + for(int a = 0; a<10; a++) + { + uint8_t x = _spi.write(RF22_REG_7F_FIFO_ACCESS); + pc1.printf("\t %i", x); + } + _slaveSelectPin = 1; + }*/ + +boolean RF22::init() +{ + wait_ms(16); + + _slaveSelectPin = 1; // cip select + + wait_ms(100); + + _spi.format(8,0); //konfigurace SPI + _spi.frequency(10000000); + + // Software reset the device + reset(); + + // Get the device type and check it + // This also tests whether we are really connected to a device + _deviceType = spiRead(RF22_REG_00_DEVICE_TYPE); + + if ( _deviceType != RF22_DEVICE_TYPE_RX_TRX + && _deviceType != RF22_DEVICE_TYPE_TX) + return false; + + _interrupt.fall(this, &RF22::isr0); + + clearTxBuf(); + clearRxBuf(); + + // Most of these are the POR default + spiWrite(RF22_REG_7D_TX_FIFO_CONTROL2, RF22_TXFFAEM_THRESHOLD); + spiWrite(RF22_REG_7E_RX_FIFO_CONTROL, RF22_RXFFAFULL_THRESHOLD); + spiWrite(RF22_REG_30_DATA_ACCESS_CONTROL, RF22_ENPACRX | RF22_ENPACTX | RF22_ENCRC | RF22_CRC_CRC_16_IBM); + // Configure the message headers + // Here we set up the standard packet format for use by the RF22 library + // 8 nibbles preamble + // 2 SYNC words 2d, d4 + // Header length 4 (to, from, id, flags) + // 1 octet of data length (0 to 255) + // 0 to 255 octets data + // 2 CRC octets as CRC16(IBM), computed on the header, length and data + // On reception the to address is check for validity against RF22_REG_3F_CHECK_HEADER3 + // or the broadcast address of 0xff + // If no changes are made after this, the transmitted + // to address will be 0xff, the from address will be 0xff + // and all such messages will be accepted. This permits the out-of the box + // RF22 config to act as an unaddresed, unreliable datagram service + spiWrite(RF22_REG_32_HEADER_CONTROL1, RF22_BCEN_HEADER3 | RF22_HDCH_HEADER3); + spiWrite(RF22_REG_33_HEADER_CONTROL2, RF22_HDLEN_4 | RF22_SYNCLEN_2); + setPreambleLength(8); //delka preambule + uint8_t syncwords[] = { 0x2d, 0xd4 }; + setSyncWords(syncwords, sizeof(syncwords)); + setPromiscuous(false); + // Check the TO header against RF22_DEFAULT_NODE_ADDRESS + spiWrite(RF22_REG_3F_CHECK_HEADER3, RF22_DEFAULT_NODE_ADDRESS); + // Set the default transmit header values + setHeaderTo(RF22_DEFAULT_NODE_ADDRESS); + setHeaderFrom(RF22_DEFAULT_NODE_ADDRESS); + setHeaderId(0); + setHeaderFlags(0); + + // Ensure the antenna can be switched automatically according to transmit and receive + // This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit + // This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive + spiWrite (RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state + spiWrite (RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state + + // Enable interrupts + + spiWrite(RF22_REG_05_INTERRUPT_ENABLE1, RF22_ENTXFFAEM |RF22_ENRXFFAFULL | RF22_ENPKSENT |RF22_ENPKVALID| RF22_ENCRCERROR); + spiWrite(RF22_REG_06_INTERRUPT_ENABLE2, RF22_ENPREAVAL); + + // Set some defaults. An innocuous ISM frequency, and reasonable pull-in + setFrequency(434.0, 0.05); +// setFrequency(900.0); + // Some slow, reliable default speed and modulation + setModemConfig(FSK_Rb2_4Fd36); +// setModemConfig(FSK_Rb125Fd125); + // Minimum power + setTxPower(RF22_TXPOW_8DBM); +// setTxPower(RF22_TXPOW_17DBM); + + + + return true; +} + +// C++ level interrupt handler for this instance +void RF22::handleInterrupt() +{ + uint8_t _lastInterruptFlags[2]; + + //led1 = 1; + + // Read the interrupt flags which clears the interrupt + spiBurstRead(RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2); + +#if 0 + // Caution: Serial printing in this interrupt routine can cause mysterious crashes + Serial.print("interrupt "); + Serial.print(_lastInterruptFlags[0], HEX); + Serial.print(" "); + Serial.println(_lastInterruptFlags[1], HEX); + if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0) + Serial.println("FUNNY: no interrupt!"); +#endif + +#if 0 + // TESTING: fake an RF22_IFFERROR + static int counter = 0; + if (_lastInterruptFlags[0] & RF22_IPKSENT && counter++ == 10) { + _lastInterruptFlags[0] = RF22_IFFERROR; + counter = 0; + } +#endif + + + if (_lastInterruptFlags[0] & RF22_IFFERROR) { +// Serial.println("IFFERROR"); + //led4 = !led4; + resetFifos(); // Clears the interrupt + if (_mode == RF22_MODE_TX) + restartTransmit(); + else if (_mode == RF22_MODE_RX){ + clearRxBuf(); + //stop and start Rx + setModeIdle(); + setModeRx(); + } + // stop handling the remaining interruppts as something went wrong here + return; + } + + // Caution, any delay here may cause a FF underflow or overflow + if (_lastInterruptFlags[0] & RF22_ITXFFAEM) { + // See if more data has to be loaded into the Tx FIFO + //led2 = !led2; + sendNextFragment(); +// Serial.println("ITXFFAEM"); + } + + if (_lastInterruptFlags[0] & RF22_IRXFFAFULL) { + // Caution, any delay here may cause a FF overflow + // Read some data from the Rx FIFO + //led4 = !led4; + readNextFragment(); +// Serial.println("IRXFFAFULL"); + } + if (_lastInterruptFlags[0] & RF22_IEXT) { + // This is not enabled by the base code, but users may want to enable it + //led2 = !led2; + handleExternalInterrupt(); +// Serial.println("IEXT"); + } + if (_lastInterruptFlags[1] & RF22_IWUT) { + // This is not enabled by the base code, but users may want to enable it + //led2 = !led2; + handleWakeupTimerInterrupt(); +// Serial.println("IWUT"); + } + if (_lastInterruptFlags[0] & RF22_IPKSENT) { +// Serial.println("IPKSENT"); + _txGood++; + //led4 = !led4; + // Transmission does not automatically clear the tx buffer. + // Could retransmit if we wanted + // RF22 transitions automatically to Idle + _mode = RF22_MODE_IDLE; + } + + if (_lastInterruptFlags[0] & RF22_IPKVALID) { + uint8_t len = spiRead(RF22_REG_4B_RECEIVED_PACKET_LENGTH); +// Serial.println("IPKVALID"); +// Serial.println(len); +// Serial.println(_bufLen); + + // May have already read one or more fragments + // Get any remaining unread octets, based on the expected length + // First make sure we dont overflow the buffer in the case of a stupid length + // or partial bad receives + + if ( len > RF22_MAX_MESSAGE_LEN || len < _bufLen) //pokud je delka zpravy delsi nez FIFO + { + _rxBad++; + _mode = RF22_MODE_IDLE; + clearRxBuf(); + return; // Hmmm receiver buffer overflow. + } + + spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen); + __disable_irq(); // Disable Interrupts + _rxGood++; + _bufLen = len; + _mode = RF22_MODE_IDLE; + _rxBufValid = true; + // reset the fifo for next packet?? + //resetRxFifo(); + __enable_irq(); // Enable Interrupts + + //led3 = !led3; + + } + + if (_lastInterruptFlags[0] & RF22_ICRCERROR) { +// Serial.println("ICRCERR"); + _rxBad++; + //led2 = !led2; + clearRxBuf(); + resetRxFifo(); + _mode = RF22_MODE_IDLE; + setModeRx(); // Keep trying + } + + if (_lastInterruptFlags[1] & RF22_IPREAVAL) { +// Serial.println("IPREAVAL"); + + _lastRssi = spiRead(RF22_REG_26_RSSI); + + + // why clear the rx-buf here? charly + clearRxBuf(); + + + } + //led1 = 0; +} + +// These are low level functions that call the interrupt handler for the correct +// instance of RF22. +// 2 interrupts allows us to have 2 different devices + +void RF22::isr0() +{ + //handleInterrupt(); + obsluhapreruseni(); + +} + + +void RF22::reset() +{ + spiWrite(RF22_REG_07_OPERATING_MODE1, RF22_SWRES); //soft reset + wait_ms(1); +} + +uint8_t RF22::spiRead(uint8_t reg) +{ + __disable_irq(); // Disable Interrupts + + _slaveSelectPin=0; + + _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the address with the write mask off + uint8_t val = _spi.write(0); // The written value is ignored, reg value is read ?????? + + _slaveSelectPin = 1; + __enable_irq(); // Enable Interrupts + return val; +} + +void RF22::spiWrite(uint8_t reg, uint8_t val) //zapis hodnot z define +{ + __disable_irq(); // Disable Interrupts + + _slaveSelectPin = 0; + _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the address with the write mask on + _spi.write(val); // New value follows + + _slaveSelectPin = 1; + __enable_irq(); // Enable Interrupts +} + +void RF22::spiBurstRead(uint8_t reg, uint8_t* dest, uint8_t len) //tady se vycitaji data +{ + _slaveSelectPin = 0; + _spi.write(reg & ~RF22_SPI_WRITE_MASK); // Send the start address with the write mask off + if(reg == RF22_REG_7F_FIFO_ACCESS) pc1.printf("\n\r Data primo z bufferu:"); + while (len--) + { + *dest++ = _spi.write(0); + if(reg == RF22_REG_7F_FIFO_ACCESS) pc1.printf(" %i", *dest); + } + _slaveSelectPin = 1; +} + +void RF22::spiBurstWrite(uint8_t reg, const uint8_t* src, uint8_t len) +{ + _slaveSelectPin = 0; + _spi.write(reg | RF22_SPI_WRITE_MASK); // Send the start address with the write mask on + while (len--) + _spi.write(*src++); + _slaveSelectPin = 1; +} + +uint8_t RF22::statusRead() +{ + return spiRead(RF22_REG_02_DEVICE_STATUS); +} + +uint8_t RF22::adcRead(uint8_t adcsel, + uint8_t adcref , + uint8_t adcgain, + uint8_t adcoffs) +{ + uint8_t configuration = adcsel | adcref | (adcgain & RF22_ADCGAIN); + spiWrite(RF22_REG_0F_ADC_CONFIGURATION, configuration | RF22_ADCSTART); + spiWrite(RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs); + + // Conversion time is nominally 305usec + // Wait for the DONE bit + while (!(spiRead(RF22_REG_0F_ADC_CONFIGURATION) & RF22_ADCDONE)) + ; + // Return the value + return spiRead(RF22_REG_11_ADC_VALUE); +} + + +uint16_t RF22::wutRead() +{ + uint8_t buf[2]; + spiBurstRead(RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2); + return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order +} + +// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec +void RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd) +{ + uint8_t period[3]; + + period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3); + period[1] = wtm >> 8; + period[2] = wtm & 0xff; + spiBurstWrite(RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period)); +} + +// Returns true if centre + (fhch * fhs) is within limits +// Caution, different versions of the RF22 support different max freq +// so YMMV +boolean RF22::setFrequency(float centre, float afcPullInRange) +{ + uint8_t fbsel = RF22_SBSEL; + uint8_t afclimiter; + if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon + return false; + if (centre >= 480.0) { + if (afcPullInRange < 0.0 || afcPullInRange > 0.318750) + return false; + centre /= 2; + fbsel |= RF22_HBSEL; + afclimiter = afcPullInRange * 1000000.0 / 1250.0; + } else { + if (afcPullInRange < 0.0 || afcPullInRange > 0.159375) + return false; + afclimiter = afcPullInRange * 1000000.0 / 625.0; + } + centre /= 10.0; + float integerPart = floor(centre); + float fractionalPart = centre - integerPart; + + uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 + fbsel |= fb; + uint16_t fc = fractionalPart * 64000; + spiWrite(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT + spiWrite(RF22_REG_74_FREQUENCY_OFFSET2, 0); + spiWrite(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); + spiWrite(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); + spiWrite(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); + spiWrite(RF22_REG_2A_AFC_LIMITER, afclimiter); + return !(statusRead() & RF22_FREQERR); +} + +// Step size in 10kHz increments +// Returns true if centre + (fhch * fhs) is within limits +boolean RF22::setFHStepSize(uint8_t fhs) +{ + spiWrite(RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs); + return !(statusRead() & RF22_FREQERR); +} + +// Adds fhch * fhs to centre frequency +// Returns true if centre + (fhch * fhs) is within limits +boolean RF22::setFHChannel(uint8_t fhch) +{ + spiWrite(RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch); + return !(statusRead() & RF22_FREQERR); +} + +uint8_t RF22::rssiRead() +{ + return spiRead(RF22_REG_26_RSSI); +} + +uint8_t RF22::ezmacStatusRead() +{ + return spiRead(RF22_REG_31_EZMAC_STATUS); +} + +void RF22::setMode(uint8_t mode) +{ + spiWrite(RF22_REG_07_OPERATING_MODE1, mode); +} + +void RF22::setModeIdle() +{ + if (_mode != RF22_MODE_IDLE) { + setMode(_idleMode); + _mode = RF22_MODE_IDLE; + + } +} + +void RF22::setModeRx() +{ + if (_mode != RF22_MODE_RX) { + setMode(_idleMode | RF22_RXON); + _mode = RF22_MODE_RX; + } +} + +void RF22::setModeTx() +{ + if (_mode != RF22_MODE_TX) { + setMode(_idleMode | RF22_TXON); + _mode = RF22_MODE_TX; + // Hmmm, if you dont clear the RX FIFO here, then it appears that going + // to transmit mode in the middle of a receive can corrupt the + // RX FIFO + resetRxFifo(); + + } +} + +uint8_t RF22::mode() +{ + return _mode; +} + +void RF22::setTxPower(uint8_t power) +{ + spiWrite(RF22_REG_6D_TX_POWER, power); +} + +// Sets registers from a canned modem configuration structure +void RF22::setModemRegisters(const ModemConfig* config) +{ + spiWrite(RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c); + spiWrite(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f); + spiBurstWrite(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6); + spiBurstWrite(RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3); + spiWrite(RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58); + spiWrite(RF22_REG_69_AGC_OVERRIDE1, config->reg_69); + spiBurstWrite(RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5); +} + +// Set one of the canned FSK Modem configs +// Returns true if its a valid choice +boolean RF22::setModemConfig(ModemConfigChoice index) +{ + if (index > (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig))) + return false; + + RF22::ModemConfig cfg; + memcpy(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RF22::ModemConfig)); + setModemRegisters(&cfg); + + return true; +} + +// REVISIT: top bit is in Header Control 2 0x33 +void RF22::setPreambleLength(uint8_t nibbles) +{ + spiWrite(RF22_REG_34_PREAMBLE_LENGTH, nibbles); +} + +// Caution doesnt set sync word len in Header Control 2 0x33 +void RF22::setSyncWords(const uint8_t* syncWords, uint8_t len) +{ + spiBurstWrite(RF22_REG_36_SYNC_WORD3, syncWords, len); +} + +void RF22::clearRxBuf() +{ + __disable_irq(); // Disable Interrupts + _bufLen = 0; + _rxBufValid = false; + __enable_irq(); // Enable Interrupts +} + +boolean RF22::available() +{ + if (!_rxBufValid) + setModeRx(); // Make sure we are receiving + return _rxBufValid; +} + +// Blocks until a valid message is received +void RF22::waitAvailable() +{ + while (!available()) + ; +} + +// Blocks until a valid message is received or timeout expires +// Return true if there is a message available +bool RF22::waitAvailableTimeout(uint16_t timeout) +{ + Timer t; + t.start(); + unsigned long endtime = t.read_ms() + timeout; + while (t.read_ms() < endtime) + if (available()) + return true; + return false; +} + +void RF22::waitPacketSent() +{ + while (_mode == RF22_MODE_TX) + ; // Wait for any previous transmit to finish +} + +// Diagnostic help +void RF22::printBuffer(const uint8_t *buf, uint8_t len) +{ + + uint8_t i; + + pc1.printf("\n\rObsah Bufferu "); + for (i = 0; i < len; i++) { + if (i % 16 == 15) + pc1.printf("%d", buf[i]); + else { + pc1.printf("%d", buf[i]); + pc1.printf(" "); + } + } + pc1.printf(" "); + +} + +boolean RF22::recv(uint8_t* buf, uint8_t* len) +{ + if (!available()) + return false; + __disable_irq(); // Disable Interrupts + if (*len > _bufLen) + *len = _bufLen; + memcpy(buf, _buf, *len); + printBuffer(_buf, *len); + clearRxBuf(); + __enable_irq(); // Enable Interrupts + printBuffer( buf, *len); + + return true; +} + +void RF22::clearTxBuf() +{ + __disable_irq(); // Disable Interrupts + _bufLen = 0; + _txBufSentIndex = 0; + _txPacketSent = false; + __enable_irq(); // Enable Interrupts +} + +void RF22::startTransmit() +{ + sendNextFragment(); // Actually the first fragment + spiWrite(RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent + setModeTx(); // Start the transmitter, turns off the receiver +} + +// Restart the transmission of a packet that had a problem +void RF22::restartTransmit() +{ + _mode = RF22_MODE_IDLE; + _txBufSentIndex = 0; +// Serial.println("Restart"); + startTransmit(); +} + +boolean RF22::send(const uint8_t* data, uint8_t len) //pocka, nez se odesle paket a potom odesle data +{ + waitPacketSent(); + { + if (!fillTxBuf(data, len)) + return false; + startTransmit(); + } +// printBuffer("send:", data, len); + return true; +} + +boolean RF22::fillTxBuf(const uint8_t* data, uint8_t len) +{ + clearTxBuf(); + if (!len) + return false; + return appendTxBuf(data, len); +} + +boolean RF22::appendTxBuf(const uint8_t* data, uint8_t len) +{ + if (((uint16_t)_bufLen + len) > RF22_MAX_MESSAGE_LEN) + return false; + __disable_irq(); // Disable Interrupts + memcpy(_buf + _bufLen, data, len); + _bufLen += len; + __enable_irq(); // Enable Interrupts + +// printBuffer("txbuf:", _buf, _bufLen); + return true; +} + +// Assumption: there is currently <= RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO +void RF22::sendNextFragment() +{ + if (_txBufSentIndex < _bufLen) { + // Some left to send? + uint8_t len = _bufLen - _txBufSentIndex; + // But dont send too much + if (len > (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1)) + len = (RF22_FIFO_SIZE - RF22_TXFFAEM_THRESHOLD - 1); + spiBurstWrite(RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len); + _txBufSentIndex += len; + } +} + +// Assumption: there are at least RF22_RXFFAFULL_THRESHOLD in the RX FIFO +// That means it should only be called after a RXFFAFULL interrupt +void RF22::readNextFragment() +{ + if (((uint16_t)_bufLen + RF22_RXFFAFULL_THRESHOLD) > RF22_MAX_MESSAGE_LEN) + return; // Hmmm receiver overflow. Should never occur + + // Read the RF22_RXFFAFULL_THRESHOLD octets that should be there + spiBurstRead(RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RF22_RXFFAFULL_THRESHOLD); + _bufLen += RF22_RXFFAFULL_THRESHOLD; +} + +// Clear the FIFOs +void RF22::resetFifos() +{ + spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX | RF22_FFCLRTX); + spiWrite(RF22_REG_08_OPERATING_MODE2, 0); +} + +// Clear the Rx FIFO +void RF22::resetRxFifo() +{ + spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRRX); + spiWrite(RF22_REG_08_OPERATING_MODE2, 0); +} + +// CLear the TX FIFO +void RF22::resetTxFifo() +{ + spiWrite(RF22_REG_08_OPERATING_MODE2, RF22_FFCLRTX); + spiWrite(RF22_REG_08_OPERATING_MODE2, 0); +} + +// Default implmentation does nothing. Override if you wish +void RF22::handleExternalInterrupt() +{ +} + +// Default implmentation does nothing. Override if you wish +void RF22::handleWakeupTimerInterrupt() +{ +} + +void RF22::setHeaderTo(uint8_t to) +{ + spiWrite(RF22_REG_3A_TRANSMIT_HEADER3, to); +} + +void RF22::setHeaderFrom(uint8_t from) +{ + spiWrite(RF22_REG_3B_TRANSMIT_HEADER2, from); +} + +void RF22::setHeaderId(uint8_t id) +{ + spiWrite(RF22_REG_3C_TRANSMIT_HEADER1, id); +} + +void RF22::setHeaderFlags(uint8_t flags) +{ + spiWrite(RF22_REG_3D_TRANSMIT_HEADER0, flags); +} + +uint8_t RF22::headerTo() +{ + return spiRead(RF22_REG_47_RECEIVED_HEADER3); +} + +uint8_t RF22::headerFrom() +{ + return spiRead(RF22_REG_48_RECEIVED_HEADER2); +} + +uint8_t RF22::headerId() +{ + return spiRead(RF22_REG_49_RECEIVED_HEADER1); +} + +uint8_t RF22::headerFlags() +{ + return spiRead(RF22_REG_4A_RECEIVED_HEADER0); +} + +uint8_t RF22::lastRssi() +{ + return _lastRssi; +} + +void RF22::setPromiscuous(boolean promiscuous) +{ + spiWrite(RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff); +}