Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Pi_Swarm_Blank by
Diff: main.cpp
- Revision:
- 14:fc406dfff94f
- Parent:
- 13:c18d82f62d38
- Child:
- 15:f7a8989a3cd3
--- a/main.cpp Sun Aug 23 14:26:12 2015 +0000
+++ b/main.cpp Sun Aug 23 16:27:14 2015 +0000
@@ -45,7 +45,7 @@
* @communication added
*/
#include "main.h" // Certain parameters can be set by changing the defines in piswarm.h
-#include "PiSwarmControllerFunctions.h"
+#include "pi_swarm_functions.h"
#include "hcsr04.h"
PiSwarm piswarm;
@@ -53,58 +53,61 @@
HCSR04 usensor(p30,p14);
//Tickers
-Ticker ticker_25ms;
-Ticker ticker_ultrasonic50ms;
+Ticker ticker_25ms; //Ticker used to periodically obtain new IR readings.
+Ticker ticker_ultrasonic50ms; //Ticker used to periodically obtain a new ultrasonic reading.
//Timeouts
-Timeout tickChangeTimeout;
-Timeout broadcastTimeout;
+Timeout tickChangeTimeout; //Timeout used to adjust IR read ticker phase to enable to beacon syncronisation.
+Timeout broadcastTimeout; //Timeout used for broadcasting messages multiple times with a set interval.
//Timers
-Timer timer;
-Timer timerLevy;
+Timer turn_timer; //Timer used to turn a user specified number of degrees.
+Timer levy_timer; //Timer used to control time between levy walk steps.
//Global Variables
+
+//Individucal Pi-Swarm variables: speed and motor trim etc
+float BASE_SPEED = 0.6; //The input to the motor functions when the robot is moving forward and does not detect obstacles.
+float r_mot_scaler = 1; //This variable is allows particular pi swarms to be adjusted to travel in a straight line.
+float l_mot_scaler = 1; //This variable is allows particular pi swarms to be adjusted to travel in a straight line.
+uint16_t at_beacon_threshold = 3800; //A raw IR reading greater than this value indicates the robot is at a beacon.
+int16_t g_currentHeading = 0; //The current heading of the Pi-swarm relative to the IR beacon.
+uint8_t robot_id; //The id unique to each Pi-Swarm robot
+
+//Finite state machine information
+uint8_t volatile gv_state = States::READY_TO_START; //This is the current state of the finite state machine
+int8_t g_obstacle_type = 0; //The Pi-Swarm will perform different obstacle avoidance behaviours depending on which sensors detect obstacles. This variable is used to note which sensor detected the obstacle.
+
+//IR Readings + beacon syncronisation variables
uint8_t const IR_READ_PER_BEAC = 20; //The number of IR readings between beacon flashes
uint16_t volatile gv_IRVals[IR_READ_PER_BEAC][8] = {0}; //The passive IR values each are stored in this array every 25ms for the last 0.5 seconds
-int16_t volatile gv_IRValDiffs[IR_READ_PER_BEAC][8] = {0};
-int16_t volatile gv_IRValDiffsTwo[IR_READ_PER_BEAC][8] = {0};
-
-uint8_t volatile beacon_detected[8] = {0};
+int16_t volatile gv_IRValDiffs[IR_READ_PER_BEAC][8] = {0};//The difference between consective IR readings.
+int16_t volatile gv_IRValDiffsTwo[IR_READ_PER_BEAC][8] = {0};//The difference between IR readings seperated by two ticks
+uint8_t volatile beacon_detected[8] = {0}; //An IR sensor is judged to have a detected the beacon in a valid way the corresponding array variable will be set to 1, else 0.
int8_t volatile gv_counter25ms = 0; //This counter is increased every 25ms and resets to zero after one second. (It is signed because 1 is subtracted from it in ReadIRs)
+int8_t g_beaconOn = 100; //The first tick at which the beacon is illuminated
uint8_t const BEACON_SUSPECTED = 20; //Value by which consecutive IR sensor readings need to jump by for in order to cause beacon to be suspected.
-uint16_t volatile AT_BEACON_THRESHOLD = 3800;
-float volatile distance_ultrasonic_sensor = 1000;
-
-float r_mot_scaler = 1;
-float l_mot_scaler = 1;
-
-uint32_t levy_target_time_us = 0; //The amount of time in micro seconds by which the robot needs to move in order to reach the distance required in next section of the levy walk.
-uint8_t volatile gv_IRDistances[8]; //Using the custom distance function the active ir readings are converted to distances and stored here every 25ms.
-
-//homero: ultrasonic reading
-
-uint8_t volatile gv_state = States::READY_TO_START; //This is the current state of the finite state machine
-int16_t g_currentHeading = 0;
-float BASE_SPEED = 0.6;
-int8_t g_beaconOn = 100;
+uint8_t volatile gv_IRDistances[8]; //Using the custom distance function the active IR readings are converted to distances and stored here every 25ms.
int8_t volatile tick_beacon_suspected = 100; //Is set to the tick value within the period between beacon flashes that the beacon flash is suspected to begin at
int8_t tick_beacon_period_check = 100; //Is used to temporarily store the value of tick_beacon_suspected
-uint8_t g_ultrasound_count = 0;
-uint8_t broadcasted_count = 0;
-uint8_t go_back_count = 0;
-//Flags
-int8_t volatile start_flag = 1;
-int8_t volatile back_flag = 0;
-int8_t volatile return_flag = 0;
-//int8_t volatile aligned_target_beacon = 0; //homero
-int8_t flagObstacle = 0;
-uint8_t flagStationary = 1; //Used to determine if robot is currently stationary or moving.
-uint8_t flagBeaconSyncronised = 0; //Set to one when the robot is synchronised with the beacon
-uint8_t volatile flagBeaconIlluminated = 0; //Should be 1 when beacon is illuminated otherwise 0
-uint8_t flagSetNewLevyTime = 1; //Must start as 1
-uint8_t broadcasted_flag = 1;
-uint8_t robot_id;
+uint8_t beacon_syncronised_flag = 0; //Set to one when the robot is synchronised with the beacon
+uint8_t volatile beacon_illuminated_flag = 0; //Should be 1 when beacon is illuminated otherwise 0
+
+//Ultrasonic Readings
+float volatile distance_ultrasonic_sensor = 1000; //Here is stored the latest reading from the ultrasonic sensor in mm from 1 -800. 1000 is an error value.
+
+//Levy walk variables
+uint32_t levy_target_time_us = 0; //The amount of time in micro seconds by which the robot needs to move in order to reach the distance required in next section of the levy walk.
+uint8_t g_back_count = 0; //After a set number of Levy walk turns the robot will move backward. This variable monitors how many Levy turns since the last backward move.
+uint8_t set_new_levy_time_flag = 1; //Must start as 1. If fwd move state is entered following a levy turn the flag will be 1 indicating a new time should be set.
+
+
+//Communication
+uint8_t broadcasted_flag = 1; //Set to one when a message has been broadcast. 0 when about to broadcast a new message
+uint8_t broadcasted_count = 0; //The number of messages that have been broadcasted in one batch
+int8_t volatile start_flag = 1; //Set to 1 on receiving a command by RF. Indicates robot can start searching for target beacon.
+int8_t volatile back_flag = 0; //Set to 1 on receiving a command by RF. Indicates robot can start searching for home beacon, unless it is at the target beacon.
+int8_t volatile return_flag = 0; //Set to 1 on receiving a command by RF. Indicates all robots now start or continue searching for home beacon.
//Ticker Function*************************************************************************************
//This function is called by a ticker every 25ms
@@ -116,11 +119,11 @@
//Fistly update the beaconVisable flag if possible
if(gv_counter25ms == mod8((g_beaconOn - 1), IR_READ_PER_BEAC)){
- flagBeaconIlluminated = 1;
+ beacon_illuminated_flag = 1;
}
if(gv_counter25ms == mod8((g_beaconOn + 2), IR_READ_PER_BEAC)){
- flagBeaconIlluminated = 0;
+ beacon_illuminated_flag = 0;
}
//Firstly store background values
//Also make a note of which point in the second did the values change most.
@@ -308,35 +311,35 @@
ticker_25ms.attach_us(&readIRs,25000);
if(robot_id == 1){
- AT_BEACON_THRESHOLD = 3850;
+ at_beacon_threshold = 3850;
}
else if (robot_id == 9){
- AT_BEACON_THRESHOLD = 3950;
+ at_beacon_threshold = 3950;
}
else if (robot_id == 12){
- AT_BEACON_THRESHOLD = 3980;
+ at_beacon_threshold = 3980;
r_mot_scaler = 1.02;
l_mot_scaler = 0.98;
}
else{
- AT_BEACON_THRESHOLD = 3900;
+ at_beacon_threshold = 3900;
}
usensor.start(); // get first reading of the ultrasonic sensor required before ticker
wait_ms(50);
ticker_ultrasonic50ms.attach_us(&get_ultrasonic_readings,50000);
- timer.start();
- timerLevy.start();
+ turn_timer.start();
+ levy_timer.start();
//pc.printf("why\n");
changeState(States::SEARCHING_FWD);
}
//Searching state
- } else if (gv_state == States::SEARCHING_FWD || gv_state == States::SEARCHING_TURNING || gv_state == States::SEARCHING_REDUCED_SPEED){
+ } else if (gv_state == States::SEARCHING_FWD || gv_state == States::SEARCHING_TURNING){
//Do something here on receipt of 'function 5' if necessary.
//As currently the home beacon will immediately switch on that is not necessary.
@@ -373,30 +376,14 @@
}
if(gv_state == States::SEARCHING_FWD){
- //Secondly if obstacles are detected ahead then execute a random turn.
-
- //pc.printf("Start\n");
-
- //Homero: This is the obstacle avoidance part need to also turn if the ultrasound reading is high
- //Avoid obstacle to the right
- //if(distance_ultrasonic_sensor < 500 && distance_ultrasonic_sensor >= 100)
-// {
-// g_ultrasound_count++;
-//
-// } else {
-// g_ultrasound_count = 0;
-// }
-
- //if (distance_ultrasonic_sensor < 500 && distance_ultrasonic_sensor >= 100 && g_ultrasound_count > 3){
-// changeState(States::SEARCHING_REDUCED_SPEED);
+
if(gv_IRDistances[0] < 100 || gv_IRDistances[1] < 100){
piswarm.stop();
piswarm.cls();
piswarm.printf("ob R");
piswarm.play_tune("CC",1);
- //wait(0.1);
- flagObstacle = 1;
+ g_obstacle_type = 1;
changeState(States::SEARCHING_TURNING);
//Avoid obstacle to the left
@@ -405,33 +392,31 @@
piswarm.cls();
piswarm.printf("ob L");
piswarm.play_tune("CC",1);
- //wait(0.1);
- flagObstacle = 2;
+ g_obstacle_type = 2;
changeState(States::SEARCHING_TURNING);
- } else if(distance_ultrasonic_sensor < 50){
+ } else if(distance_ultrasonic_sensor < 70){
piswarm.stop();
piswarm.cls();
piswarm.printf("ob F");
- //piswarm.printf("F: %f",distance_ultrasonic_sensor);
piswarm.play_tune("DD",1);
//wait(0.1);
- flagObstacle = 3;
+ g_obstacle_type = 3;
changeState(States::SEARCHING_TURNING);
} else if(distance_ultrasonic_sensor <= 80){
- flagObstacle = 3;
+ g_obstacle_type = 3;
changeState(States::SEARCHING_TURNING);
- } else if(timerLevy.read_us() > levy_target_time_us){
- go_back_count++;
- flagSetNewLevyTime = 1;
+ } else if(levy_timer.read_us() > levy_target_time_us){
+ g_back_count++;
+ set_new_levy_time_flag = 1;
piswarm.play_tune("G",1);
piswarm.set_oled_colour(255,0,0);
changeState(States::SEARCHING_TURNING);
- }else if(go_back_count >=10){
- go_back_count = 0;
+ }else if(g_back_count >=8){
+ g_back_count = 0;
piswarm.stop();
wait_ms(200);
piswarm.left_motor(-0.4*l_mot_scaler);
@@ -456,8 +441,6 @@
} else {
piswarm.right_motor(BASE_SPEED*r_mot_scaler);
piswarm.left_motor(BASE_SPEED*l_mot_scaler);
- //wait_ms(200);
- //flagStationary = 0;
}
//wait to get new ultrasound reading
//wait_ms(50);
@@ -467,73 +450,23 @@
piswarm.stop();//Stop the robot.
int16_t randomAngle;
//If sent here beacuse of obstacle find angle between -180 to -90 and 90 to 180
- if(flagObstacle == 1){
+ if(g_obstacle_type == 1){
randomAngle = rand()%90 - 135;
- } else if(flagObstacle == 2){
+ } else if(g_obstacle_type == 2){
randomAngle = rand()%90 + 45;
- } else if(flagObstacle == 3){
- randomAngle = rand()%90 + 45;
+ } else if(g_obstacle_type == 3){
+ randomAngle = rand()%90 + 45;
//Otherwise if here due to levy walk: turn to any random angle
} else {
randomAngle = rand()%360 - 180;
}
turnDegrees(randomAngle); //Make the turn
- //wait(0.1);
- /* if(gv_IRDistances[0] < 70 || gv_IRDistances[1] < 70 || gv_IRDistances[6] < 70 || gv_IRDistances[7] < 70){
- //do nothing. Aim is that robot will keep turning the same way until clear of obstacle
- //could put a count in here to doemergency escape manouvre if necessary
- piswarm.play_tune("CC",1);
- } else { */
- flagObstacle = 0;
+ g_obstacle_type = 0;
changeState(States::SEARCHING_FWD);//Move back into state 11
- } else if (gv_state == States::SEARCHING_REDUCED_SPEED){
-
-
-
- if(gv_IRDistances[0] < 100 || gv_IRDistances[1] < 100){
- piswarm.stop();
- piswarm.cls();
- piswarm.printf("ob R");
- piswarm.play_tune("CC",1);
- flagObstacle = 1;
- changeState(States::SEARCHING_TURNING);
-
- //Avoid obstacle to the left
- } else if(gv_IRDistances[6] < 100 || gv_IRDistances[7] < 100){
- piswarm.stop();
- piswarm.cls();
- piswarm.printf("ob L");
- piswarm.play_tune("CC",1);
- flagObstacle = 2;
- changeState(States::SEARCHING_TURNING);
-
- } else if(timerLevy.read_us() > levy_target_time_us){
- flagSetNewLevyTime = 1;
- piswarm.play_tune("G",1);
- changeState(States::SEARCHING_TURNING);
-
- } else if(distance_ultrasonic_sensor > 800 || distance_ultrasonic_sensor == 0){
- changeState(States::SEARCHING_FWD);
-
- } else if(distance_ultrasonic_sensor <= 50){
- flagObstacle = 3;
- changeState(States::SEARCHING_TURNING);
- }else {
- //decrease speed when PiSwarm is getting close to an obstacle
- float velocity = 0.2;
- if(distance_ultrasonic_sensor > 100){
- velocity = (distance_ultrasonic_sensor*0.00043) + 0.157;
- }
- piswarm.left_motor(velocity);
- piswarm.right_motor(velocity);
- //wait_ms(0.2);
- }
-
- }
//Beacon found state
} else if (gv_state == States::MOVING_TO_BEACON){
@@ -541,23 +474,21 @@
//As currently the home beacon will immediately switch on that is not necessary.
static int16_t valid_distances[8] = {0};
-
int16_t maxValue[2] = {0,100}; //Value and sensor position
- //wait(1);
int8_t loopCounter = 0;
- if(flagBeaconIlluminated == 0){
+ if(beacon_illuminated_flag == 0){
for(loopCounter = 0; loopCounter < 8; loopCounter++){
valid_distances[loopCounter] = gv_IRDistances[loopCounter];
}
}
//If beacon visible
- if(flagBeaconSyncronised == 1){
+ if(beacon_syncronised_flag == 1){
//Firstly check beacon is still visible
- flagBeaconSyncronised = 0;
+ beacon_syncronised_flag = 0;
//Update array concerning which IRs can see the beacon
for(loopCounter = 0; loopCounter<8; loopCounter++) {
@@ -567,14 +498,14 @@
if(gv_IRVals[g_beaconOn][loopCounter] > maxValue[0]){
maxValue[0] = gv_IRVals[g_beaconOn][loopCounter];
maxValue[1] = loopCounter;
- flagBeaconSyncronised = 1; //This will remain as one so long as at least on sensor can see beacon
+ beacon_syncronised_flag = 1; //This will remain as one so long as at least on sensor can see beacon
}
}
}
}
//Only do this if beacon still visible
- if(flagBeaconSyncronised == 1){
+ if(beacon_syncronised_flag == 1){
//If the adjacent two sensors are above the threshold too then they can also be marked as illuminated
for(loopCounter = 0; loopCounter<8; loopCounter++){
@@ -603,19 +534,18 @@
beacon_detected[7]||beacon_detected[0]);
//If the max IR value is below a threshold then move toward beacon. Else change state
- if(maxValue[0] < AT_BEACON_THRESHOLD){
+ if(maxValue[0] < at_beacon_threshold){
//Calculate the heading of Pi-Swarm Relative to beacon
- //printf("%d ",g_currentHeading);
calculateNewHeading();
- //printf("%d ",g_currentHeading);
+
if(g_currentHeading > 5 || g_currentHeading < -5){
turnDegrees(-g_currentHeading);
}
//If the beacon is not currently on but obstacle detected then do obstacle avoidance
int16_t randomAngle;
- if(flagBeaconIlluminated == 0){
+ if(beacon_illuminated_flag == 0){
if(gv_IRDistances[0] < 100 || gv_IRDistances[1] < 100){
randomAngle = rand()%90 - 135;
piswarm.stop();
@@ -623,8 +553,6 @@
piswarm.backward(0.3);
wait_ms(200);
turnDegrees(randomAngle);
- //piswarm.forward(0.2);
-// wait_ms(500);
} else if (gv_IRDistances[6] < 100 || gv_IRDistances[7] < 100){
randomAngle = rand()%90 + 45;
piswarm.stop();
@@ -632,8 +560,6 @@
piswarm.backward(0.3);
wait_ms(200);
turnDegrees(randomAngle);
- // piswarm.forward(0.2);
-// wait_ms(500);
} else if ( distance_ultrasonic_sensor < 100){
randomAngle = rand()%60 - 30;
piswarm.stop();
@@ -641,18 +567,15 @@
piswarm.backward(0.3);
wait_ms(200);
turnDegrees(randomAngle);
- //piswarm.forward(0.2);
-// wait_ms(500);
}
}
- piswarm.right_motor(0.3*r_mot_scaler*r_mot_scaler);
- piswarm.left_motor(0.3*l_mot_scaler*l_mot_scaler);
- wait_ms(500);
+ piswarm.right_motor(0.3*r_mot_scaler*r_mot_scaler);
+ piswarm.left_motor(0.3*l_mot_scaler*l_mot_scaler);
+ wait_ms(500);
//Should be at beacon
} else {
piswarm.stop();
calculateNewHeading();
- //printf("%d ",g_currentHeading);
if(g_currentHeading > 5 || g_currentHeading < -5){
turnDegrees(-g_currentHeading);
}
@@ -668,9 +591,9 @@
//Else need to syncronise with beacon
} else {
- while(flagBeaconSyncronised == 0){
+ while(beacon_syncronised_flag == 0){
+
//Sychronise the ticker with the beacon
-
uint8_t testBefore = 0;
uint8_t testDuring = 0;
uint8_t testAfter = 0;
@@ -687,11 +610,12 @@
if (gv_IRValDiffsTwo[mod8((g_beaconOn + 2),IR_READ_PER_BEAC)][loopCounter] < -BEACON_SUSPECTED){
testAfter = 2;
}
- }
+ }
+
//Firstly if the beacon is not detected by any of the sensors then change state back to search
if(testBefore == 0 && testDuring == 0 && testAfter == 0){
changeState(States::SEARCHING_FWD);
- flagBeaconSyncronised = 1;//to exit while loop
+ beacon_syncronised_flag = 1;//to exit while loop
//If the tick before g_beaconOn is detecting the change caused by the flash change the value of g_beaconOn
} else if(testBefore == 1){
@@ -700,13 +624,12 @@
//If the After Tick does not show a drop in value then it is also occuring within the beacon flash so delay the ticker by 10ms
} else if(testBefore == 0 && testDuring == 1 && testAfter == 1){
ticker_25ms.detach();
- //This was 100000? I think it should be 10000
tickChangeTimeout.attach_us(&atTimeout,10000);
wait(1);//Do not delete this wait
//If successful the set flag
} else if (testBefore == 0 && testDuring == 1 && testAfter == 2){
- flagBeaconSyncronised = 1;
+ beacon_syncronised_flag = 1;
//Error handle. If this happens stop the piswarm
} else {
@@ -718,11 +641,12 @@
ticker_25ms.detach();
tickChangeTimeout.attach_us(&atTimeout,10000);
wait_ms(500);
- flagBeaconSyncronised = 1;
+ beacon_syncronised_flag = 1;
changeState(States::SEARCHING_FWD);
}
}
}
+
//At target Beacon.
//Broadcast target beacon found and wait.
} else if (gv_state == States::AT_TARGET_BEACON){
@@ -736,34 +660,15 @@
ticker_ultrasonic50ms.detach();
uint8_t const num_to_broadcast = 10;
-
-/* while(aligned_target_beacon ==0){
- if(gv_IRVals[gv_counter25ms][7] < AT_BEACON_THRESHOLD && gv_IRVals[gv_counter25ms][0] < AT_BEACON_THRESHOLD ){
- calculateNewHeading();
- wait(0.025);
- turnDegrees(-g_currentHeading);
-
- }
- else if (gv_IRVals[gv_counter25ms][7] > AT_BEACON_THRESHOLD && gv_IRVals[gv_counter25ms][0] > AT_BEACON_THRESHOLD) {
- aligned_target_beacon = 1;
- }
-
- else{
- piswarm.printf("stuck");
- }
- }*/
-
-
+
while(back_flag == 0){
if(broadcasted_flag == 1 && broadcasted_count < num_to_broadcast){
broadcastTimeout.attach_us(&atBroadcastTimeout,100000);
broadcasted_flag = 0;
}
- //Wait for the back flag to change
- //wait_us(1000);
}
- ticker_25ms.attach_us(&readIRs,25000);
+ ticker_25ms.attach_us(&readIRs,25000);
ticker_ultrasonic50ms.attach_us(&get_ultrasonic_readings,50000);
//Return to beacon search state but now robot is lookling for the home beacon.
