Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SD600A by
SD600A.cpp
- Committer:
- heroic
- Date:
- 2012-10-13
- Revision:
- 26:98163818a82e
- Parent:
- 25:14e5984d3aae
- Child:
- 27:6667543f3b28
File content as of revision 26:98163818a82e:
// Mbed library to control SD600A-based RGB LED Strips // Partially based on work (c) 2011 Jelmer Tiete // // Ported from Arduino by // Jas Strong <jasmine@electronpusher.org> /*****************************************************************************/ #include "rtos.h" #include "LedStrip.h" #include "SD600A.h" SD600ASupervisor::SD600ASupervisor(void) { numstrips = 0; byte_index = 0; bit_index = 0; } void SD600ASupervisor::add(SD600A *strip) { strips[numstrips] = strip; numstrips++; if (numstrips == 1) { // this is the first one, set up the interrupt. data_length = strip->data_length; NVIC_SetPriority(TIMER3_IRQn, 0); idletoggle.attach_us(this, &SD600ASupervisor::spi_isr, INTERRUPT_INTERVAL); } } /* * Soft SPI clockout routine. Triggered every few microseconds, * repeatedly clocks out the strip contents. Since each update function * actually updates a byte at a time, and the C-m3 peeks the write buffer, * there is no need to lock the buffer. */ void SD600ASupervisor::spi_isr(void) { int i; SD600A *curstrip; for (i=0; i<numstrips; i++) { curstrip = strips[i]; curstrip->clk = 1; curstrip->dat = curstrip->pixels[byte_index] & (0x80 >> bit_index); } for (i=0; i<numstrips; i++) strips[i]->clk = 0; bit_index++; for (i=0; i<numstrips; i++) strips[i]->clk = 1; for (i=0; i<numstrips; i++) { curstrip = strips[i]; curstrip->dat = curstrip->pixels[byte_index] & (0x80 >> bit_index); } for (i=0; i<numstrips; i++) strips[i]->clk = 0; bit_index++; if (bit_index == 8) { byte_index++; bit_index = 0; } if (byte_index == data_length) byte_index = 0; } SD600A::SD600A(PinName dataPin, PinName clockPin, int n) : dat(dataPin), clk(clockPin) { // Allocate 3 bytes per pixel: numLEDs = n; if ((pixels = (uint8_t *)malloc(4+ numLEDs * 3))) { memset(pixels, 0, numLEDs * 3); // Init to RGB 'off' state pixels[numLEDs*3] = 0x7f; pixels[numLEDs*3+1] = 0xff; pixels[numLEDs*3+2] = 0xff; pixels[numLEDs*3+3] = 0x80; data_length = numLEDs*3 +4; byte_index = 0; bit_index = 0; } else error("SD600A could not allocate memory!\r\n"); } void SD600A::begin(void) { // Null stub. } uint16_t SD600A::numPixels(void) { return numLEDs; } void SD600A::blank(void) { memset(pixels, 0x00, numLEDs * 3); } void SD600A::show(void) { // Null stub, since shows continuously. } uint32_t SD600A::total_luminance(void) { uint32_t running_total; running_total = 0; for (int i=0; i<numLEDs*3; i++) running_total += pixels[i]; return running_total; } // Convert R,G,B to combined 32-bit color uint32_t SD600A::Color(uint8_t r, uint8_t g, uint8_t b) { // Take 23 bits of the value and append them end to end // We cannot drive all ones or it will make the part latch if the previous word ended in one! return 0xfefefe & ((uint32_t)b << 16) | ((uint32_t)r << 8) | (uint32_t)g; } // store the rgb component in our array void SD600A::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed n=numLEDs-(n+1); pixels[n*3 ] = g & 0xfe; pixels[n*3+1] = b & 0xfe; pixels[n*3+2] = r & 0xfe; } void SD600A::setPixelR(uint16_t n, uint8_t r) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed n=numLEDs-(n+1); pixels[n*3+2] = r & 0xfe; } void SD600A::setPixelG(uint16_t n, uint8_t g) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed n=numLEDs-(n+1); pixels[n*3+1] = g & 0xfe; } void SD600A::setPixelB(uint16_t n, uint8_t b) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed n=numLEDs-(n+1); pixels[n*3] = b & 0xfe; } void SD600A::setPixelColor(uint16_t n, uint32_t c) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed n=numLEDs-(n+1); pixels[n*3 ] = (c >> 16) & 0xfe; pixels[n*3+1] = (c >> 8) & 0xfe; pixels[n*3+2] = c & 0xfe; }