Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SD600A by
SD600A.cpp
- Committer:
- heroic
- Date:
- 2012-10-10
- Revision:
- 14:908869a15f5a
- Parent:
- 13:875eb971d6c6
- Child:
- 15:2733cd5f34e4
File content as of revision 14:908869a15f5a:
// Mbed library to control SD600A-based RGB LED Strips // Partially based on work (c) 2011 Jelmer Tiete // // Ported from Arduino by // Jas Strong <jasmine@electronpusher.org> /*****************************************************************************/ #include "rtos.h" #include "LedStrip.h" #include "SD600A.h" void SD600A::idle_function(void) { dat = 0; clk = !clk; } SD600A::SD600A(PinName dataPin, PinName clockPin, int n) : dat(dataPin), clk(clockPin) { // Allocate 3 bytes per pixel: numLEDs = n; if ((pixels = (uint8_t *)malloc(numLEDs * 3))) { memset(pixels, 0, numLEDs * 3); // Init to RGB 'off' state } idletoggle.attach_us(this, &SD600A::idle_function, IDLE_INTERVAL); } /* * Soft SPI clock-out implementation (CPOL = 1, CPHA = 0). * Certainly not the fastest in the world but it'll do. * Gets about 3.6 MHz; could get several times as much * using the bitbands directly - jas. */ void SD600A::write(uint8_t byte) { clk=1; for (int i=0; i<8; i++) { dat = !!(byte & (1 << (7 - i))); clk = 0; // dat = (byte & 0x80); #ifdef DELAY_PERIOD wait_us(DELAY_PERIOD); #endif clk = 1; #ifdef DELAY_PERIOD wait_us(DELAY_PERIOD); #endif //byte <<= 1; } } void SD600A::begin(void) { // Issue initial latch to 'wake up' strip (latch length varies w/numLEDs) idletoggle.detach(); // set the Ticker interrupt to the highest possible priority; reduce ethernet irq priority NVIC_SetPriority(TIMER3_IRQn, 0); NVIC_SetPriority(ENET_IRQn, 1); for (int i=0; i<numLEDs; i++) { write(0); write(0); write(0); } writeguard(); idletoggle.attach_us(this, &SD600A::idle_function, IDLE_INTERVAL); } uint16_t SD600A::numPixels(void) { return numLEDs; } void SD600A::writeguard(void) { // generate a 25-bit word of ones clk = 1; #ifdef DELAY_PERIOD wait_us(DELAY_PERIOD); #endif dat = 1; #ifdef DELAY_PERIOD wait_us(DELAY_PERIOD); #endif clk = 0; #ifdef DELAY_PERIOD wait_us(DELAY_PERIOD); #endif write(0xff); write(0xff); write(0xff); } void SD600A::blank(void) { memset(pixels, 0x00, numLEDs * 3); } void SD600A::show(void) { uint16_t i, nl3 = numLEDs * 3; // 3 bytes per LED idletoggle.detach(); for (i=nl3; i; i-- ) { write(pixels[i]); } // Write guard word writeguard(); idletoggle.attach_us(this, &SD600A::idle_function, IDLE_INTERVAL); } // Convert R,G,B to combined 32-bit color uint32_t SD600A::Color(uint8_t r, uint8_t g, uint8_t b) { // Take 23 bits of the value and append them end to end // We cannot drive all ones or it will make the part latch if the previous word ended in one! return 0xfefefe & ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b; } // store the rgb component in our array void SD600A::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed pixels[n*3 ] = b & 0xfe; pixels[n*3+1] = g & 0xfe; pixels[n*3+2] = r & 0xfe; } void SD600A::setPixelR(uint16_t n, uint8_t r) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed pixels[n*3+2] = r & 0xfe; } void SD600A::setPixelG(uint16_t n, uint8_t g) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed pixels[n*3+1] = g & 0xfe; } void SD600A::setPixelB(uint16_t n, uint8_t b) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed pixels[n*3] = b & 0xfe; } void SD600A::setPixelColor(uint16_t n, uint32_t c) { if (n >= numLEDs) return; // '>=' because arrays are 0-indexed pixels[n*3 ] = (c >> 16) & 0xfe; pixels[n*3+1] = (c >> 8) & 0xfe; pixels[n*3+2] = c & 0xfe; }