cc3000 driver with expanded buffers.
Fork of cc3000_hostdriver_mbedsocket by
cc3000.cpp
- Committer:
- Kojto
- Date:
- 2013-11-10
- Revision:
- 46:ca8c234997c0
- Parent:
- 45:50ab13d8f2dc
File content as of revision 46:ca8c234997c0:
/***************************************************************************** * * C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to * Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and * provided help. * * This version of "host driver" uses CC3000 Host Driver Implementation. Thus * read the following copyright: * * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include "cc3000.h" #include "cc3000_event.h" namespace mbed_cc3000 { /* TODO this prefix remove? verify */ static uint8_t cc3000_prefix[] = {'T', 'T', 'T'}; cc3000 *cc3000::_inst; cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi) : _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event), _spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, _event, _simple_link), _hci(_spi), _nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event), _wlan(_simple_link, _event, _spi, _hci) { _simple_link.set_tx_complete_signal(1); memset(&_status, 0, sizeof(_status)); _inst = this; } cc3000::~cc3000() { } #if (CC3000_ETH_COMPAT == 1) cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, const char *ssid, const char *phrase, Security sec, bool smart_config) : _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event), _spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, _event, _simple_link), _hci(_spi), _nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event), _wlan(_simple_link, _event, _spi, _hci), _sec(sec), _smart_config(smart_config) { _simple_link.set_tx_complete_signal(1); memset(&_status, 0, sizeof(_status)); strcpy((char *)_ssid, ssid); strcpy((char *)_phrase, phrase); _inst = this; } // Ethernet library compatible, functions return strings // Caches the ipconfig from the usync callback static char mac_addr[19]= "\0"; static char ip_addr[17] = "\0"; static char gateway[17] = "\0"; static char networkmask[17] = "\0"; void cc3000::init() { _wlan.start(0); uint32_t subnet[4] = {0}; uint32_t ip[4] = {0}; uint32_t getway[4] = {0}; uint32_t dns[4] = {0}; _netapp.dhcp(ip, subnet, getway, dns); _wlan.stop(); wait(1); _wlan.start(0); _status.enabled = 1; _wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE); } void cc3000::init(const char *ip, const char *mask, const char *gateway) { _netapp.dhcp((uint32_t *)ip, (uint32_t *)mask, (uint32_t *)gateway, (uint32_t *)ip); //dns = ip _wlan.stop(); wait(1); _wlan.start(0); _status.enabled = 1; _wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE); } int cc3000::connect(unsigned int timeout_ms) { Timer t; int ret = 0; if (_smart_config == false) { _wlan.ioctl_set_connection_policy(0, 0, 0); } else { tUserFS user_info; get_user_file_info((uint8_t *)&user_info, sizeof(user_info)); if (user_info.FTC == 1) { _wlan.ioctl_set_connection_policy(0, 1, 1); } else { DBG_CC("Smart config is not set. Please run the first time configuration."); return -1; } } t.start(); while (is_connected() == false) { if (strlen((const char *)_phrase) < 8) { if (connect_open(_ssid)) { break; } } else { #ifndef CC3000_TINY_DRIVER if (connect_secure(_ssid,_phrase, _sec)) { break; } #else return -1; /* secure connection not supported with TINY_DRIVER */ #endif } if (t.read_ms() > timeout_ms) { ret = -1; DBG_CC("Connection to AP failed"); break; } } while (is_dhcp_configured() == false) { if (t.read_ms() > timeout_ms) { ret = -1; DBG_CC("Connection to AP failed"); break; } } return ret; } char* cc3000::getMACAddress() { return mac_addr; } char* cc3000::getIPAddress() { return ip_addr; } char* cc3000::getGateway() { return gateway; } char* cc3000::getNetworkMask() { return networkmask; } int cc3000::disconnect(void){ if (_wlan.disconnect()) { return -1; } else { return 0; } } #endif void cc3000::usync_callback(int32_t event_type, uint8_t *data, uint8_t length) { if (event_type == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE) { DBG_CC("Callback : HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE"); _status.smart_config_complete = 1; _status.stop_smart_config = 1; } if (event_type == HCI_EVNT_WLAN_UNSOL_CONNECT) { DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_CONNECT"); _status.connected = 1; // Connect message is always followed by a DHCP message, connection is not useable until then _status.dhcp = 0; } if (event_type == HCI_EVNT_WLAN_UNSOL_DISCONNECT) { DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DISCONNECT"); _status.connected = 0; _status.dhcp = 0; _status.dhcp_configured = 0; } if (event_type == HCI_EVNT_WLAN_UNSOL_DHCP) { #if (CC3000_ETH_COMPAT == 1) _socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_IP_OFFSET]))), ip_addr, 17); _socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_GW_OFFSET]))), gateway, 17); _socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_SUBNET_OFFSET]))), networkmask, 17); _socket.inet_ntoa_r( htonl(*((uint32_t *)(&data[NETAPP_IPCONFIG_MAC_OFFSET]))), mac_addr, 19); #endif if (*(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0) { _status.dhcp = 1; DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DHCP %i.%i.%i.%i", data[3], data[2], data[1], data[0]); } else { DBG_CC("Callback : HCI_EVNT_WLAN_UNSOL_DHCP - Disconnecting"); _status.dhcp = 0; } } if (event_type == HCI_EVENT_CC3000_CAN_SHUT_DOWN) { // Note this means the modules is idle, so it could be shutdown.. //DBG_CC("Callback : HCI_EVENT_CC3000_CAN_SHUT_DOWN"); _status.ok_to_shut_down = 1; } if (event_type == HCI_EVNT_WLAN_ASYNC_PING_REPORT) { DBG_CC("Callback : HCI_EVNT_WLAN_ASYNC_PING_REPORT"); memcpy(&_ping_report, data, length); } if (event_type == HCI_EVNT_BSD_TCP_CLOSE_WAIT) { uint8_t socketnum = data[0]; DBG_CC("Callback : HCI_EVNT_BSD_TCP_CLOSE_WAIT - Socket : %d", socketnum); if (socketnum < MAX_SOCKETS) { _closed_sockets[socketnum] = true; /* clients socket is closed */ } } } void cc3000::start_smart_config(const uint8_t *smart_config_key) { _status.smart_config_complete = 0; _wlan.ioctl_set_connection_policy(0, 0, 0); if (_status.connected == 1) { disconnect(); } //Wait until CC3000 is disconected while (_status.connected == 1) { wait_us(5); _event.hci_unsolicited_event_handler(); } // Trigger the Smart Config process _wlan.smart_config_set_prefix(cc3000_prefix); // Start the Smart Config process with AES disabled _wlan.smart_config_start(0); DBG_CC("Waiting for smartconfig to be completed"); // Wait for Smart config finished while (_status.smart_config_complete == 0) { wait_ms(100); } DBG_CC("Smartconfig finished"); #ifndef CC3000_UNENCRYPTED_SMART_CONFIG // create new entry for AES encryption key _nvmem.create_entry(NVMEM_AES128_KEY_FILEID, 16); // write AES key to NVMEM _security.aes_write_key((uint8_t *)(&smart_config_key[0])); // Decrypt configuration information and add profile _wlan.smart_config_process(); #endif // Configure to connect automatically to the AP retrieved in the // Smart config process _wlan.ioctl_set_connection_policy(0, 0, 1); // reset the CC3000 _wlan.stop(); _status.enabled = 0; wait(5); _wlan.start(0); _status.enabled = 1; // Mask out all non-required events _wlan.set_event_mask(HCI_EVNT_WLAN_KEEPALIVE | HCI_EVNT_WLAN_UNSOL_INIT); } bool cc3000::connect_secure(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) { #ifdef CC3000_TINY_DRIVER return false; /* not supported*/ #else uint32_t ret; //_wlan.disconnect(); wait_ms(3); ret = _wlan.connect(security_mode, ssid, strlen((const char *)ssid), 0, (uint8_t *)key, strlen((const char *)key)); if (ret == 0) { /* TODO static internal cc3000 state 0 to TRUE */ ret = true; } else { ret = false; } return ret; #endif } bool cc3000::connect_non_blocking(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) { bool ret = false; if (key == 0) { if (connect_open(ssid)) { ret = true; } } else { #ifndef CC3000_TINY_DRIVER if (connect_secure(ssid,key,security_mode)) { ret = true; } #else /* secure connection not supported with TINY_DRIVER */ #endif } return ret; } bool cc3000::connect_to_AP(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) { Timer t; bool ret = true; t.start(); while (is_connected() == false) { if (key == 0) { if (connect_open(ssid)) { break; } } else { #ifndef CC3000_TINY_DRIVER if (connect_secure(ssid,key,security_mode)) { break; } #else return false; /* secure connection not supported with TINY_DRIVER */ #endif } /* timeout 10 seconds */ if (t.read_ms() > 10000) { ret = false; DBG_CC("Connection to AP failed"); break; } } return ret; } void cc3000::start(uint8_t patch) { _wlan.start(patch); _status.enabled = 1; _wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE); } void cc3000::stop(void) { _wlan.stop(); _status.enabled = 0; } void cc3000::restart(uint8_t patch) { _wlan.stop(); _status.enabled = 0; wait_ms(500); _wlan.start(patch); _status.enabled = 1; } bool cc3000::connect_open(const uint8_t *ssid) { _wlan.disconnect(); wait_ms(3); uint32_t ret; #ifndef CC3000_TINY_DRIVER ret = _wlan.connect(0,ssid, strlen((const char *)ssid), 0, 0, 0); #else ret = _wlan.connect(ssid, strlen((const char *)ssid)); #endif if (ret == 0) { ret = true; } else { ret = false; } return ret; } bool cc3000::is_enabled() { return _status.enabled; } bool cc3000::is_connected() { if (( _status.connected ) && ( _status.dhcp )) { return 1; } else { return 0; } } bool cc3000::is_dhcp_configured() { return _status.dhcp; } bool cc3000::is_smart_confing_completed() { return _status.smart_config_complete; } uint8_t cc3000::get_mac_address(uint8_t address[6]) { return _nvmem.get_mac_address(address); } uint8_t cc3000::set_mac_address(uint8_t address[6]) { return _nvmem.set_mac_address(address); } void cc3000::get_user_file_info(uint8_t *info_file, size_t size) { _nvmem.read( NVMEM_USER_FILE_1_FILEID, size, 0, info_file); } #ifndef CC3000_TINY_DRIVER bool cc3000::get_ip_config(tNetappIpconfigRetArgs *ip_config) { if ((_status.dhcp == false) || (_status.connected == false)) { return false; } _netapp.ipconfig(ip_config); return true; } #endif void cc3000::delete_profiles(void) { _wlan.ioctl_set_connection_policy(0, 0, 0); _wlan.ioctl_del_profile(255); tUserFS user_info; get_user_file_info((uint8_t *)&user_info, sizeof(user_info)); user_info.FTC = 0; set_user_file_info((uint8_t *)&user_info, sizeof(user_info)); } void cc3000::set_user_file_info(uint8_t *info_file, size_t size) { _nvmem.write( NVMEM_USER_FILE_1_FILEID, size, 0, info_file); } uint32_t cc3000::ping(uint32_t ip, uint8_t attempts, uint16_t timeout, uint8_t size) { #ifndef CC3000_TINY_DRIVER uint32_t reversed_ip = (ip >> 24) | ((ip >> 8) & 0xFF00) | ((ip << 8) & 0xFF0000) | (ip << 24); _ping_report.packets_received = 0; if (_netapp.ping_send(&reversed_ip, attempts, size, timeout) == -1) { DBG_CC("Failed to send ping"); return 0; } wait_ms(timeout*attempts*2); /* known issue of cc3000 - sent number is send + received */ // TODO : Remove the Sent/recv'd counts until ti fix the firmware issue? DBG_CC("Sent: %d",_ping_report.packets_sent); DBG_CC("Received: %d",_ping_report.packets_received); DBG_CC("Min time: %d",_ping_report.min_round_time); DBG_CC("Max time: %d",_ping_report.max_round_time); DBG_CC("Avg time: %d",_ping_report.avg_round_time); return _ping_report.packets_received; #else return 0; #endif } /* Conversion between uint types and C strings */ uint8_t* UINT32_TO_STREAM_f (uint8_t *p, uint32_t u32) { *(p)++ = (uint8_t)(u32); *(p)++ = (uint8_t)((u32) >> 8); *(p)++ = (uint8_t)((u32) >> 16); *(p)++ = (uint8_t)((u32) >> 24); return p; } uint8_t* UINT16_TO_STREAM_f (uint8_t *p, uint16_t u16) { *(p)++ = (uint8_t)(u16); *(p)++ = (uint8_t)((u16) >> 8); return p; } uint16_t STREAM_TO_UINT16_f(uint8_t *p, uint16_t offset) { return (uint16_t)((uint16_t)((uint16_t) (*(p + offset + 1)) << 8) + (uint16_t)(*(p + offset))); } uint32_t STREAM_TO_UINT32_f(uint8_t *p, uint16_t offset) { return (uint32_t)((uint32_t)((uint32_t) (*(p + offset + 3)) << 24) + (uint32_t)((uint32_t) (*(p + offset + 2)) << 16) + (uint32_t)((uint32_t) (*(p + offset + 1)) << 8) + (uint32_t)(*(p + offset))); } } // mbed_cc3000 namespace